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Abstract: We introduce skew cyclic codes over the finite ring F2+uF2+vF2+wF2+uvF2+uwF2+vwF2+uvwF2,
where u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv and use them to construct reversible
DNA codes. The 4-mers are matched with the elements of this ring. The reversibility problem for
DNA 4-bases is solved and some examples are provided.
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1. Introduction

It is well known that DNA contains genetic program for the biological development of life and has
two strands which are linked by Watson-Crick pairing so that every A is linked with a T and every C
with a G, and vice versa, where A, T,C,G are the four bases of a DNA sequence.

DNA computing started in 1994 when Adleman showed how to solve a computationally difficult
problem (traveling salesman problem, a well-known NP-complete problem) by manipulations of DNA
molecules in [2]. Later, more applications of DNA codes were discovered such as using DNA codes to
break a cryptosystem known as DES [3, 5], and using DNA codewords as high density storage media [16].
Devising methods to design DNA codes for DNA computing has been a major topic of research since
the beginning of the century. A block code is called a DNA code if it satisfies the following constraints
[8, 22].

1. the Hamming constraint for minimum distance,
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2. the reverse-complement constraint,

3. the reverse constraint, and

4. the fixed GC content.

In [8], all of these constraints are translated in terms of coding theory. This enabled researchers
to use the results from classical coding theory to design codes for DNA computation. The last decade
witnessed an increased activity in this direction. Since DNA uses a four-letter alphabet, {A,G, T,C}, it
is most natural to use a ring of size 4 in employing classical coding theory techniques for the design of
DNA codes. Later, alphabets of size 4k for k ≥ 1 have been considered (e.g. [1, 4, 6–9, 13, 21? , 22]).
It was also observed that having a cyclic structure in DNA codes has certain advantages in terms of
complexities of algorithms [17, 21].

One of the challenging problems in the field is the reversibility problem [18]. This problem arises from
the fact that the pairing of nucleotides in two different strands of a DNA sequence is done in opposite
direction and reverse order. For example, let us consider the codeword (DNA string) GTTAGGCA
which corresponds to a codeword (a1, a2). The reverse of (a1, a2) is (a2, a1). However, the vector (a2, a1)
corresponds to GGCAGTTA which is not the reverse of GTTAGGCA. The reverse of GTTAGGCA is
ACGGATTG.

Some authors solved this problem by considering skew cyclic codes. The reversibility problem for
DNA 8-bases and DNA 2s+1k-bases is solved in [10] and [11] respectively by using skew cyclic codes over
the finite rings F16 + uF16 + vF16 + uvF16, where u2 = u, v2 = v, uv = vu and F42k [u1, ..., us]/〈u12 −
u1, ..., us

2 − us〉 where k, s > 1, uiuj = ujui.

Motivated by the previous work [10, 11], we study the reversibility problem for DNA 4-bases using
skew cyclic codes over the finite ring R := F2 +uF2 + vF2 +wF2 +uvF2 +uwF2 + vwF2 +uvwF2 of order
256 where u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv.

In [6], cyclic DNA codes over R are studied. A map from R to R2
1 is given where R1 = F2 + uF2 +

vF2 + uvF2 and u2 = 0, v2 = v, uv = vu. Moreover, cyclic codes of arbitrary length over R satisfying
the reverse constraint and reverse complement constraint are studied and a one to one correspondence
between the elements of the ring R and SD256 is established where SD256 = {AAAA, ..., GGGG}. The
binary image of a cyclic code over R is also determined.

In this paper, by defining a non-trivial automorphism on R, skew cyclic codes over R are introduced.
Thanks to these type of codes, reversible DNA codes are obtained and some examples are provided.

