Journal of Algebra Combinatorics Discrete Structures and Applications

Rotated D_n -lattices in dimensions power of 3^*

Research Article

Agnaldo J. Ferrari, Grasiele C. Jorge, Antonio A. de Andrade

Abstract: In this work, we present constructions of families of rotated D_n -lattices which may be good for signal transmission over both Gaussian and Rayleigh fading channels. The lattices are obtained as sublattices of a family of rotated $\mathbb{Z} \oplus \mathcal{A}_2^k$ lattices, where \mathcal{A}_2^k is a direct sum of $k = \frac{3^{r-1}-1}{2}$ copies of the A_2 -lattice, using free \mathbb{Z} -modules in $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$.

2010 MSC: 11H06, 11R18, 94B12

 ${\bf Keywords:} \ {\rm Lattices}, \ {\rm Cyclotomic \ fields}, \ {\rm Signal \ transmission}$

1. Introduction

A lattice $\Lambda \subseteq \mathbb{R}^n$ is a discrete set generated by integer combinations of n linearly independent vectors in \mathbb{R}^n over \mathbb{R} . Its packing density $\Delta(\Lambda)$ is the proportion of the space \mathbb{R}^n covered by congruent disjoint spheres of maximum radius [8]. A lattice Λ has diversity $m \leq n$ if m is the maximum number such that for all $\mathbf{y} = (y_1, \ldots, y_n) \in \Lambda$, with $\mathbf{y} \neq \mathbf{0}$, there are at least m non-zero coordinates. Given a full diversity lattice $\Lambda \subseteq \mathbb{R}^n$, with m = n, the minimum product distance is defined as $d_{min}(\Lambda) = \inf\{\prod_{i=1}^n |y_i| \text{ for all } \mathbf{y} = (y_1, \ldots, y_n) \in \Lambda$, with $\mathbf{y} \neq \mathbf{0}$ } [5].

Lattices have been considered in different areas, especially in coding theory, and they have been studied in several papers, from different points of view [1-7, 9, 10, 12, 13, 15]. Signal constellations having lattice structure have been studied for signal transmission over both Gaussian and single-antenna Rayleigh fading channel [7]. Usually the problem of finding good signal constellations for a Gaussian

https://doi.org/10.13069/jacodesmath.1000778

^{*} This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under Grants No. 432735/2016-0 and 429346/2018-2 and Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo) under Grant No. 2013/25977-7.

Agnaldo J. Ferrari (Corresponding Author); Department of Mathematics, São Paulo State University, Bauru, SP 17033-360, Brazil (email: agnaldo.ferrari@unesp.br).

Grasiele C. Jorge; Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP 12247-014, Brazil (email: grasiele.jorge@unifesp.br).

Antonio A. de Andrade; Department of Mathematics, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil (email: antonio.andrade@unesp.br).

channel is associated to the search for lattices with high packing density [8]. On the other hand, for a Rayleigh fading channel the efficiency is strongly related to the lattice diversity and minimum product distance [5, 7]. The approach in this work, following [12] and [13] is the use of algebraic number theory to construct rotated D_n -lattices with full diversity via free \mathbb{Z} -modules.

In [1, 4, 5] some families of rotated \mathbb{Z}^n -lattices for $n = \frac{p-1}{2}$, where $p \ge 5$ is a prime number, and $n = 2^s$, for $s \ge 1$, with full diversity and good minimum product distance are studied for transmission over Rayleigh fading channels. In [12, 13] are studied some families of rotated D_n -lattices with full diversity and good minimum product distance for transmission over both Gaussian and Rayleigh fading channels. In [12] are constructed rotated D_n -lattices for n = (p-1)/2, where $p \ge 7$ is a prime and $n = 2^k$, for $k \ge 2$ integer, and in [13] families of rotated D_n -lattices for $n = 2^k(p-1)$, with $k \ge 0$ integer and $p \ge 5$ a prime, and n = (p-1)/4, where $p, q \ge 5$ are distinct prime numbers.

In this work, we construct families of rotated D_n -lattices with full diversity n for $n = 3^s$, $s \ge 1$, (Propositions 3.4 and 3.5). A D_n -lattice has better packing density $\delta(D_n)$ when compared to \mathbb{Z}^n , i.e., D_n has the best lattice packing density for n = 3, 4, 5 and $\lim_{n \to \infty} \frac{\delta(\mathbb{Z}^n)}{\delta(D_n)} = 0$, and also a very efficient decoding algorithm [8].

2. Algebraic lattices

Let $\{v_1, \ldots, v_m\}$ be a set of linearly independent vectors in \mathbb{R}^n and $\Lambda = \{\sum_{i=1}^m a_i v_i; a_i \in \mathbb{Z}\}$ the associated lattice. The set $\{v_1, \ldots, v_m\}$ is called a *basis* for Λ . A matrix M whose rows are these vectors is said to be a generator matrix for Λ while the associated Gram matrix is $G = MM^t = (\langle v_i, v_j \rangle)_{i,j=1}^m$. The determinant of Λ is det $\Lambda = \det G$ and it is an invariant under change of basis (see [8, p. 4]). Two lattices Λ_1 and Λ_2 are said to be similar if there is an orthogonal mapping $\phi : \mathbb{R}^n \to \mathbb{R}^n$ and a real positive number c such that $c\phi(\Lambda_1) = \Lambda_2$. When c = 1 the similar lattices Λ_1 and Λ_2 are said to be congruent or isomorphic. In this paper, as in [5, 12], we will say that Λ_1 is a rotated Λ_2 -lattice if Λ_1 and Λ_2 are congruent.

