Some results on relative dual Baer property

Tayyebeh Amouzegar, Rachid Tribak

Abstract

Let R be a ring. In this article, we introduce and study relative dual Baer property. We characterize R-modules M which are R_{R}-dual Baer, where R is a commutative principal ideal domain. It is shown that over a right noetherian right hereditary ring R, an R-module M is N-dual Baer for all R-modules N if and only if M is an injective R-module. It is also shown that for R-modules $M_{1}, M_{2}, \ldots, M_{n}$ such that M_{i} is M_{j}-projective for all $i>j \in\{1,2, \ldots, n\}$, an R-module N is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer if and only if N is M_{i}-dual Baer for all $i \in\{1,2, \ldots, n\}$. We prove that an R-module M is dual Baer if and only if $S=\operatorname{End}_{R}(M)$ is a Baer ring and $I M=r_{M}\left(l_{S}(I M)\right)$ for every right ideal I of S.

2010 MSC: 16D10, 16D80
Keywords: Baer rings, Dual Baer modules, Relative dual Baer property, Homomorphisms of modules

1. Introduction

Throughout this paper, R will denote an associative ring with identity, and all modules are unitary right R-modules. Let M be an R-module. We will use the notation $N \ll M$ to indicate that N is small in M (i.e., $L+N \neq M$ for every proper submodule L of M). By $E(M)$ and $E n d_{R}(M)$, we denote the injective hull of M and the endomorphism ring of M, respectively. By \mathbb{Q}, \mathbb{Z}, and \mathbb{N} we denote the set of rational numbers, integers and natural numbers, respectively. For a prime number $p, \mathbb{Z}\left(p^{\infty}\right)$ denotes the Prüfer p-group.

The concept of Baer rings was first introduced in [6] by Kaplansky. Since then, many authors have studied this kind of rings (see, e.g., [2] and [3]). A ring R is called Baer if the right annihilator of any nonempty subset of R is generated by an idempotent. In 2004, Rizvi and Roman extended the notion of Baer rings to a module theoretic version [10]. According to [10], a module M is called a Baer module if for every left ideal I of $E n d_{R}(M), \cap_{\phi \in I} \operatorname{Ker} \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal

[^0]I of $S=\operatorname{End}_{R}(M), \sum_{\phi \in I} \operatorname{Im} \phi$ is a direct summand of M. Equivalently, for every nonempty subset A of $S, \sum_{\phi \in A} \operatorname{Im} \phi$ is a direct summand of M (see [14, Theorem 2.1]).

A module M is said to be Rickart if for any $\varphi \in \operatorname{End}_{R}(M), \operatorname{Ker} \varphi$ is a direct summand of M (see [7]). The notion of dual Rickart modules was studied recently in [8] by Lee-Rizvi-Roman. A module M is said to be dual Rickart if for every $\varphi \in \operatorname{End}_{R}(M), \operatorname{Im} \varphi$ is a direct summand of M. In [8], it was introduced the notion of relative dual Rickart property which was used in the study of direct sums of dual Rickart modules. Let N be an R-module. An R-module M is called N-dual Rickart if for every homomorphism $\varphi: M \rightarrow N, \operatorname{Im} \varphi$ is a direct summand of N (see [8]). Similarly, we introduce in this paper the concept of relative dual Baer property. A module M is called N-dual Baer if for every subset A of $\operatorname{Hom}_{R}(M, N)$, $\sum_{f \in A} \operatorname{Im} f$ is a direct summand of N. It is clear that if M is N-dual Baer, then M is N-dual Rickart.

We determine the structure of modules M which are R_{R}-dual Baer for a commutative principal ideal domain R (Proposition 2.7). Then we show that for an R-module M, R_{R} is M-dual Baer if and only if M is a semisimple module (Proposition 2.9). It is shown that over a right noetherian right hereditary ring R, an R-module M is N-dual Baer for all R-modules N if and only if M is an injective R-module (Corollary 2.17). We prove that if $\left\{M_{i}\right\}_{I}$ is a family of R-modules, then for each $j \in I, \bigoplus_{i \in I} M_{i}$ is M_{j}-dual Baer if and only if M_{i} is M_{j}-dual Baer for all $i \in I$ (Corollary 2.24). It is also shown that for R-modules M_{1}, M_{2}, \ldots, M_{n} such that M_{i} is M_{j}-projective for all $i>j \in\{1,2, \ldots, n\}$, an R-module N is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer if and only if N is M_{i}-dual Baer for all $i \in\{1,2, \ldots, n\}$ (Theorem 2.25). We conclude this paper by showing that an R-module M is dual Baer if and only if $S=\operatorname{End}_{R}(M)$ is a Baer ring and $I M=r_{M}\left(l_{S}(I)\right)$ for every right ideal I of S, where $l_{S}(I)=\{\varphi \in S \mid \varphi I=0\}, r_{M}\left(l_{S}(I)\right)=\left\{m \in M \mid l_{S}(I) m=0\right\}$ and $I M=\sum_{f \in I} \operatorname{Im} f$ (Theorem 2.31).