2. Preliminaries

In [6], the finite ring R = F2 +uF2 + vF2 +wF2 +uvF2 +uwF2 + vwF2 +uvwF2 = {a1 +ua2 + va3 +
wa4 + uva5 + uwa6 + vwa7 + uvwa8 : ai ∈ F2, i = 1, 2, ..., 8} with u2 = 0, v2 = v, w2 = w, uv = vu, uw =
wu, vw = wv is introduced. The ring R is commutative with characteristic 2 and 256 elements. It can
be viewed as

R = (F2 + uF2 + vF2 + uvF2) + w(F2 + uF2 + vF2 + uvF2)

= R1 + wR1, w2 = w

where R1 is the ring F2 + uF2 + vF2 + uvF2, u2 = 0, v2 = v, uv = vu, introduced in [23]. By using
the DNA alphabet SD4 = {A, T,C,G}, the authors define a correspondence τ between the elements of
the finite ring R1 and DNA double pairs as in the following table, by means of a Gray map from R1 to
(F2 + uF2)

2 with u2 = 0.
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Ring elements α DNA double pairs τ(α)
0 AA
1 GG
u TT
v AG
uv AT
1 + u CC
1 + v GA
u+ v TC
u+ uv TA
v + uv AC
1 + uv GC
1 + u+ uv CG
1 + u+ v CT
1 + v + uv GT
u+ v + uv TG
1 + u+ v + uv CA

We define a Gray map as follows

φ : R −→ R2
1

x+ yw 7−→ (x, x+ y)

where x, y ∈ R1.

By using the matching and the Gray map above, we get a matching Ψ between the elements of R
and a set of DNA 4-bases SD256

= {AAAA, TTTT, ....} as follows.

Ψ : R −→ SD256

x+ wy 7−→ Ψ(x+ wy) = γ(x, x+ y) = (τ(x), τ(x+ y))

where

γ : R2
1 −→ SD256

(s, t) 7−→ (τ(s), τ(t))

for s, t ∈ R1. That is, Ψ = γ ◦ φ.

3. Skew cyclic codes over R

Definition 3.1. Let B be a finite ring and θ be a non-trivial automorphism on B. A subset C of Bn is
called a skew cyclic code of length n if C satisfies the following conditions,

1. C is a submodule of Bn

2. If c = (c0, c1, ..., cn−1) ∈ C, then σθ(c) = (θ(cn−1), θ(c0), ..., θ(cn−2)) ∈ C, where σθ is the skew
cyclic shift operator.

By defining a non-trivial automorphism θ on R as follows, we can define skew cyclic codes over R.
Let

θ : R −→ R

x+ yw 7−→ θ(x+ yw) = θ
′
(x+ y) + wθ

′
(y)
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where x, y ∈ R1 and θ
′
is a non-trivial authomorphism on R1 defined by

θ
′

: R1 −→ R1

a+ bu+ v(c+ du) 7−→ (a+ c+ (b+ d)u) + v(c+ du)

The order of each θ and θ
′
is 2.

The set of polynomials R[x, θ] = {a0 + a1x+ ...+ an−1x
n−1 : ai ∈ R,n ∈ N} is the skew polynomial ring

over R with the usual addition of polynomials and the non-commutative multiplication given by

(axi)(bxj) = aθi(b)xi+j .

In polynomial representation, a skew cyclic code of length n over R is defined as a left ideal of the
quotient ring Rθ,n = R[x, θ]/ 〈xn − 1〉, if the order of θ divides n, that is, if n is even. If the order of θ
does not divide n, a skew cyclic code of length n over R is defined as a left R[x, θ]-submodule of Rθ,n,
since the set Rθ,n = R[x, θ]/ 〈xn − 1〉 = {f(x) + 〈xn − 1〉 : f(x) ∈ R[x, θ]} is a left R[x, θ]-module with
the multiplication from left defined by

r(x)(f(x) + 〈xn − 1〉) = r(x)f(x) + 〈xn − 1〉
for any r(x) ∈ R[x, θ].

In either case, the following holds.

Theorem 3.2. Let C be a skew cyclic code over R and let f(x) be a polynomial in C of minimal degree.
If the leading coefficient of f(x) is a unit in R, then C = 〈f(x)〉, where f(x) is a right divisor of xn − 1.

