Graphical sequences of some family of induced subgraphs

Research Article

S. Pirzada*, Bilal A. Chat**, Farooq A. Dar
Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, India

Abstract

The subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G. The $S_{\text {vertex }}$ or $S_{v e r}$ join of the graph G_{1} with the graph G_{2}, denoted by $G_{1} \dot{\mathrm{~V}} G_{2}$, is obtained from $S\left(G_{1}\right)$ and G_{2} by joining all vertices of G_{1} with all vertices of G_{2}. The $S_{\text {edge }}$ or $S_{\text {ed }}$ join of G_{1} and G_{2}, denoted by $G_{1} \bar{\vee} G_{2}$, is obtained from $S\left(G_{1}\right)$ and G_{2} by joining all vertices of $S\left(G_{1}\right)$ corresponding to the edges of G_{1} with all vertices of G_{2}. In this paper, we obtain graphical sequences of the family of induced subgraphs of $S_{J}=G_{1} \vee G_{2}, S_{v e r}=G_{1} \dot{\vee} G_{2}$ and $S_{e d}=G_{1} \bar{\vee} G_{2}$. Also we prove that the graphic sequence of $S_{e d}$ is potentially $K_{4}-e$-graphical.

2010 MSC: 05C07

Keywords: Graphical sequences, Subdivision graph, Join of graphs, Split graph

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with n vertices and m edges having vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. The set of all non-increasing non-negative integer sequences $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is denoted by $N S_{n}$. A sequence $\pi \in N S_{n}$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in $N S_{n}$ is denoted by $G S_{n}$. There are several famous results, Havel and Hakimi [6-8] and Erdös and Gallai [2] which give necessary and sufficient conditions for a non-negative sequence $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ to be the degree sequence of a simple graph G. A graphical sequence π is potentially H-graphical if there is a realization of π containing H as a subgraph, while π is forcibly H graphical if every realization of π contains H as a subgraph. If π has a realization in which the $r+1$ vertices of largest degree induce a clique, then π is said to be potentially A_{r+1}-graphic. We know that a graphic sequence π is potentially K_{k+1}-graphic if and only if π is potentially A_{k+1}-graphic [10, 11]. The disjoint union of the graphs G_{1} and G_{2} is defined by $G_{1} \bigcup G_{2}$. If $G_{1}=G_{2}=G$, we abbreviate $G_{1} \bigcup G_{2}$ as $2 G$. Let K_{k}, C_{k} and P_{k} respectively denote a complete graph on k vertices, a cycle on k vertices and a path on $k+1$ vertices.

[^0]A sequence $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is said to be potentially $K_{r+1^{-}}$graphic if there is a realization G of π containing K_{r+1} as a subgraph. If π is a graphic sequence with a realization G containing H as a subgraph, then in [4], it is shown that there is a realization G of π containing H with the vertices of H having $|V(H)|$ largest degree of π. In 2014 [1], Bu, Yan, X. Zhou and J. Zhou obtained Resistance distance in the subdivision vertex join and edge join type of graphs. Also conditions for r-graphic sequences to be potentially $K_{m+1}^{(r)}$-graphic can be seen in [12].

2. Definitions and preliminary results

In the simple graph G, let d_{i} be the degree of v_{i} for $1 \leq i \leq n$. Then $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is the degree sequence of G. We note that the vertices have been labelled so that π is in increasing order. The degree sequence $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is said to be potentially A_{r+1}-graphic if it has a realization $H=(V(H), E(H))$, where $V(H)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and the degree of u_{i} is d_{i} for $1 \leq i \leq n$, such that the subgraph induced by $\left\{u_{1}, u_{2}, \cdots, u_{r+1}\right\}$ is K_{r+1}. For $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in N S_{n}$ and $\overline{1} \leq k \leq n$, let

$$
\begin{aligned}
\pi^{\prime} & =\left(d_{1}-1, \cdots, d_{k-1}-1, \cdots, d_{k}+1-1, d_{k}+2, \cdots, d_{n}\right), \quad \text { if } \quad d_{k} \geq k, \\
& =\left(d_{1}-1, \cdots, d_{k}-1, \cdots, d_{k}+1, \cdots, d_{k-1}, d_{k+1}, d_{n}\right), \quad \text { if } \quad d_{k}<k .
\end{aligned}
$$

Denote $\pi_{k}^{\prime}=\left(d_{1}^{i^{\prime}}, d_{2}^{i^{\prime}}, \cdots, d_{n-1}^{i^{\prime}}\right)$ where $1 \leq i^{\prime} \leq n$ and $d_{1}^{i^{\prime}}, d_{2}^{i^{\prime}}, \cdots, d_{n-1}^{i^{\prime}}$ is a rearrangement of the $n-1$ terms of π^{\prime}. Then π^{\prime} is called the residual sequence obtained by laying off d_{k} from π.

Gould, Jacobson and Lehel [4] obtained the following result.
Theorem 2.1. If $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is the graphic sequence with a realization G containing H as a subgraph, then there exists a realization G^{\prime} of π containing H as a subgraph so that the vertices of H have the largest degrees of π.