2. Main results

Definition 2.1. Let N be an R-module. An R-module M is called N-dual Baer if, for every subset A of $\operatorname{Hom}_{R}(M, N), \sum_{f \in A} \operatorname{Im} f$ is a direct summand of N.

Obviously, an R-module M is dual Baer if and only if M is M-dual Baer.
Example 2.2. (1) Let N be a semisimple R-module. Then for every R-module M, M is N-dual Baer.
(2) If M and N are R-modules such that $\operatorname{Hom}_{R}(M, N)=0$, then M is N-dual Baer. It follows that for any couple of different maximal ideals \mathfrak{m}_{1} and \mathfrak{m}_{2} of a commutative noetherian ring $R, E\left(R / \mathfrak{m}_{1}\right)$ is $E\left(R / \mathfrak{m}_{2}\right)$-dual Baer (see [12, Proposition 4.21]).
(3) Let p be a prime number. Note that $\mathbb{Z} / p \mathbb{Z}$ and $\mathbb{Z}\left(p^{\infty}\right)$ are dual Baer \mathbb{Z}-modules. On the other hand, it is clear that $\mathbb{Z}\left(p^{\infty}\right)$ is $\mathbb{Z} / p \mathbb{Z}$-dual Baer but $\mathbb{Z} / p \mathbb{Z}$ is not $\mathbb{Z}\left(p^{\infty}\right)$-dual Baer.

Recall that a module M is said to have the strong summand sum property, denoted briefly by SSSP, if the sum of any family of direct summands of M is a direct summand of M.

Following [8, Definition 2.14], a module M is called N - d-Rickart if, for every homomorphism φ : $M \rightarrow N, \operatorname{Im} \varphi$ is a direct summand of N.

Proposition 2.3. Let M and N be two R-modules. If M is N-dual Baer, then M is N - d-Rickart. The converse holds when N has the SSSP.

Proof. This follows from the definitions of " M is N-d-Rickart" and " M is N-dual Baer".
The next example shows that the assumption " N has the $S S S P$ " is not superfluous in Proposition 2.3.

Example 2.4. Let R be a von Neumann regular ring which is not semisimple (e.g., $R=\prod_{i=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}$). By [8, Proposition 2.26], the R-module R_{R} does not have the $S S S P$. On the other hand, R_{R} is R_{R}-d-Rickart, but it is not R_{R}-dual Baer (see [14, Corollary 2.9] and [8, Remark 2.2]).

Proposition 2.5. Let N be an indecomposable R-module. Then the following conditions are equivalent for an R-module M.
(i) M is N-dual Baer;
(ii) M is N-d-Rickart;
(iii) Every nonzero $\varphi \in \operatorname{Hom}_{R}(M, N)$ is an epimorphism.

Proof. (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are clear.
(ii) \Rightarrow (iii) Let $0 \neq \varphi \in \operatorname{Hom}_{R}(M, N)$. By assumption, $\operatorname{Im} \varphi$ is a direct summand of N. But N is indecomposable. Then $\operatorname{Im} \varphi=N$. This completes the proof.

Proposition 2.6. Let M and N be modules such that $\operatorname{Hom}_{R}(M, N) \neq 0$ (e.g., N is M-generated $)$. Then the following conditions are equivalent:
(i) M is N-dual Baer and N is indecomposable;
(ii) Every nonzero homomorphism $\varphi \in \operatorname{Hom}_{R}(M, N)$ is an epimorphism.

Proof. (i) \Rightarrow (ii) This follows from Proposition 2.5.
(ii) \Rightarrow (i) It is clear that M is N-dual Baer. Now let K be a nonzero direct summand of N. Let K^{\prime} be a submodule of N such that $N=K \oplus K^{\prime}$. Since $\operatorname{Hom}_{R}(M, N) \neq 0$, there exists a nonzero homomorphism $\varphi \in \operatorname{Hom}_{R}(M, N)$. Let $\pi^{\prime}: N \rightarrow K^{\prime}$ be the projection map and let $i^{\prime}: K^{\prime} \rightarrow N$ be the inclusion map. Then $i^{\prime} \pi^{\prime} \varphi \in \operatorname{Hom}_{R}(M, N)$. Assume that $i^{\prime} \pi^{\prime} \varphi \neq 0$. By hypothesis, $\operatorname{Im} i^{\prime} \pi^{\prime} \varphi=N$. So $K^{\prime}=N$. Thus $K=0$, a contradiction. Therefore $i^{\prime} \pi^{\prime} \varphi=0$. Hence $K^{\prime}=0$ and $K=N$. It follows that N is indecomposable.