Proof. It can be proven similarly to the proof of Theorem 4 in [20].

4. Reversible DNA codes from skew cyclic codes over R

Definition 4.1. For x = (x0, x1, ..., xn−1) ∈ Rn, the vector (xn−1, xn−2, ..., x1, x0) is called the reverse
of x and is denoted by xr. A linear code C of length n over R is said to be reversible if xr ∈ C for every
x ∈ C.

Each element α of R1 and θ
′
(α) are mapped to DNA pairs, which are reverses of each other. For

example, τ(v) = AG, while τ
(
θ
′
(v)
)

= GA.

This map can be extended to a map γ from R2
1 to 4-mers as follows,

γ(a, b) = (τ(a), τ(b))

where a, b ∈ R1.

By means of the map Ψ = γ ◦ φ, we can find a relationship between skew cyclic codes over R and
DNA codes. We note that Ψ(r) and Ψ (θ(r)) are DNA reverses of each other. Indeed, for r = x+yw ∈ R,
we have

Ψ(r) = γ (φ(x+ yw)) = γ (x, x+ y)

= (τ(x), τ(x+ y))

On the other hand,

Ψ (θ(r)) = Ψ
(
θ
′
(x+ y) + wθ

′
(y)
)

= γ
(
φ
(
θ
′
(x+ y) + wθ

′
(y)
))

= γ
(
θ
′
(x+ y), θ

′
(x)
)

=
(
τ
(
θ
′
(x+ y)

)
, τ
(
θ
′
(x)
))
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This map can be extended as follows. For any r = (r0, ..., rn−1) ∈ Rn,

(Ψ(r0),Ψ(r1), . . . ,Ψ(rn−1))
r

= (Ψ(θ(rn−1)), . . . ,Ψ(θ(r1)),Ψ(θ(r0)))

Example 4.2. If r = u+ uv + w(1 + uv) ∈ R, then we get

Ψ(r) = γ (φ(r)) = γ (u+ uv, 1 + u)

= (τ (u+ uv) , τ (1 + u)) = (TA,CC)

On the other hand,

Ψ (θ(r)) = Ψ
(
θ
′
(1 + u) + wθ

′
(1 + uv)

)
= γ ◦ φ

(
θ
′
(1 + u) + wθ

′
(1 + uv)

)
= γ

(
θ
′
(1 + u), θ

′
(u+ uv)

)
=
(
τ
(
θ
′
(1 + u)

)
, τ
(
θ
′
(u+ uv)

))
= (CC,AT )

Definition 4.3. Let C be a code of length n over R. If Ψ(c)r ∈ Ψ(C) for all c ∈ C, then C or equivalently
Ψ(C) is called a reversible DNA code.

Definition 4.4. Let g(x) = a0 +a1x+a2x
2 + ...+asx

s be a polynomial of degree s over R. g(x) is called
a palindromic polynomial if ai = as−i for all i ∈ {0, 1, ..., s}. g(x) is called a θ-palindromic polynomial if
ai = θ(as−i) for all i ∈ {0, 1, ..., s}.

As the order of θ is 2, a skew cyclic code of odd length n over R with respect to θ is an ordinary
cyclic code. So we will take the length n to be even.

The next two theorems show that palindromic and θ-palindromic polynomials generate reversible
DNA codes. They are analogous to Theorem 1 and Theorem 2 in [12] stated for codes over a field.

Theorem 4.5. Let C = 〈f(x)〉 be a skew cyclic code of length n over R, where f(x) is a right divisor of
xn− 1 and deg(f(x)) is odd. If f(x) is a θ-palindromic polynomial, then Ψ(C) is a reversible DNA code.