Throughout this paper, we take $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \cdots, d_{m}^{1}\right)$ and $\pi_{2}=\left(d_{1}^{2}, d_{2}^{2}, \cdots, d_{n}^{2}\right)$ respectively to be the graphical sequence of the graphs G_{1} and G_{2}. Let $\sigma(\pi)=d_{1}+d_{2}+\cdots+d_{n}$ and d^{t} in the graphic sequence π means d occurs t-times.

The following definitions will be required for obtaining the main results.
Definition 2.2. The join of G_{1} and G_{2} is a graph $S_{J}=G_{1} \vee G_{2}$ with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and an edge set consisting of all edges of G_{1} and G_{2}, together with the edges joining each vertex of G_{1} with every vertex of G_{2}.

Definition 2.3. The subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G. Equivalently, each edge of G is replaced by a path of length 2. Figure 1 shows the subdivision graph $S(G)$ of the graph G. The vertices inserted are denoted by open circles.

G

$S(G)$

Figure 1.

Definition 2.4. The subdivision vertex join of G_{1} onto G_{2}, denoted by $S_{v e r}=G_{1} \dot{\vee} G_{2}$, is the graph obtained from $S\left(G_{1}\right) \cup G_{2}$ by joining every vertex of $V\left(G_{1}\right)$ to every vertex of $V\left(G_{2}\right)$. Figure 2 gives $S_{v e r}=K_{4} \dot{\vee} K_{4}$.

Figure 2.

Definition 2.5. Let G_{1} and G_{2} be two graphs, let $S\left(G_{1}\right)$ be the subdivision graph of G_{1} and let $I\left(G_{1}\right)$ be the set of new inserted vertices of $S\left(G_{1}\right)$. The subdivision edge join of G_{1} and G_{2} denoted by $S_{e d}=$ $G_{1} \bar{\nabla} G_{2}$, is the graph obtained from $S\left(G_{1}\right) \cup G_{2}$ by joining every vertex of $I\left(G_{1}\right)$ to every vertex of $V\left(G_{2}\right)$. Figure 3 below illustrates this operation by taking $S_{e d}=K_{4} \nabla K_{4}$.

$$
S_{e d}=K_{4} \bar{\vee} K_{4}
$$

Figure 3.

Definition 2.6. If the vertex set of a graph can be partitioned into a clique and an independent set, then it is called a split graph [5]. Let K_{r} and K_{s} be complete graphs on r and s vertices. Clearly $K_{r} \vee \bar{K}_{s}$ is one type of split graph on $r+s$ vertices and is denoted by $S_{r, s}$.

Pirzada and Bilal [9] defined new types of graphical operations and obtained graphical sequences of some derived graphs.

Definition 2.7. Let K_{r} and K_{s} be any two graphs. Let $K_{\dot{r}}$ be the subdivision graph of K_{r} and \bar{K}_{s} be the complement of K_{s}. The graphs $\left(B_{\dot{r}, s}\right)=K_{\dot{r}} \dot{\vee} \bar{K}_{s}$ is called the r-vertex sub-division- $S_{r, s}$-graph and the graph $\left(B_{\bar{r}, s}\right)=K_{\dot{r}} \bar{\nabla} \bar{K}_{s}$ is called the r-edge sub-division- $S_{r, s}$-graph. These are illustrated in Figures 4, 5, 6 and 7 below by taking the graphs K_{4} and K_{2}.

Figure 4.

K_{4}

Figure 5.

In 2014, Pirzada and Bilal [9] proved the following assertion.
Theorem 2.8. If G_{1} is a realization of $\pi_{1}=\left(d_{1}^{1}, \ldots, d_{m}^{1}\right)$ containing K_{p} as a subgraph and G_{2} is a realization of $\pi_{2}=\left(d_{1}^{2}, \ldots, d_{n}^{2}\right)$ containing K_{q} as a subgraph, then the degree sequence $\pi=\left(d_{1}, \ldots, d_{m+n}\right)$ of the join of G_{1} and G_{2} is K_{p+q}-graphic.

The purpose of this paper is to find the graphic sequence of the family of induced subgraphs of $S_{J}, S_{v e r}$ and $S_{e d}$. We also give the characterization for a graphic sequence of $S_{e d}$ to be potentially K_{4} - e-graphical.

Now we have the following observations.
Remark 2.9. Let $L_{r}=K_{a_{1}, a_{2}, \cdots, a_{r}}$ and $M_{r}=K_{b_{1}, b_{2}, \cdots, b_{r}}$ respectively be the r-partite graphs on $\sum_{i=1}^{r} a_{i}$ and $\sum_{i=1}^{r} b_{i}$ vertices. Let $l_{1}=\sum_{i=1}^{r} a_{i}$ and $l_{1}^{\prime}=\sum_{i=1}^{r} b_{i}$ and define

$$
l=\sum_{i=1}^{r}\left(a_{i}+b_{i}\right), \quad m=\sum_{i=1}^{r}\left(a_{i}^{2}+b_{i}^{2}\right) .
$$