The following result describes the structure of R-modules which are R_{R}-dual Baer, where R is a commutative principal ideal domain which is not a field.

Proposition 2.7. Let R be a commutative principal ideal domain which is not a field. Then the following conditions are equivalent for an R-module M :
(i) M is R_{R}-dual Baer;
(ii) M is R_{R}-d-Rickart;
(iii) M has no nonzero cyclic torsion-free direct summands;
(iv) $\operatorname{Hom}_{R}\left(M, R_{R}\right)=0$.

Proof. (i) \Rightarrow (ii) This is clear.
(ii) \Rightarrow (iii) Assume that M has an element x such that $x R$ is a direct summand of M and $R_{R} \cong x R$. Let $\pi: M \rightarrow x R$ be the projection map and let $f: x R \rightarrow R_{R}$ be an isomorphism. Then $f \pi: M \rightarrow R_{R}$ is an epimorphism. Let α be a nonzero element of R which is not invertible. Consider the homomorphism $g: R_{R} \rightarrow R_{R}$ defined by $g(r)=\alpha r$ for all $r \in R$. Then $g f \pi \in \operatorname{Hom}_{R}\left(M, R_{R}\right)$ and $\operatorname{Im} g f \pi=\alpha R$. It is clear that $\alpha R \neq 0$ and $\alpha R \neq R$. Thus αR is not a direct summand of R. So M is not R_{R}-d-Rickart, a contradiction.
(iii) \Rightarrow (iv) Assume that $\operatorname{Hom}_{R}\left(M, R_{R}\right) \neq 0$. So there exists a nonzero homomorphism $f: M \rightarrow R_{R}$. Thus $\operatorname{Im} f=a R$ for some nonzero $a \in R$ since R is a principal ideal domain. Then $M / \operatorname{Ker} f \cong a R \cong R_{R}$ is a projective R-module. It follows that $\operatorname{Ker} f$ is a direct summand of M. Let Y be a submodule of M such that $M=\operatorname{Ker} f \oplus Y$. Therefore $Y \cong R_{R}$. This contradicts our assumption. Hence $\operatorname{Hom}_{R}\left(M, R_{R}\right)=0$.
(iv) \Rightarrow (i) This is immediate.

Example 2.8. Consider a \mathbb{Z}-module $M=\mathbb{Q}^{(I)} \oplus T$, where T is a torsion \mathbb{Z}-module and I is an index set. Suppose that M is not \mathbb{Z}-dual Baer. By Proposition 2.7 , there exists a cyclic submodule L of M such that $L \cong \mathbb{Z}$ and L is a direct summand of M. Let N be a submodule of M such that $M=L \oplus N$.

Since T is the torsion submodule of M, we have $T \subseteq N$. Hence T is a direct summand of N. Let K be a submodule of N such that $N=K \oplus T$. Thus $M=L \oplus K \oplus T$. Therefore $L \oplus K \cong \mathbb{Q}^{(I)}$. So L is injective, a contradiction. It follows that M is \mathbb{Z}-dual Baer. On the other hand, note that if $T \cong \mathbb{Z}\left(2^{\infty}\right) \oplus \mathbb{Z} / 8 \mathbb{Z}$, then M is not a dual Baer module (see [14, Corollary 3.5].

In Proposition 2.7, we studied when an R-module M is $R_{R^{-}}$dual Baer. Next, we investigate when R_{R} is M-dual Baer for an R-module M.

Proposition 2.9. The following conditions are equivalent for an R-module M :
(i) The R-module R_{R} is M-dual Baer;
(ii) M is a semisimple module.

Proof. (i) \Rightarrow (ii) Let $x \in M$. Consider the R-homomorphism $\varphi: R \rightarrow M$ defined by $\varphi(r)=x r$ for all $r \in R$. Then $\operatorname{Im} \varphi=x R$. Since R_{R} is M-dual Baer, it follows that for any submodule L of M, $L=\sum_{x \in L} x R$ is a direct summand of M. Therefore M is semisimple.
(ii) \Rightarrow (i) is obvious.