Proof. Let f(x) be a θ-palindromic polynomial and f(x) = a0 + a1x + ... + a2s−1x
2s−1. So ai =

θ(a2s−1−i), for all i = 0, 1, ..., s− 1. Let h(x) = h0 + h1x+ · · ·+ h2k−1x
2k−1. Let bl be the coefficient of

xl in h(x)f(x), where l = 0, 1, . . . , n− 1. For any t < n/2, the coefficient of xt in h(x)f(x) is

bt =

t∑
j=0

hjθ
j(at−j)

and the coefficient of xn−t is bn−t =
∑t
j=0 h2k−1−jθ

2k−1−j(a2s−1−(t−j)).

The polynomial h(x)f(x) =
∑2k−1
d=0 hdx

df(x) corresponds to a vector b = (b0, b1, ..., bn−1) ∈ C.
The vector Ψ(b)r = ((Ψ(b0), ...,Ψ(bn−1)))r is equal to the vector Ψ(z), where the vector z corresponds

to the polynomial
∑2k−1
d=0 θ(hd)x

2k−1−df(x).

So, Ψ(C) is a reversible DNA code.

Theorem 4.6. Let C = 〈f(x)〉 be a skew cyclic code of length n over R, where f(x) is a right divisor of
xn − 1 and deg(f(x)) is even. If f(x) is a palindromic polynomial, then Ψ(C) is a reversible DNA code.
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Proof. Let f(x) be a palindromic polynomial with even degree so that f(x) = a0 + a1x+ ...+ a2sx
2s

and ai = a2s−i, for all i = 0, 1, ..., s. Let h(x) = h0 + h1x+ ...+ h2kx
2k. Let bl be the coefficient of xl in

h(x)f(x), where l = 0, 1, .., n− 1. For any t < n/2, the coefficient of xt in h(x)f(x) is

bt =

t∑
j=0

hjθ
j(at−j)

and the coefficient of xn−t is bn−t =
∑t
j=0 h(2k)−jθ

(2k)−j(a2s−(t−j)).

The polynomial h(x)f(x) =
∑2k
d=0 hdx

df(x) corresponds to a vector b = (b0, b1, . . . , bn−1) ∈ C.
The vector Ψ(b)r = ((Ψ(b0), ...,Ψ(bn−1)))r is equal to the vector Ψ(z), where the vector z corresponds

to the polynomial
∑2k
d=0 θ(hd)x

2k−df(x). So, Ψ(C) is a reversible DNA code.

The next two theorems show that palindromic and θ-palindromic polynomials come in pairs. They
are analogous to Theorem 4 and Theorem 3 in [12] stated for skew polynomials over a field.

Theorem 4.7. Let xn−1 = h(x)f(x) ∈ R[x, θ], where the degree of f(x) is odd. If f(x) is a θ-palindromic
polynomial, then h(x) is a palindromic polynomial.

Proof. Let f(x) = a0 + a1x + ...+ a2s−1x
2s−1. As the length n is even, then h(x) = h0 + h1x + ...+

h2k−1x
2k−1. Since f(x) is a θ-palindromic polynomial, then ai = θ(a2s−1−i) for all i = 0, 1, ..., s− 1. Let

bl be the coefficient of xl in h(x)f(x), where l = 0, 1, .., n − 1. For any t < n/2, the coefficient of xt in
h(x)f(x) is

bt =

t∑
j=0

hjθ
j(at−j)

and the coefficient of xn−t is bn−t =
∑t
j=0 h2k−1−jθ

2k−1−j(a2s−1−(t−j)). By using the fact that b0 =
bn = 0 and bi = 0 for all i = 1, 2, ..., n− 1, it can be shown that hi = h2k−1−i for all i = 0, 1, .., k − 1 as
in the proof of Theorem 4 in [12], by induction.

A polynomial that is in the center Z(R[x, θ]) of R[x, θ] is called a central polynomial. A central
polynomial commutes with every element of R[x, θ]. As in the field case, we can prove that xn − 1 is
central when n is even.

Proposition 4.8. The polynomial xn − 1 is central if and only if n is even.