Let \mathbb{K} be a totally real number field of degree n and $\mathcal{O}_{\mathbb{K}}$ its ring of integes. Let σ_i , for $i = 1, \ldots, n$, be the n distinct \mathbb{Q} -homomorphisms from \mathbb{K} to \mathbb{R} . The *canonical embedding* $\sigma : \mathbb{K} \longrightarrow \mathbb{R}^n$ is defined by $\sigma(x) = (\sigma_1(x), \ldots, \sigma_n(x))$ [14, 16]. It can be shown that if $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z} -module of rank nwith \mathbb{Z} -basis $\{w_1, \ldots, w_n\}$, then the image $\Lambda = \sigma(\mathcal{I})$ is a lattice in \mathbb{R}^n with basis $\{\sigma(w_1), \ldots, \sigma(w_n)\}$ [16, Chapter 8] and it has full diversity [2, 5]. A Gram matrix for $\sigma(\mathcal{I})$ is $G = (Tr_{\mathbb{K}|\mathbb{Q}}(w_i w_j))_{i,j=1}^n$, where $Tr_{\mathbb{K}|\mathbb{Q}}(x) = \sum_{i=1}^n \sigma_i(x)$ for any $x \in \mathbb{K}$ [5]. In what follows let $q(u_i, u_j) = Tr_{\mathbb{K}|\mathbb{Q}}(u_i u_j)$ for any $u_i, u_j \in \mathbb{K}$.

In this paper, we focus on the maximal totally real subfields of the cyclotomic fields $\mathbb{Q}(\zeta_{3^r})$, where ζ_{3^r} is a primitive 3^r -th root of unity, with $r \geq 3$ a positive integer [17].

3. Rotated D_n -lattices via $\mathbb{K} = \mathbb{Q}(\zeta_{3^r} + \zeta_{3^r}^{-1})$, where $r \geq 3$ and $n = 3^{r-1}$

In [13, Proposition 2.7] it was shown that if \mathbb{K} is a totally real Galois extension with $d_{\mathbb{K}}$ an odd integer, then it is impossible to construct rotated D_n -lattices via fractional ideals of $\mathcal{O}_{\mathbb{K}}$. In particular, it is impossible to construct rotated D_n -lattices via fractional ideals of $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$ since $d_{\mathbb{K}} = 3^{\frac{2(r+1)3^{r-1}-3^r-1}{2}}$ by [11]. Thus, in this section, we present some families of rotated D_n -lattices using free \mathbb{Z} -modules in $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$. Our strategy is to construct these lattices as sublattices of a family of rotated $\mathbb{Z} \oplus \mathcal{A}_2^k$ -lattices, where \mathcal{A}_2^k is a direct sum of $k = \frac{3^{r-1}-1}{2}$ copies of the A_2 -lattice. In [3] is presented a family of rotated $\mathbb{Z} \oplus \mathcal{A}_2^k$ -lattices as the image of a twisted embedding [2] applied to $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$. In Proposition 3.3, we construct a family of rotated $\mathbb{Z} \oplus \mathcal{A}_2^k$ -lattices using the canonical embedding, where the Lemma 3.1 and Proposition 3.2 are support for the proof of Proposition 3.3. **Lemma 3.1.** [9] Consider $e_0 = 1$ and $e_i = \zeta_{3^r}^i + \zeta_{3^r}^{-i}$, for $i = 1, 2, ..., 3^{r-1} - 1$.

- 1. If $i = 0, ..., 3^{r-1} 1$, then $q(e_i, e_i) = \begin{cases} 3^{r-1} & \text{if } i = 0, \\ 2 \cdot 3^{r-1} & \text{otherwise.} \end{cases}$
- 2. If $i = 1, 2, ..., 3^{r-1} 1$, then $q(e_i, e_0) = 0$.
- 3. If $i, j = 1, ..., 3^{r-1} 1$, with $i \neq j$, then

$$q(e_i, e_j) = \begin{cases} -3^{r-1} & \text{if } i+j = 3^{r-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 3.2. Consider $u_0 = e_0$, $u_1 = e_1$ and for $i = 2, 3, ..., 3^{r-1} - 1$

$$u_i = \left\{ \begin{array}{ll} e_{\frac{i+1}{2}} & if \ i \equiv 1 \ (mod \ 2), \\ e_{3^{r-1}-\frac{i}{2}} & otherwise. \end{array} \right.$$

- 1. If $i = 0, ..., 3^{r-1} 1$, then $q(u_i, u_i) = \begin{cases} 3^{r-1} & \text{if } i = 0, \\ 2 \cdot 3^{r-1} & \text{otherwise.} \end{cases}$
- 2. If $i = 1, 2, ..., 3^{r-1} 1$, then $q(u_i, u_0) = 0$.
- 3. If $i, j = 1, ..., 3^{r-1} 1$, with $i \neq j$, then

$$q(u_i, u_j) = \begin{cases} -3^{r-1} & \text{if } i+j \equiv 3 \pmod{4} \text{ and } |i-j| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. From Lemma 3.1, it follows that $q(u_0, u_0) = q(e_0, e_0) = 3^{r-1}$ and for $i = 1, 2, ..., 3^{r-1} - 1$, it follows that $q(u_i, u_i) = 2 \cdot 3^{r-1}$ and $q(u_i, u_0) = q(u_i, e_0) = 0$, for $u_i \in \{e_1, e_2, ..., e_{3^{r-1}-1}\}$. If $i, j = 1, 2, ..., 3^{r-1} - 1$, with $i \neq j$, then

$$q(u_i, u_j) = \begin{cases} q(e_{\frac{i+1}{2}}, e_{\frac{j+1}{2}}) & \text{if } i, j \equiv 1 \pmod{2}, \\ q(e_{\frac{i+1}{2}}, e_{3^{r-1} - \frac{j}{2}}) & \text{if } i \equiv 1 \text{ and } j \equiv 0 \pmod{2}, \\ q(e_{3^{r-1} - \frac{j}{2}}, e_{\frac{j+1}{2}}) & \text{if } i \equiv 0 \text{ and } j \equiv 1 \pmod{2}, \\ q(e_{3^{r-1} - \frac{j}{2}}, e_{3^{r-1} - \frac{j}{2}}) & \text{if } i, j \equiv 0 \pmod{2}. \end{cases}$$