Corollary 2.10. The following conditions are equivalent for a ring R :
(i) The R-module R_{R} is dual Baer;
(ii) The R-module R_{R} is $E(R)$-dual Baer;
(iii) R is a semisimple ring.

Proof. (i) \Leftrightarrow (iii) By [14, Corollary 2.9].
(ii) \Leftrightarrow (iii) This follows from Proposition 2.9.

Remark 2.11. If K is a submodule of an R-module M such that K is M-dual Baer, then K is a direct summand of M. In particular, if the R-module M is $E(M)$-dual Baer, then M is an injective module.

The next example shows that even if a module M is injective, the module M need not be M-dual Baer.

Example 2.12. Let R be a self injective ring which is not semisimple (e.g., $R=\prod_{n=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}$). Then $E\left(R_{R}\right)=R_{R}$. By [14, Corollary 2.9], the R-module R_{R} is not R_{R}-dual Baer.

Next, we will be concerned with the modules M which are N-dual Baer for all modules N. We begin with the following proposition which provides a class of rings R whose semisimple modules are N-dual Baer for any R-module N.

Proposition 2.13. Let R be a right noetherian right V-ring and let M be a semisimple R-module. Then M is N-dual Baer for every R-module N.

Proof. Let N be an R-module. It is clear that for any $\varphi \in \operatorname{Hom}_{R}(M, N), \operatorname{Im} \varphi$ is semisimple. Let A be a subset of $\operatorname{Hom}_{R}(M, N)$. Then $\sum_{f \in A} \operatorname{Im} f$ is a semisimple submodule of N. Since R is a right noetherian right V-ring, $\sum_{f \in A} \operatorname{Im} f$ is injective by [4, Proposition 1]. Therefore $\sum_{f \in A} \operatorname{Im} f$ is a direct summand of N. So M is N-dual Baer.

The next example shows that the condition " R is a right noetherian ring" in the hypothesis of Proposition 2.13 is not superfluous.

Example 2.14. Let F be a field and let $R=\prod_{n \in \mathbb{N}} F_{n}$ such that $F_{n}=F$ for all $n \in \mathbb{N}$. Then R is a commutative V-ring which is not noetherian. Note that $\operatorname{Soc}(R)=\oplus_{n \in \mathbb{N}} F_{n}$ is an essential proper ideal of R. In particular, $\operatorname{Soc}(R)$ is not a direct summand of R. So $S o c(R)$ is not $R_{R^{-}}$-dual Baer.

Following [13], a module M is called noncosingular if for every nonzero module N and every nonzero homomorphism $f: M \rightarrow N, \operatorname{Im} f$ is not a small submodule of N.

Proposition 2.15. Let M be a module. Assume that M is N-dual Baer for every R-module N. Then every factor module of M is injective. In particular, M is a noncosingular module.

Proof. Let L be a submodule of M. Let $\pi: M \rightarrow M / L$ be the natural epimorphism and let μ : $M / L \rightarrow E(M / L)$ be the inclusion map. Then $\mu \pi \in \operatorname{Hom}_{R}(M, E(M / L))$ and $\operatorname{Im} \mu \pi=M / L$. Since M is $E(M / L)$-dual Baer, M / L is a direct summand of $E(M / L)$. So M / L is injective. This completes the proof.

Proposition 2.16. Let R be a right noetherian ring. Then the following conditions are equivalent for an R-module M :
(i) M is N-dual Baer for all R-modules N;
(ii) Every factor module of M is an injective R-module.

Proof. (i) \Rightarrow (ii) By Proposition 2.15.
(ii) \Rightarrow (i) Let N be an R-module. It is clear that $\operatorname{Im} \varphi$ is injective for every $\varphi \in \operatorname{Hom}_{R}(M, N)$. Since the ring R is right noetherian, $\sum_{f \in A} \operatorname{Im} f$ is injective for every subset A of $\operatorname{Hom}_{R}(M, N)$ by [1, Proposition 18.13]. Therefore $\sum_{f \in A} \operatorname{Im} f$ is a direct summand of N. This proves the proposition.

Recall that a ring R is called right hereditary if each of its right ideals is projective. It is well known that a ring R is right hereditary if and only if every factor module of an injective right R-module is injective (see, for example [16, 39.16]). The next result is a direct consequence of Proposition 2.16. It determines the structure of R-modules M which are N-dual Baer for all R-modules N, where R is a right noetherian right hereditary ring.

Corollary 2.17. Let R be a right noetherian right hereditary ring (e.g., R is a Dedekind domain). Then the following conditions are equivalent for an R-module M :
(i) M is N-dual Baer for any R-module N;
(ii) M is an injective R-module.