Proof. Let n be even. Let s(x) = a0 + a1x+ ...+ amx
m ∈ R[x, θ]. Since n is even, θn(a) = a for any

a ∈ R. So (xn−1)s(x) = xna0+xna1x+...+xnamx
m−s(x) = xna0+θn(a1)xnx+...+θn(am)xnxm−s(x) =

(a0 + a1x + ... + amx
m)xn − s(x) = s(x)(xn − 1). Hence (xn − 1) ∈ Z(R[x, θ]). Conversely, assume

(xn − 1) ∈ Z(R[x, θ]). Then (xn − 1) commutes with every element in R[x, θ]. In particular, we have
(xn − 1)amx

m = amx
m(xn − 1) for any m and any am ∈ R. As (xn − 1)amx

m = θn(am)xn+m − amxm
and amxm(xn − 1) = (am)xn+m − amxm, we have θn(am) = am. This implies that n is even.

Lemma 4.9. Let xn − 1 = hf ∈ Z(R[x, θ]). Then hf = fh in R[x, θ].

Proof. Since hf is a central element, we have (hf)h = h(hf). So h(fh − hf) = 0. Since the leading
coefficient of h is a unit, h is not a zero divisor. Hence, fh = hf in R[x, θ].

Theorem 4.10. Let xn−1 = h(x)f(x) ∈ R[x, θ], where the degree of f(x) is even. If h(x) is a palindromic
polynomial then so is f(x).
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Proof. This can be proven similarly to Theorem 3 in [12].

Since n is even, xn − 1 = hf ∈ Z(R[x, θ]) . So we get that any right divisor of xn − 1 is also a left
divisor of xn − 1.

Corollary 4.11. Let xn − 1 = h(x)f(x) ∈ R[x, θ], where the degree of f(x) is even. If f(x) is a
palindromic polynomial, then h(x) is a palindromic polynomial as well.

Finally, we give a few examples of palindromic and theta-palindromic polynomials over R. Hence,
these polynomials generate reversible DNA codes. We found these polynomials using Magma software
[15].

Example 4.12. There are at least 576 different factorizations of x4 − 1 in the form x4 − 1 = f(x)h(x)
where deg(f(x)) = deg(h(x)) = 2, in the skew polynomial ring over R. Of these, 64 of the factorizations
involve palindromic polynomials. One of these 64 pairs is f(x) = h(x) = x2 + ux+ 1.

Example 4.13. There are at least 990 different factorizations of x8 − 1 in the form x8 − 1 = h(x)f(x)
over R where deg(h(x)) = 3 and deg(f(x)) = 5. Of these, 1 factorization involves theta-palindromic
polynomials, namely
h(x) = x3 + (uw + (uv + (u+ 1)))x2 + (uw + (uv + (u+ 1)))x+ 1 and
f(x) = x5 + (uw+ (uv+ (u+ 1)))x4 + (uw+ (uv+u))x3 + (uw+ (uv+u))x2 + (uw+ (uv+ (u+ 1)))x+ 1.

Example 4.14. The polynomial f(x) = x4 + (v + 1)x3 + (uvw + u)x2 + (v + 1)x + 1 divides x16 − 1
in the skew polynomial ring over R and it is palindromic. Hence it generates a reversible DNA code.
Additionally, h(x) = x16−1

f(x) (division in the skew polynomial ring over R) is also palindromic.

Example 4.15. There are at least 1600 different factorizations of x12−1 in the form x12−1 = f(x)h(x) in
the skew polynomial ring over R where deg(f(x)) = 2 and deg(h(x)) = 10. Of these, 144 of factorizations
involve palindromic polynomials, one of which is f(x) = x2 + (uv + u)x+ 1.

5. Conclusion

We have shown that skew cyclic codes over the ring R = F2 + uF2 + vF2 + wF2 + uvF2 + uwF2 +
vwF2 + uvwF2, where u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv, can be used to construct the
reversible DNA codes. We have also provided several specific examples of such codes.
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