For $i, j \equiv 1 \pmod{2}$, it follows that either $i + j \equiv 0 \pmod{4}$ or $i + j \equiv 2 \pmod{4}$ and $\frac{i+1}{2} + \frac{j+1}{2} \neq 3^{r-1}$. Otherwise, since $i \neq j$, it follows that $i = j = 3^{r-1} - 1$, which is a contradiction. Thus, $q(u_i, u_j) = 0$. For $i \equiv 1 \pmod{2}$ and $j \equiv 0 \pmod{2}$, it follows that $\frac{i+1}{2} + 3^{r-1} - \frac{j}{2} = 3^{r-1}$ if and only if i = j - 1. For $i \equiv 0 \pmod{2}$ and $j \equiv 1 \pmod{2}$, it follows that $3^{r-1} - \frac{i}{2} + \frac{j+1}{2} = 3^{r-1}$ if and only if j = i - 1. In the last two cases, as i + j is odd, it follows that $i + j \equiv 3 \pmod{4}$, because if $i + j \equiv 1 \pmod{4}$, with i = j - 1 (respectively, j = i - 1), it follows that j is odd (respectively, i is odd), which is a contradiction. Therefore, $q(u_i, u_j) = -3^{r-1}$ if $i + j \equiv 3 \pmod{4}$ and |i - j| = 1. For $i, j \equiv 0 \pmod{2}$, it follows that either $i + j \equiv 0 \pmod{4}$ or $i + j \equiv 2 \pmod{4}$ and $3^{r-1} - \frac{i}{2} + 3^{r-1} - \frac{j}{2} \neq 3^{r-1}$. Otherwise, since $i \neq j$, it follows that $i = j = 3^{r-1} - 1$, which is a contradiction. Thus, $q(u_i, u_j) = 0$.

Proposition 3.3. The lattice $\frac{1}{\sqrt{3^{r-1}}}\sigma(\mathcal{O}_{\mathbb{K}})$ is a rotated version of $\mathbb{Z} \oplus \mathcal{A}_2^k$, where \mathcal{A}_2^k is a direct sum of $k = \frac{3^{r-1}-1}{2}$ copies of the A_2 -lattice.

Proof. From Proposition 3.2, it follows that $\{u_0, u_1, \ldots, u_{3^{r-1}-1}\}$ is a \mathbb{Z} -basis of $\mathcal{O}_{\mathbb{K}}$ because it is a permutation of the \mathbb{Z} -basis $\{e_0, e_1, \ldots, e_{3^{r-1}-1}\}$. A generator matrix of the algebraic lattice $\frac{1}{\sqrt{3^{r-1}}}\sigma_{\alpha}(\mathcal{O}_{\mathbb{K}})$

is given by $M = \frac{1}{\sqrt{3^{r-1}}}N$, where $N = (\sigma_i(u_{j-1}))_{i,j=1}^{3^{r-1}}$, and the associated Gram matrix is given by $G = MM^t = \frac{1}{3^{r-1}} (q(u_i, u_j))_{i,j=0}^{3^{r-1}-1}$. So,

$$G = \begin{pmatrix} 1 & & & \\ 2 & -1 & & \\ & -1 & 2 & & \\ & & 2 & -1 & \\ & & & -1 & 2 \\ & & & \ddots & \\ & & & & 2 & -1 \\ & & & & -1 & 2 \end{pmatrix}$$

It follows that the matrix G is a Gram matrix of $\mathbb{Z} \oplus \mathcal{A}_2^k$ -lattice.

In what follows, we split in two cases, i.e., we construct rotated D_n -lattices for $n = 3^{r-1}$, for r even and for r odd.

3.1. Rotated D_n -lattices for $n = 3^{r-1}$, where $r \ge 4$ is even

In this section, we present a construction of rotated D_n -lattices using \mathbb{Z} -modules in the totally real number field $\mathbb{K} = \mathbb{Q}(\zeta_{3^r} + \zeta_{3^r}^{-1})$, where r is even. The D_n -lattice is obtained as sublattice of $\mathbb{Z} \oplus \mathcal{A}_2^k$ using $\mathcal{B} = \{u_0, u_1, \ldots, u_{3^{r-1}-1}\}$ a \mathbb{Z} -basis of $\mathcal{O}_{\mathbb{K}}$.

Proposition 3.4. Let $\mathcal{I} = \mathbb{Z}\omega_0 \oplus \mathbb{Z}\omega_1 \oplus \ldots \oplus \mathbb{Z}\omega_{3^{r-1}-1}$ be a free \mathbb{Z} -module of $\mathcal{O}_{\mathbb{K}}$, where

$$\begin{aligned} 1. \ & \omega_0 = -4u_0 - 2u_1 - 2u_2; \ & \omega_1 = -2u_1 + 2u_2; \ & \omega_2 = 4u_0 - 2u_2; \\ & \omega_3 = -2u_0 + 2u_1 + 2u_2 - u_5 + u_6 - u_9 + u_{10}; \end{aligned} \\ 2. \ For \ & j = 1, 2 \dots, \frac{3^{r-1} - 11}{8}, \\ & \omega_{4j} = u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} + u_{8j+1} - u_{8j+2} - u_{8j+3} + u_{8j+4}; \\ & \omega_{4j+1} = -u_{8j-3} + u_{8j-2} + u_{8j-1} - u_{8j} + u_{8j+1} - u_{8j+2} + u_{8j+3} - u_{8j+4}; \\ & \omega_{4j+2} = u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} - u_{8j+1} + u_{8j+2} + u_{8j+3} - u_{8j+4}; \\ & \omega_{4j+3} = u_{8j-1} - u_{8j} - u_{8j+3} + u_{8j+4} - u_{8j+5} + u_{8j+6} - u_{8j+9} \\ & + u_{8j+10}; \\ & \omega_{3^{r-1}+1-4j} = -u_{8j-3} - u_{8j-2} - u_{8j-1} - u_{8j} + 3u_{8j+1} + 3u_{8j+2} \\ & - u_{8j+3} - u_{8j+4}; \\ & \omega_{3^{r-1}+2-4j} = u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} + u_{8j+1} - u_{8j+2} \\ & + u_{8j+3} + u_{8j+4}; \\ & u_{3^{r-1}+3-4j} = 3u_{8j-3} + 3u_{8j-2} - u_{8j-1} - u_{8j} + u_{8j+1} + u_{8j+2} \\ & + u_{8j+3} + u_{8j+4}; \\ & If \ \ & j \neq 1, \\ & \omega_{3^{r-1}+4-4j} = -u_{8j-9} - u_{8j-8} - 2u_{8j-7} - 2u_{8j-6} + u_{8j-5} + u_{8j-4} \\ & - u_{8j-3} - u_{8j-2} - u_{8j+1} - u_{8j+2} - 2u_{8j+3} - 2u_{8j+4}; \end{aligned} \\ & 3. \ For \ & j = \frac{3^{r-1} - 3}{8}, \\ & \omega_{4j} = u_3 - u_4 + u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} + u_{8j+1} - u_{8j+2}; \\ & \omega_{4j+1} = -u_3 + u_4 - u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} + u_{8j+1} - u_{8j+2}; \\ & \omega_{4j+3} = 2u_3 - 2u_{8j} - 2u_{8j+1} - 2u_{8j+2}; \\ & \omega_{4j+3} = 2u_3 - 2u_{8j} - 2u_{8j+1} - 2u_{8j+2}; \\ & \omega_{3^{r-1}+1-4j} = -u_3 + u_4 - u_{8j-3} - u_{8j-2} - u_{8j-1} + u_{8j} + 3u_{8j+1} \\ & \quad + 3u_{8j+2}; \\ & \omega_{3^{r-1}+2-4j} = u_3 + u_4 - u_{8j-3} - u_{8j-2} - u_{8j-1} + 3u_{8j} - u_{8j+1} \\ & \quad + 3u_{8j+2}; \\ & \omega_{3^{r-1}+2-4j} = u_3 + u_4 - u_{8j-3} - u_{8j-2} + 3u_{8j-1} + 3u_{8j-1} + 3u_{8j+1} \\ \end{array}$$