Example 2.18. Let M be a \mathbb{Z}-module. It is easily seen from Corollary 2.17 that M is N-dual Baer for any \mathbb{Z}-module N if and only if M is a direct sum of \mathbb{Z}-modules each isomorphic to the additive group of rational numbers \mathbb{Q} or to $\mathbb{Z}\left(p^{\infty}\right)$ (for various primes p).

Combining Corollary 2.17 and [8, Corollary 2.30], we obtain the following result.
Corollary 2.19. The following conditions are equivalent for a ring R :
(i) Every injective R-module is dual Baer;
(ii) Every injective module is N-dual Baer for every R-module N;
(iii) R is a right noetherian right hereditary ring.

The next characterization extends [14, Corollary 2.5].
Theorem 2.20. Let M and N be two R-modules. Then M is N-dual Baer if and only if for any direct summand M^{\prime} of M and any submodule N^{\prime} of N, M^{\prime} is N^{\prime}-dual Baer.

Proof. Let $M^{\prime}=e M$ for some $e^{2}=e \in \operatorname{End}_{R}(M)$ and let N^{\prime} be a submodule of N. Let $\left\{\varphi_{i}\right\}_{I}$ be a family of homomorphisms in $\operatorname{Hom}_{R}\left(M^{\prime}, N^{\prime}\right)$. Since $\varphi_{i} e(M)=\varphi_{i}\left(M^{\prime}\right) \subseteq N^{\prime} \subseteq N$ for every $i \in I$ and M is N-dual Baer, $\sum_{i \in I} \varphi_{i} e(M)$ is a direct summand of N. Therefore $\sum_{i \in I} \varphi_{i}\left(M^{\prime}\right)$ is a direct summand of N^{\prime}. It follows that M^{\prime} is N^{\prime}-dual Baer. The converse is obvious.

Corollary 2.21. The following conditions are equivalent for a module M :
(i) M is a dual Baer module;
(ii) For any direct summand K of M and any submodule N of M, K is N-dual Baer.

From [14, Example 3.1 and Theorem 3.4], it follows that a direct sum of dual Baer modules is not dual Baer, in general. Next, we focus on when a direct sum of N-dual Baer modules is also N-dual Baer for some module N.

Proposition 2.22. Let N be a module having the $S S S P$ and let $\left\{M_{i}\right\}_{I}$ be a family of modules. Then $\bigoplus_{i \in I} M_{i}$ is N-dual Baer if and only if M_{i} is N-dual Baer for all $i \in I$.

Proof. Suppose that $\bigoplus_{i \in I} M_{i}$ is N-dual Baer. By Theorem 2.20, M_{i} is N-dual Baer for all $i \in I$. Conversely, assume that M_{i} is N-dual Baer for all $i \in I$. Let $\left\{\varphi_{\lambda}\right\}_{\Lambda}$ be a family of homomorphisms in $\operatorname{Hom}_{R}\left(\bigoplus_{i \in I} M_{i}, N\right)$. For each $i \in I$, let $\mu_{i}: M_{i} \rightarrow \bigoplus_{i \in I} M_{i}$ denote the inclusion map. Then for every $i \in I$ and every $\lambda \in \Lambda, \varphi_{\lambda} \mu_{i} \in \operatorname{Hom}_{R}\left(M_{i}, N\right)$. Since M_{i} is N-dual Baer for every $i \in I$, it follows that $\operatorname{Im}\left(\varphi_{\lambda} \mu_{i}\right)$ is a direct summand of N for every $(i, \lambda) \in I \times \Lambda$. Note that for each $\lambda \in \Lambda$, $\operatorname{Im} \varphi_{\lambda}=\sum_{i \in I} \operatorname{Im}\left(\varphi_{\lambda} \mu_{i}\right)$. As N has the $S S S P, \sum_{\lambda \in \Lambda} \operatorname{Im} \varphi_{\lambda}=\sum_{\lambda \in \Lambda} \sum_{i \in I} \operatorname{Im}\left(\varphi_{\lambda} \mu_{i}\right)$ is a direct summand of N. Therefore $\bigoplus_{i \in I} M_{i}$ is N-dual Baer.

The following result is taken from [14, Theorem 2.1].
Theorem 2.23. The following conditions are equivalent for a module M and $S=\operatorname{End}_{R}(M)$:
(i) M is a dual Baer module;
(ii) For every nonempty subset A of $S, \sum_{f \in A} \operatorname{Imf}=e(M)$ for some idempotent $e \in S$;
(iii) M has the SSSP and for every $\varphi: M \rightarrow M$, Im φ is a direct summand of M.

Corollary 2.24. Let $\left\{M_{i}\right\}_{I}$ be a family of modules and let $j \in I$. Then $\bigoplus_{i \in I} M_{i}$ is M_{j}-dual Baer if and only if M_{i} is M_{j}-dual Baer for all $i \in I$.

Proof. The necessity follows from Theorem 2.20. Conversely, by assumption, we have M_{j} is M_{j}-dual Baer. Then M_{j} is a dual Baer module. By Theorem 2.23, M_{j} has the SSSP. Applying Proposition 2.22, $\bigoplus_{i \in I} M_{i}$ is M_{j}-dual Baer.

In the following result, we present conditions under which a module N is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer for some modules $M_{i}(1 \leq i \leq n)$.

Theorem 2.25. Let M_{1}, \ldots, M_{n} be R-modules, where $n \in \mathbb{N}$. Assume that M_{i} is M_{j}-projective for all $i>j \in\{1,2, \ldots, n\}$. Then for any R-module N, N is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer if and only if N is M_{i}-dual Baer for all $i \in\{1,2, \ldots, n\}$.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that N is M_{i}-dual Baer for all $i \in\{1,2, \ldots, n\}$. We will show that N is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer. By induction on n and taking into account [9, Proposition 4.33], it is sufficient to prove this for the case $n=2$. Assume that N is M_{i}-dual Baer for $i=1,2$ and M_{2} is M_{1}-projective. Let $\left\{\phi_{\lambda}\right\}_{\Lambda}$ be a family of homomorphisms in $\operatorname{Hom}_{R}\left(N, M_{1} \oplus M_{2}\right)$. Let $\pi_{2}: M_{1} \oplus M_{2} \rightarrow M_{2}$ be the projection of $M_{1} \oplus M_{2}$ on M_{2} along M_{1}. We want to prove that $\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}$ is a direct summand of $M_{1} \oplus M_{2}$. Since N is M_{2}-dual Baer, $\sum_{\lambda \in \Lambda} \pi_{2} \phi_{\lambda}(N)$ is a direct summand of M_{2}. So $\sum_{\lambda \in \Lambda} \pi_{2} \phi_{\lambda}(N)$ is M_{1}-projective by [9, Proposition 4.32]. As $M_{1}+\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)=$ $M_{1} \oplus\left(\sum_{\lambda \in \Lambda} \pi_{2} \phi_{\lambda}(N)\right)$ is a direct summand of $M_{1} \oplus M_{2}$, there exists a submodule $L \leq \sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}$ such that $M_{1}+\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)=M_{1} \oplus L$ by [9, Lemma 4.47]. Thus $\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}=\left(M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)\right) \oplus L$ by modularity. It is easily seen that $\sum_{\lambda \in \Lambda} \pi_{2} \phi_{\lambda}(N)$ is a direct summand of M_{2}. Let K_{2} be a submodule of M_{2} such that $M_{2}=K_{2} \oplus\left(\sum_{\lambda \in \Lambda} \pi_{2} \phi_{\lambda}(N)\right)$. Therefore $M_{1} \oplus M_{2}=M_{1} \oplus L \oplus K_{2}$. Let $\pi_{1}: M_{1} \oplus(L \oplus K) \rightarrow M_{1}$
be the projection of $M_{1} \oplus M_{2}$ on M_{1} along $L \oplus K$. Then $\pi_{1} \phi_{\lambda} \in \operatorname{Hom}_{R}\left(N, M_{1}\right)$ for every $\lambda \in \Lambda$. Moreover, we have

$$
\sum_{\lambda \in \Lambda} \pi_{1} \phi_{\lambda}(N)=\pi_{1}\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)=\left(\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)+(L \oplus K)\right) \cap M_{1} .
$$

But $\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}=\left(M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)\right) \oplus L$. Then,

$$
\sum_{\lambda \in \Lambda} \pi_{1} \phi_{\lambda}(N)=\left(\left(M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)\right) \oplus L \oplus K\right) \cap M_{1}=M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)
$$

Since N is M_{1}-dual Baer, $\sum_{\lambda \in \Lambda} \pi_{1} \phi_{\lambda}(N)=M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)$ is a direct summand of M_{1}. It follows that $\left(M_{1} \cap\left(\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}\right)\right) \oplus L$ is a direct summand of $M_{1} \oplus L \oplus K_{2}$. So $\sum_{\lambda \in \Lambda} \operatorname{Im} \phi_{\lambda}$ is a direct summand of $M_{1} \oplus M_{2}$. Consequently, N is $M_{1} \oplus M_{2}$-dual Baer. This completes the proof.