$$\begin{split} & -u_{8j+2};\\ \omega_{3^{r-1}+3-4j} &= u_3+u_4+3u_{8j-3}+3u_{8j-2}-u_{8j-1}-u_{8j}+u_{8j+1}\\ & +u_{8j+2};\\ \omega_{3^{r-1}+4-4j} &= -2u_3-2u_4+u_{8j-9}+u_{8j-8}-2u_{8j-7}-2u_{8j-6}\\ & +u_{8j-5}+u_{8j-4}-u_{8j-3}-u_{8j-2}-u_{8j+1}-u_{8j+2}. \end{split}$$

Therefore, $\Lambda = \frac{1}{2\sqrt{3^r}}\sigma(\mathcal{I}) \subseteq \mathbb{R}^{3^{r-1}}$ is a rotated version of the $D_{3^{r-1}}$ -lattice.

Proof. From Proposition 3.2, it follows that

$$\begin{split} q(\omega_0, \omega_0) &= Tr_{\mathbf{X}_2/\mathbf{Q}}((-4u_0 - 2u_1 - 2u_2) = Tr_{\mathbf{X}_2/\mathbf{Q}}(16u_0u_0 + 16u_0u_1 + 16u_0u_2 \\ &\quad -2u_1 - 2u_2) = Tr_{\mathbf{X}_2/\mathbf{Q}}(16u_0u_0 + 16q_0u_0, u_1) \\ &\quad +16q_0(u_0, u_2) + 4q_0(u_1, u_1) + 8q_0(u_1, u_2) + 4q_0(u_2, u_2) \\ &\quad = 24 \cdot 3^{r-1}. \\ q(\omega_1, \omega_1) &= 4q(u_1, u_1) + 4q(u_2, u_2) - 8q(u_1, u_2) = 24 \cdot 3^{r-1}. \\ q(\omega_2, \omega_2) &= 16q_0(u_0, u_0) + 4q(u_1, u_1) + 8q(u_1, u_2) + 4q(u_2, u_2) \\ &\quad +q(u_5, u_5) - 2q(u_5, u_6) + q(u_6, u_6) + q(u_9, u_9) \\ &\quad -2q(u_0, u_0) + q(u_1, 0, u_1) = 24 \cdot 3^{r-1}. \\ q(\omega_0, \omega_2) &= q(\omega_1, \omega_2) = q(\omega_2, \omega_3) = q(\omega_3, \omega_4) = -12 \cdot 3^{r-1}. \\ \text{Let } j = 1, 2, \dots, \frac{3^{r-1}-3}{8}. \text{Since } q(u_i, u_j) \neq 0 \text{ if and only if } i + j \equiv 3 \pmod{4} \text{ and } |i-j| = 1, \text{ it follows} \\ \text{that} \\ q(\omega_4, \omega_4j) &= q(u_{8j-3}, u_{8j-3}) - 2q(u_{8j-3}, u_{8j-2}) + q(u_{8j-4}, u_{8j+4}) \\ &\quad + q(u_{8j+1}, u_{8j+1}) - 2q(u_{8j-1}, u_{8j+1}) + q(u_{8j+4}, u_{8j+4}) \\ &\quad = 24 \cdot 3^{r-1}. \\ \text{Similarly,} \\ q(\omega_{3^{r-1}+1-4j}, \omega_{3^{r-1}+1-4j} = q(u_{8j-3}, u_{8j-3}) + 2q(u_{8j-3}, u_{8j-2}) \\ &\quad + q(u_{8j+3}, u_{8j+3}) - 2q(u_{8j+3}, u_{8j+4}) + q(u_{8j+4}, u_{8j+4}) \\ &\quad = 24 \cdot 3^{r-1}. \\ \text{Similarly,} \\ q(\omega_{3^{r-1}+1-4j}, \omega_{3^{r-1}+1-4j} = q(u_{8j-3}, u_{8j-3}) + 2q(u_{8j-3}, u_{8j-2}) \\ &\quad + q(u_{8j+4}, u_{8j+4}) = 24 \cdot 3^{r-1}. \\ q(\omega_{4j+1}, \omega_{4j+1}) = q(\omega_{4j+2}, \omega_{4j+2}) = q(\omega_{3^{r-1}+3}, u_{8j+4}) \\ &\quad + q(u_{8j+4}, u_{8j+4}) = 24 \cdot 3^{r-1}. \\ q(\omega_{4j+1}, u_{4j+1}) = -q(u_{8j-3}, u_{8j-3}) + 2q(u_{8j-3}, u_{8j-2}) \\ &\quad + q(u_{8j+4}, u_{8j+4}) = 24 \cdot 3^{r-1}. \\ q(\omega_{4j+1}, u_{4j+1}) = -q(\omega_{8j-3}, u_{8j-1}) = q(\omega_{3^{r-1}+3}, u_{3j+3}) + 2q(u_{8j+3}, u_{8j+4}) \\ &\quad - q(\omega_{8j-2}, u_{8j-2}) - q(\omega_{8j+3}, u_{8j+3}) = \\ &\quad = q(\omega_{3^{r-1}+2-4j}, \omega_{3^{r-1}+2-4j}) = q(\omega_{3^{r-1}+3-4j}, u_{3^{r-1}+3-4j}) \\ &\quad = q(u_{3^{r-1}+2-4j}, u_{3^{r-1}+4-4j}) = 24 \cdot 3^{r-1}, \\ q(\omega_{4j+1}, u_{4j+1}) = -q(\omega_{8j+3}, u_{8j+1}) - 2q(\omega_{8j+3}, u_{8j+4}) = \\ &\quad - q(\omega_{8j-3}, u_{8j-1}) - q(\omega_{8j+3}, u_{8j+4}) = -12 \cdot 3^{r-1}, \\ q(\omega_{4j+1}, u_{4j+1}) = q(u_{8j+3}, u_{8j+1}) - 2q(\omega_{8j+1},$$