Corollary 2.26. Let M_{1}, \ldots, M_{n} be R-modules, where $n \in \mathbb{N}$. Assume that M_{i} is M_{j}-projective for all $i>j \in\{1,2, \ldots, n\}$. Then $M=\bigoplus_{i=1}^{n} M_{i}$ is a dual Baer module if and only if M_{i} is M_{j}-dual Baer for all $i, j \in\{1,2, \ldots, n\}$.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that M_{i} is M_{j}-dual Baer for all $i, j \in\{1,2, \ldots, n\}$. By Corollary $2.24, M$ is M_{j}-dual Baer for all $j \in\{1,2, \ldots, n\}$. Since M_{i} is M_{j}-projective for all $i>j \in\{1,2, \ldots, n\}, M$ is $\bigoplus_{i=1}^{n} M_{i}$-dual Baer by Theorem 2.25. Thus M is a dual Baer module.

Note that the sufficiency in Corollary 2.26 can be proved by using [14, Theorem 3.10].
Following [8, Definition 5.7], a module M is called $N-D_{2}$ (or relatively D_{2} to N) if for any submodule M^{\prime} of $M, M / M^{\prime}$ is isomorphic to a direct summand of N implies that M^{\prime} is a direct summand of M.
Proposition 2.27. Let M_{1}, \ldots, M_{n} be R-modules, where $n \in \mathbb{N}$. Assume that M_{i} is $M_{j}-D_{2}$ for all $i, j \in\{1,2, \ldots, n\}$. Then $\bigoplus_{i=1}^{n} M_{i}$ is a dual Baer module if and only if M_{i} is M_{j}-dual Baer for all $i, j \in\{1,2, \ldots, n\}$ and M has the $S S S P$.

Proof. (\Rightarrow) By [8, Theorem 5.11], M_{i} is M_{j}-d-Rickart for all $i, j \in\{1,2, \ldots, n\}$. Note that M_{i} has the $S S S P$ for every $i \in\{1,2, \ldots, n\}$ (see Theorem 2.23). Applying Proposition 2.3, it follows that M_{i} is M_{j}-dual Baer for all $i, j \in\{1,2, \ldots, n\}$.
(\Leftarrow) This follows easily from [8, Theorem 5.11], Proposition 2.3 and Theorem 2.23.
Theorem 2.28. Let $M=\bigoplus_{i \in I} M_{i}$ be the direct sum of fully invariant submodules M_{i}. Then M is a dual Baer module if and only if M_{i} is a dual Baer module for all $i \in I$.

Proof. The necessity follows from [14, Corollary 2.5]. Conversely, let $S=\operatorname{End}_{R}(M)$ and let $\left\{\varphi_{\lambda}\right\}_{\Lambda}$ be a family of homomorphisms in S. For each $i \in I$, let $\pi_{i}: M \rightarrow M_{i}$ be the projection map and let $\mu_{i}: M_{i} \rightarrow M$ be the inclusion map. Note that for each $\lambda \in \Lambda, \varphi_{\lambda}(M)=\sum_{i \in I} \varphi_{\lambda} \mu_{i}\left(M_{i}\right)$. Since each M_{i} $(i \in I)$ is fully invariant in M, it follows that $\varphi_{\lambda}(M)=\sum_{i \in I} \pi_{i} \varphi_{\lambda} \mu_{i}\left(M_{i}\right)$ for all $\lambda \in \Lambda$. For every $i \in I$ and every $\lambda \in \Lambda$, let $N_{i, \lambda}=\pi_{i} \varphi_{\lambda} \mu_{i}\left(M_{i}\right)$. Therefore,

$$
\sum_{\lambda \in \Lambda} \varphi_{\lambda}(M)=\sum_{\lambda \in \Lambda} \sum_{i \in I} \pi_{i} \varphi_{\lambda} \mu_{i}\left(M_{i}\right)=\sum_{\lambda \in \Lambda}\left(\sum_{i \in I} N_{i, \lambda}\right)=\bigoplus_{i \in I}\left(\sum_{\lambda \in \Lambda} N_{i, \lambda}\right) .
$$

Since each $M_{i}(i \in I)$ is dual Baer, each $M_{i}(i \in I)$ has the $S S S P$ by Theorem 2.23. Thus $\sum_{\lambda \in \Lambda} N_{i, \lambda}$ is a direct summand of M_{i} for every $i \in I$. So $\sum_{\lambda \in \Lambda} \varphi_{\lambda}(M)$ is a direct summand of M. Consequently, M is a dual Baer module.

We conclude this paper by showing a new characterization of dual Baer modules.
Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Then for every nonempty subset A of S, we denote $l_{S}(A)=\{\varphi \in S \mid \varphi A=0\}$ and $r_{M}(A)=\{m \in M \mid A m=0\}$. We also denote $l_{S}(N)=\{\varphi \in S \mid \varphi(N)=$ $0\}$ for any submodule N of M.

Recall that a ring R is called a Baer ring if for every nonempty subset $I \subseteq R$, there exists an idempotent $e \in R$ such that $l_{S}(I)=R e$.

Proposition 2.29. ([5, Proposition 2.3]) For an R-module $M, S=\operatorname{End}_{R}(M)$ is a Baer ring if and only if $r_{M}\left(l_{S}\left(\sum_{\varphi \in A} \operatorname{Im} \varphi\right)\right)$ is a direct summand of M for all nonempty subsets A of S.

The next example shows that if M is a module such that $S=\operatorname{End}_{R}(M)$ is a Baer ring, then M is not a dual Baer module, in general.

Example 2.30. Consider the \mathbb{Z}-module $M=\mathbb{Z}$. Then $S=\operatorname{End}_{\mathbb{Z}}(M) \cong \mathbb{Z}$. Clearly, \mathbb{Z} is a Baer ring. On the other hand, it is easily seen that M is not a dual Baer module.

Note that if M is an R-module with $S=E n d_{R}(M)$, then for any nonempty subset A of $S, l_{S}(A)=$ $l_{S}(A M)$, where $A M=\sum_{f \in A} \operatorname{Im} f$. The next result can be considered as an analogue of [8, Theorem 3.5].

Theorem 2.31. The following are equivalent for an R-module M and $S=\operatorname{End}_{R}(M)$:
(i) M is a dual Baer module;
(ii) S is a Baer ring and $A M=r_{M}\left(l_{S}(A M)\right)$ for every nonempty subset A of S;
(iii) S is a Baer ring and $I M=r_{M}\left(l_{S}(I M)\right)$ for every right ideal I of S.

Proof. (i) \Rightarrow (ii) From [15, Theorem 3.6], it follows that S is a Baer ring. Moreover, we have $r_{M}\left(l_{S}(A M)\right)=r_{M}\left(l_{S}(A)\right)=r_{M}(S(1-e))=e(M)=A M$ for all nonempty subsets A of S.
(ii) \Rightarrow (iii) This is obvious.
(iii) \Rightarrow (i) Let I be a right ideal of S. Since S is a Baer ring, $r_{M}\left(l_{S}(I M)\right.$) is a direct summand of M by Proposition 2.29. But $I M=r_{M}\left(l_{S}(I M)\right)$. Then $I M$ is a direct summand of M. By Theorem 2.23, it follows that M is a dual Baer module.

Combining Theorem 2.31 and [10, Theorem 4.1], we get the following result.
Corollary 2.32. Let M be an R-module such that $I M=r_{M}\left(l_{S}(I M)\right)$ for every right ideal I of $S=$ $\operatorname{End}_{R}(M)$. If M is a Baer module, then M is a dual Baer module.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, vol. 13, Springer-Verlag, New York 1992.
[2] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18(4) (1974) 470-473.
[3] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159(1) (2001) 25-42.
[4] K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc. 33(2) (1972) 235-240.
[5] S. M. Khuri, Baer endomorphism rings and closure operators, Canad. J. Math. 30(5) (1978) 10701078.
[6] I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York-Amsterdam 1968.
[7] G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38(11) (2010) 4005-4027.
[8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036-4058.
[9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge University Press 1990.
[10] S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004) 103-123.
[11] S. T. Rizvi, C. S. Roman, Baer property of modules and applications, Advances in Ring Theory (2005) 225-241.
[12] D. W. Sharpe, P. Vámos, Injective Modules, Cambridge University Press, Cambridge 1972.
[13] Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002) 1449-1460.
[14] D. K. Tütüncü and R. Tribak, On dual Baer modules, Glasgow Math. J. 52(2) (2010) 261-269.
[15] D. K. Tütüncü, P. F. Smith, S. E. Toksoy, On dual Baer modules, Contemp. Math. 609 (2014) 173-184.
[16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia 1991.

[^0]: Tayyebeh Amouzegar; Department of Mathematics, Quchan University of Advanced Technology, Quchan, Iran (email: t.amoozegar@yahoo.com).
 Rachid Tribak (Corresponding Author); Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger, Avenue My Abdelaziz, Souani, B.P. 3117, Tangier, Morocco (email: tribak12@yahoo.com).