Finally, for $k, l = 1, 2, ..., 3^{r-1} - 2$, with l > k + 1, it follows that $q(\omega_k, \omega_l) = 0$. Now, $\mathcal{C} = \{\omega_0, \omega_1, ..., \omega_{3^{r-1}-1}\}$ is a basis of a free \mathbb{Z} -module \mathcal{I} . A generator matrix of the algebraic lattice $\frac{1}{2\sqrt{3^r}}\sigma(\mathcal{I})$ is given by $M = \frac{1}{2\sqrt{3^r}}N$, where $N = (\sigma_i(\omega_{j-1}))_{i,j=1}^{3^{r-1}}$, and the associated Gram matrix is

$$G = MM^{t} = \frac{1}{12 \cdot 3^{r-1}} (q(\omega_{i}, \omega_{j}))_{i,j=0}^{3^{r-1}-1} = \\ = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 & \dots & 0 \\ -1 & -1 & 2 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & \dots & 0 & 0 & -1 & 2 \end{pmatrix}.$$

Therefore, G is the Gram matrix of a $D_{3^{r-1}}$ -lattice.

3.2. Rotated D_n -lattices for $n = 3^{r-1}$, where $r \ge 3$ is odd

In this section, we present a construction of rotated D_n -lattices using \mathbb{Z} -modules via the totally real number field $\mathbb{K} = \mathbb{Q}(\zeta_{3^r} + \zeta_{3^r}^{-1})$, where r is odd. The D_n -lattice is obtained as sublattice of $\mathbb{Z} \oplus \mathcal{A}_2^k$ using $\mathcal{B} = \{u_0, u_1, \ldots, u_{3^{r-1}-1}\}$ a \mathbb{Z} -basis of $\mathcal{O}_{\mathbb{K}}$.

Proposition 3.5. Let $\mathcal{I} = \mathbb{Z}\omega_0 \oplus \mathbb{Z}\omega_1 \oplus \ldots \oplus \mathbb{Z}\omega_{3^{r-1}-1}$ be a free \mathbb{Z} -module of $\mathcal{O}_{\mathbb{K}}$, where

- 1. $\omega_0 = -6u_0 3u_1 3u_3; \ \omega_1 = 6u_0 3u_1 3u_3; \ \omega_2 = 6u_1;$
- 3. For $j = \frac{3^{r-1}+1}{2}$, $\omega_j = -u_{2j-7} - 2u_{2j-6} - 5u_{2j-5} - 4u_{2j-4} + 4u_{2j-3} + 2u_{2j-2}$; $\omega_{j+1} = -u_{2j-9} - 2u_{2j-8} - u_{2j-7} - 2u_{2j-6} + 3u_{2j-5} + 6u_{2j-4} - u_{2j-3} - 2u_{2j-2}$; $\omega_{j+2} = -u_{2j-9} - 2u_{2j-8} + 3u_{2j-7} + 6u_{2j-6} - u_{2j-5} - 2u_{2j-4} + u_{2j-3} + 2u_{2j-2}$; $\omega_{j+3} = 3u_{2j-9} + 6u_{2j-8} - u_{2j-7} - 2u_{2j-6} + u_{2j-5} + 2u_{2j-4}$

$$+ u_{2j-3} + 2u_{2j-2};$$
4. For $j = 1, 2, ..., \frac{3^{r-1}-9}{8}$, with $r > 3$,
 $\omega_{3^{r-1}-4j} = -u_{8j-5} - 2u_{8j-4} - 2u_{8j-3} - 4u_{8j-2} + u_{8j-1} + 2u_{8j}$
 $- u_{8j+1} - 2u_{8j+2} - u_{8j+5} - 2u_{8j+6} - 2u_{8j+7} - 4u_{8j+8};$
 $\omega_{3^{r-1}+1-4j} = -u_{8j-7} - 2u_{8j-6} - u_{8j-5} - 2u_{8j-4} + 3u_{8j-3}$
 $+ 6u_{8j-2} - u_{8j-1} - 2u_{8j};$
 $\omega_{3^{r-1}+2-4j} = -u_{8j-7} - 2u_{8j-6} + 3u_{8j-5} + 6u_{8j-4} - u_{8j-3}$

$$\begin{split} & u_{3}^{r-1} + 2 - 4j \\ & - 2u_{8j-2} + u_{8j-1} + 2u_{8j}; \\ & \omega_{3^{r-1}+3-4j} = 3u_{8j-7} + 6u_{8j-6} - u_{8j-5} - 2u_{8j-4} + u_{8j-3} + 2u_{8j-2} \\ & + u_{8j-1} + 2u_{8j}. \end{split}$$

Therefore, $\Lambda = \frac{1}{6\sqrt{3^{r-1}}}\sigma(\mathcal{I}) \subseteq \mathbb{R}^{3^{r-1}}$ is a rotated version of a $D_{3^{r-1}}$ -lattice.

Proof. From Proposition 3.2, it follows that

$$q(\omega_{0},\omega_{0}) = Tr_{\mathbb{K}/\mathbb{Q}}(\omega_{0}\omega_{0}) = Tr_{\mathbb{K}/\mathbb{Q}}((-6u_{0} - 3u_{1} - 3u_{3})(-6u_{0} - 3u_{1} - 3u_{3}) = Tr_{\mathbb{K}/\mathbb{Q}}(36u_{0}u_{0} + 36u_{0}u_{1} + 36u_{0}u_{3} + 9u_{1}u_{1} + 18u_{1}u_{3} + 9u_{3}u_{3}) = 36q(u_{0},u_{0}) + 36q(u_{0},u_{1})$$

 $+ 36q(u_0, u_3) + 9q(u_1, u_1) + 18q(u_1, u_3) + 9q(u_3, u_3)$ $= 72 \cdot 3^{r-1}$ $q(\omega_1, \omega_1) = 36q(u_0, u_0) + 9q(u_1, u_1) + 9q(u_3, u_3) = 72 \cdot 3^{r-1}.$ $q(\omega_2, \omega_2) = 36q(u_1, u_1) = 72 \cdot 3^{r-1}.$ $q(\omega_0, \omega_1) = q(\omega_0, \omega_3) = q(\omega_1, \omega_3) = 0.$ $q(\omega_0, \omega_2) = q(\omega_1, \omega_2) = q(\omega_2, \omega_3) = -36 \cdot 3^{r-1}.$ Let $3 \le j \le \frac{3^{r-1}-3}{2}$, with j odd. Since $q(u_i, u_j) \ne 0$ if and only if $i + j \equiv 3 \pmod{4}$ and |i - j| = 1, it follows that $\begin{aligned} q(\omega_j, \omega_j) &= 9q(u_{2j-5}, u_{2j-5}) + 9q(u_{2j-3}, u_{2j-3}) + 9q(u_{2j-1}, u_{2j-1}) \\ &+ 9q(u_{2j+1}, u_{2j+1}) = 72 \cdot 3^{r-1}. \end{aligned}$ $q(\omega_{j+1}, \omega_{j+1}) = 36q(u_{2j-1}, u_{2j-1}) = 72 \cdot 3^{r-1}.$ Furthermore, $q(\omega_j, \omega_{j+1}) = -18q(u_{2j-1}, u_{2j-1}) = -36 \cdot 3^{r-1}$, and for $j < \frac{3^{r-1}-3}{2}$, $q(\omega_{j+1},\omega_{j+2}) = q(6u_{2j-1},-3u_{2(j+2)-5}+3u_{2(j+2)-3}-3u_{2(j+2)-1})$ $-3u_{2(j+2)+1}) = q(6u_{2j-1}, -3u_{2j-1} + 3u_{2j+1})$ $-3u_{2j+3} - 3u_{2j+5}) = -18q(u_{2j-1}, u_{2j-1}) = -36 \cdot 3^{r-1}.$ For $j = \frac{3^{r-1}+1}{2}$, it follows that $q(\omega_j, \omega_j) = q(u_{2j-7}, u_{2j-7}) + 4q(u_{2j-7}, u_{2j-6}) + 4q(u_{2j-6}, u_{2j-6})$ $+25q(u_{2j-5}, u_{2j-5}) + 40q(u_{2j-5}, u_{2j-4})$ $+ 16q(u_{2j-4}, u_{2j-4}) + 16q(u_{2j-3}, u_{2j-3})$ $+16q(u_{2j-3}, u_{2j-2}) + 4q(u_{2j-2}, u_{2j-2}) = 72 \cdot 3^{r-1}.$ In the same way, it follows that $q(\omega_{j+1}, \omega_{j+1}) = q(\omega_{j+2}, \omega_{j+2}) = q(\omega_{j+3}, \omega_{j+3}) = 72 \cdot 3^{r-1}.$ Also, $q(\omega_j, \omega_{j+1}) = q(\omega_{2j-7}, \omega_{2j-7}) + 4q(\omega_{2j-7}, \omega_{2j-6}) + 4q(\omega_{2j-6}, \omega_{2j-6})$ $-15q(\omega_{2j-5},\omega_{2j-5})-42q(\omega_{2j-5},\omega_{2j-4})$ $-24q(\omega_{2j-4},\omega_{2j-4})-4q(\omega_{2j-3},\omega_{2j-3})$ $-10q(\omega_{2j-3},\omega_{2j-2}) - 4q(\omega_{2j-2},\omega_{2j-2}) = -36 \cdot 3^{r-1}.$ In the same way, it follows that $q(\omega_{j+1}, \omega_{j+2}) = q(\omega_{j+2}, \omega_{j+3}) = -36 \cdot 3^{r-1}. \text{ and for } k = \frac{3^{r-1}-9}{8},$ $q(\omega_{j+3}, \omega_{3^{r-1}-4k}) = q(\omega_{\frac{3^{r-1}+7}{2}}, \omega_{\frac{3^{r-1}+9}{2}}) = -36 \cdot 3^{r-1}.$ For $j = 1, 2, \dots, \frac{3^{r-1}-9}{8}$, with r > 3, $q(\omega_{3r-1}-4j, \omega_{3r-1}-4j) = q(\omega_{8j-5}, \omega_{8j-5}) + 4q(\omega_{8j-5}, \omega_{8j-4}) + 16$ $+4q(\omega_{8j-4},\omega_{8j-4})+4q(\omega_{8j-3},\omega_{8j-3})+16q(\omega_{8j-3},\omega_{8j-2})$ $+16q(\omega_{8j-2},\omega_{8j-2})+q(\omega_{8j-1},\omega_{8j-1})+4q(\omega_{8j-1},\omega_{8j})$ $+4q(\omega_{8j},\omega_{8j})+q(\omega_{8j+1},\omega_{8j+1})+4q(\omega_{8j+1},\omega_{8j+2})$ $+4q(\omega_{8j+2},\omega_{8j+2})+q(\omega_{8j+5},\omega_{8j+5})+4q(\omega_{8j+5},\omega_{8j+6})$ + 4q($\omega_{8j+6}, \omega_{8j+6}$) + 4q($\omega_{8j+7}, \omega_{8j+7}$) + 16q($\omega_{8j+7}, \omega_{8j+8}$) + 16q($\omega_{8j+8}, \omega_{8j+8}$) = 72 · 3^{r-1}. In the same way, it follows that $\begin{aligned} q(\omega_{3^{r-1}+1-4j},\omega_{3^{r-1}+1-4j}) &= q(\omega_{3^{r-1}+2-4j},\omega_{3^{r-1}+2-4j}) \\ &= q(\omega_{3^{r-1}+3-4j},\omega_{3^{r-1}+3-4j}) = 72 \cdot 3^{r-1}. \end{aligned}$ Also, $q(\omega_{3^{r-1}-4j},\omega_{3^{r-1}+1-4j}) = q(u_{8j-5},u_{8j-5}) + 4q(u_{8j-5},u_{8j-4})$ $+4q(u_{8j-4}, u_{8j-4}) - 6q(u_{8j-3}, u_{8j-3}) - 24q(u_{8j-3}, u_{8j-2})$ $-24q(u_{8j-2}, u_{8j-2}) - q(u_{8j-1}, u_{8j-1}) - 4q(u_{8j-1}, u_{8j}) - 4q(u_{8j}, u_{8j}) = -36 \cdot 3^{r-1}.$ In the same way, it follows that $q(\omega_{3^{r-1}+1-4j},\omega_{3^{r-1}+2-4j}) = q(\omega_{3^{r-1}+2-4j},\omega_{3^{r-1}+3-4j}) = -36 \cdot 3^{r-1}.$

Finally, for $k, l = 1, 2, ..., 3^{r-1} - 2$, with l > k+1, it follows that $q(\omega_k, \omega_l) = 0$. Now, n $\mathcal{C} = \{\omega_0, \omega_1, ..., \omega_{3^{r-1}-1}\}$ is a basis of a free \mathbb{Z} -module \mathcal{I} . A generator matrix of the algebraic lattice $\frac{1}{6\sqrt{3^{r-1}}}\sigma(\mathcal{I})$ is given by $M = \frac{1}{6\sqrt{3^{r-1}}}N$, where $N = (\sigma_i(\omega_{j-1}))_{i,j=1}^{3^{r-1}}$, and the associated Gram matrix is

$$G = MM^{t} = \frac{1}{36 \cdot 3^{r-1}} \left(q(\omega_{i}, \omega_{j}) \right)_{i,j=0}^{3^{r-1}-1} = \\ = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 & \dots & 0 \\ -1 & -1 & 2 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & \dots & 0 & 0 & -1 & 2 \end{pmatrix}$$

Therefore, G is the Gram matrix of a $D_{3^{r-1}}$ -lattice.

4. Conclusions

In this paper, we construct full diversity rotated versions of $D_{3^{r-1}}$ -lattices via the canonical embedding and two families of \mathbb{Z} -modules of the ring of the integers $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$, for $r \geq 3$ a positive integer, since it is impossible to construct rotated D_n -lattices via fractional ideals of $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$ [13]. The lattices obtained here are sublattices of the family of rotated $\mathbb{Z} \oplus \mathcal{A}_2^k$ -lattices, where \mathcal{A}_2^k is a direct sum of $k = \frac{3^{r-1}-1}{2}$ copies of the \mathcal{A}_2 -lattice.

In [1] and [4] families of rotated $\mathbb{Z}^{2^{r-2}}$ -lattices were obtained via the ring of integers $\mathbb{Z}[\zeta_{2^r} + \zeta_{2^r}^{-1}]$. In [5] a family of rotated $\mathbb{Z}^{(p-1)/2}$ -lattices was obtained via the ring of integers $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$, with p prime. In [9] two families of rotated $\mathbb{Z}^{3^{r-1}}$ -lattices were obtained via free \mathbb{Z} -modules of $\mathbb{Z}[\zeta_{3^r} + \zeta_{3^r}^{-1}]$, one for r odd and one for r even. In [12] two families of rotated $D_{2^{r-2}}$ -lattices were obtained, one via the ring of integers $\mathbb{Z}[\zeta_{2^r} + \zeta_{2^{r}}^{-1}]$ and one via a principal ideal of $\mathbb{Z}[\zeta_{2^r} + \zeta_{2^r}^{-1}]$. Also in [12] a family of rotated $D_{(p-1)/2}$ -lattices was presented via free \mathbb{Z} -modules in $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$, with p prime, that are not ideals. In [13] considering the compositum of $\mathbb{Q}(\zeta_{2^r} + \zeta_{2^r}^{-1})$ and $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ and the compositum of $\mathbb{Q}(\zeta_{p_1} + \zeta_{p_1}^{-1})$ and $\mathbb{Q}(\zeta_{p_2} + \zeta_{p_2}^{-1})$, where p, p_1 and p_2 are prime numbers with $p_1 \neq p_2$, were constructed families of rotated D_n -lattices via free \mathbb{Z} -modules of rank n that are not ideals. In Table 1, we list the number fields considered in [1, 4, 5, 9, 12, 13] and here for constructing rotated \mathbb{Z}^n and D_n -lattices for some values of n. Let $\mathbb{K}_1 = \mathbb{Q}(\zeta_{2^r} + \zeta_{2^r}^{-1})$, $\mathbb{K}_2 = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$, where p is a prime, $\mathbb{K}_3 = \mathbb{Q}(\zeta_{2^r} + \zeta_{2^r}^{-1})\mathbb{Q}(\zeta_p + \zeta_p^{-1})$, $\mathbb{K}_4 = \mathbb{Q}(\zeta_{p_1} + \zeta_{p_1}^{-1})\mathbb{Q}(\zeta_{p_2} + \zeta_{p_2}^{-1})$, with $p_1 \neq p_2$, and $\mathbb{K}_5 = \mathbb{Q}(\zeta_{3^r} + \zeta_{3^r}^{-1})$. We observe that for r = 14, 21, 25, 26, 28, 29 and 30 there are not p, p_1, p_2 prime numbers with $p_1 \neq p_2$ such that the degree of $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ and $\mathbb{Q}(\zeta_{p_1} + \zeta_{p_1}^{-1})\mathbb{Q}(\zeta_{p_2} + \zeta_{p_2}^{-1})$ be 3^{r-2} .

n	\mathbb{Z}^n			D_n					
	\mathbb{K}_1	\mathbb{K}_2	\mathbb{K}_5	\mathbb{K}_1	\mathbb{K}_2	\mathbb{K}_3	\mathbb{K}_4	\mathbb{K}_5	
2	r = 3	p = 5	-	-	—	_	—	—	
3	-	p = 7	r = 3	—	p = 7	—	-	r = 3	
4	r = 4	-	-	r = 4	—	r = 3, p = 5	—	—	
8	r = 5	p = 17	-	r = 5	p = 17	r = 4, p = 5	—	—	
9	-	p = 19	r = 4	-	p = 19	_	—	r = 4	
16	r = 6	-	-	r = 6	—	r = p = 5	$p_1, p_2 \in \{5, 17\}$	—	
27	-	—	r = 5	—	—	_	$p_1, p_2 \in \{7, 19\}$	r = 5	
32	r = 7	—	-	r = 7	—	r = 4, p = 17	—	—	
64	r = 8	_	-	r = 8	_	r = 7, p = 5		-	
81	-	p = 163	r = 6	—	p = 163	_	_	r = 6	

n		\mathbb{Z}^n		D_n					
	\mathbb{K}_1	\mathbb{K}_2	\mathbb{K}_5	\mathbb{K}_1	\mathbb{K}_2	\mathbb{K}_3	\mathbb{K}_4	\mathbb{K}_5	
128	r = 9	p = 257	—	r = 9	p = 257	r = 8, p = 5	_	—	
243	—	p = 487	r = 7	—	p = 487	—	$p_1, p_2 \in \{7, 163\}$	r = 7	
256	r = 10	_	—	r = 10	—	$r = 7, \ p = 17$	$p_1, p_2 \in \{5, 257\}$	—	
512	r = 11	_	—	r = 11	—	$r = 10, \ p = 5$	_	—	
729	—	p = 1459	r = 8	_	p = 1459	—	$p_1, p_2 \in \{7, 487\}$	r = 8	
							$p_1, p_2 \in \{19, 163\}$		
1024	r = 12	_	—	r = 12	—	$r = 9, \ p = 17$	$p_1, p_2 \in \{17, 257\}$	-	
2048	r = 13	_	—	r = 13	—	r = 10, p = 17	_	-	
2187	-	—	r = 9	—	—	—	$p_1, p_2 \in \{7, 1459\}$	r = 9	
							$p_1, p_2 \in \{19, 487\}$		
4096	r = 14	—	-	r = 14	—	$r = 13, \ p = 5$	_		
6561	—	—	r = 10	—	—	—	$p_1, p_2 \in \{19, 1459\}$	r = 10	
8192	r = 15	—	—	r = 15	—	r = 12, p = 17	-		
16384	r = 16	_	-	r = 16	—	$r = 13, \ p = 5$	_	—	
19683	—	p = 39367	r = 11	—	p = 39367	—	$p_1, p_2 \in \{163, 487\}$	r = 11	
32768	r = 17	p = 65537	—	r = 17	p = 65537	$r = 14, \ p = 17$	-	-	
59049	-	_	r = 12	-	—	-	$p_1, p_2 \in \{7, 39367\}$	r = 12	
							$p_1, p_2 \in \{163, 1459\}$		
65536	r = 18	—	-	r = 18	—	$r = 17, \ p = 5$	—	—	
131072	r = 19	—	-	r = 19	—	$r = 16, \ p = 17$	—	—	
177147	-	_	r = 13	_	—	—	$p_1, p_2 \in \{19, 39367\}$	r = 13	
							$p_1, p_2 \in \{487, 1459\}$		
262144	r = 20	-	-	r = 20	-	$r = 13, \ p = \overline{257}$	—	-	
524288	r = 21	-	-	r = 21	-	r = 20, p = 5	—	-	
531441	-	_	r = 14	_	-	_	—	r = 14	
1048576	r = 22	-	-	r = 22	-	r = 19, p = 17	_	_	
1594323	-	-	r = 15	—	—	-	$p_1, p_2 \in \{163, 39367\}$	r = 15	

Table 2. Rotated \mathbb{Z}^n and D_n -lattices for n powers of 2 and 3.

References

- [1] A. A. Andrade, C. Alves, T. B. Carlos, Rotated lattices via th cyclotomic field $\mathbb{Q}(\zeta_{2^r})$, International Journal of Applied Mathematics 19(3) (2006) 321-331.
- [2] E. Bayer-Fluckiger, Lattices and number fields, Contemporary Mathematics 241 (1999) 69-84.
- [3] E. Bayer-Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, Journal of Number Theory 121(2) (2006) 305-323.
- [4] E. Bayer-Fluckiger, G. Nebe, On the Euclidean minimum of some real number fields, Journal de ThAl'orie des Nombres de Bordeaux 17(2) (2005) 437-454.
- [5] E. Bayer-Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated Zⁿ-lattice constellations for the Rayleigh fading channel, IEEE Transactions on Information Theory 50(4) (2004) 702-714.
- [6] E. Bayer-Fluckiger, I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Archiv der Mathematik 86(3) (2006) 217-225.
- [7] J. Boutros, E. Viterbo, C. Rastello, J. C. Belfiori, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory 42(2) (1996) 502-517.
- [8] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Springer-Verlag (1988).
- [9] A. J. Ferrari, A. A. Andrade, Constructions of rotated lattice constellations in dimensions power of 3, Journal of Algebra and its Applications 17(9) (2018) 1850175-1 to 17.

- [10] A. J. Ferrari, A. A. Andrade, R. R. Araujo, J. C. Interlando, Trace forms of certain subfields of cyclotomic fields and applications, Journal of Algebra Combinatorics Discrete Structures and Applications 7(2) (2020) 141-160.
- [11] J. C. Interlando, J. O. D. Lopes, T. P. N. Neto, The discriminant of Abelian number fields. Journal of Algebra and Its Applications 5 (2006) 35-41.
- [12] G. C. Jorge, A. J. Ferrari, S. I. R. Costa, Rotated D_n -lattices, Journal of Number Theory 132 (2012) 2397-2406.
- [13] G. C. Jorge, S. I. R. Costa, On rotated D_n -lattices constructed via totally real number fields, Archiv der Mathematik 100 (2013) 323-332.
- [14] P. Samuel, Algebraic theory of numbers, Hermann, Paris (1970).
- [15] I. Soprunov, Lattice polytopes in coding theory, Journal of Algebra Combinatorics Discrete Structures and Applications 2 (2) (2015) 85-94.
- [16] I. N. Stewart, D. O. Tall, Algebraic number theory, Chapman & Hall, London (1987).
- [17] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York (1982).