Clearly, the number of edges in $K_{a_{1}, a_{2}, \cdots, a_{r}}=\left|E_{L_{r}}\right|=\sum_{i, j=1, i \neq j}^{\substack{r \\ 2}} a_{i} a_{j}$ and the number of edges in $K_{b_{1}, b_{2}, \cdots, b_{r}}=\left|E_{M_{r}}\right|=\sum_{i, j=1, i \neq j}^{\binom{r}{2}} b_{i} b_{j}$.
Remark 2.10. Let $\mathrm{cl}_{2 m}$ be the circular ladder with $2 m$ vertices, $m \geq 3$. The circular ladder is the graph formed by taking two copies of the cycle C_{m} with corresponding vertices from each copy of C_{m} being adjacent. A ladder graph on 8 vertices is shown in Figure 8. Let $\left(K_{2 m}-c l_{2 m}\right)$ be the graph obtained from $K_{2 m}$ by removing the edges of $c l_{2 m}$. For $m \geq 3$, it can be easily seen that $\left(K_{2 m}-c l_{2 m}\right)$ is a $2 m-4$ regular graph on $2 m$ vertices and the number of edges in this graph being $2 m(m-2)$.

$$
\left(B_{\dot{4}, 2}\right)=K_{\dot{4}} \dot{\vee} \overline{K_{2}}
$$

Figure 6.

$$
\left(B_{\overline{4}, 2}\right)=K_{4} \bar{\nabla} \overline{K_{2}}
$$

Figure 7.

Remark 2.11. In the split graph $S_{r, s}$, the number of vertices is $r+s$ and number of edges is $\frac{r(r-1)}{2}+r s$. That is, $\left|V\left(S_{r, s}\right)\right|=r+s$ and $\left|E\left(S_{r, s}\right)\right|=\frac{r(r-1)}{2}+r s$. Figure 9 ilustrates $S_{3,2}$ and $S_{4,1}$.
Remark 2.12. If π_{1} and π_{2} respectively are the graphic sequences of G_{1} and G_{2}, the graphic sequence of $S_{\text {ver }}=G_{1} \dot{\vee} G_{2}$ is $\pi=\left(d_{1}^{1}+n, d_{2}^{1}+n, \cdots, d_{m}^{1}+n, d_{1}^{2}+m, \cdots, d_{n}^{2}+m, 2^{\left|E_{1}\right|}\right)$ and the graphic sequence of $S_{e d}=G_{1} \bar{\vee} G_{2}$ is $\pi=\left(d_{1}^{1}, d_{2}^{1}, \cdots, d_{m}^{1}, d_{1}^{2}+\left|E_{1}\right|, \cdots, d_{n}^{2}+\left|E_{1}\right|,(2+n)^{\left|E_{1}\right|}\right)$.

3. Main results

In the following result, we find the graphic sequence of the induced subgraph $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right) \dot{\vee}\left(K_{2 n^{\prime}}-\right.$ $c l_{2 n^{\prime}}$) of the graph $S_{v e r}=G_{1} \dot{\vee} G_{2}$.

Theorem 3.1. If π_{1} and π_{2} respectively are potentially $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)$ and $\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$-graphic sequences, $m^{\prime} \geq 3, n^{\prime} \geq 3, m \geq 2 m^{\prime}, n \geq 2 n^{\prime}$, then the graphic sequence of $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right) \dot{\vee}\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$ is $\left(\left(2\left(m^{\prime}+n^{\prime}-2\right)\right)^{2\left(m^{\prime}+n^{\prime}\right)}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)$.

Proof. By Remark 2.12 and Theorem 2.1, the graphic sequence of $S_{v e r}$ is $\pi=\left(d_{1}^{1}+n, d_{2}^{1}+n, \cdots, d_{m}^{1}+\right.$ $\left.n, d_{1}^{2}+m, \cdots, d_{n}^{2}+m, 2^{\left|E_{1}\right|}\right)$. Now let π^{*} be the graphic sequence of the induced subgraph $\left(K_{2 m^{\prime}}-\right.$ $\left.c l_{2 m^{\prime}}\right) \dot{\vee}\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$ of $S_{v e r}$. By taking $\left|E\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)\right|=2 m^{\prime}\left(m^{\prime}-2\right)$, we have

$$
\pi^{*}=\left(d_{1}^{1^{\prime}}+2 n^{\prime}, d_{2}^{1^{\prime}}+2 n^{\prime}, \cdots, d_{2 m^{\prime}}^{1^{\prime}}+2 n^{\prime}, d_{1}^{2^{\prime}}+2 m^{\prime}, d_{2}^{2^{\prime}}+2 m^{\prime}\right.
$$

$c l_{8}$

Figure 8.

Figure 9.

$$
\begin{aligned}
& \left.\cdots, d_{2 n^{\prime}}^{2^{\prime}}+2 m^{\prime}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right) \\
& =\left(2 m^{\prime}-4+2 n^{\prime}, 2 m^{\prime}-4+2 n^{\prime}, \cdots, 2 m^{\prime}-4+2 n^{\prime}, 2 n^{\prime}-4+2 m^{\prime}\right. \\
& \left.\cdots, 2 n^{\prime}-4+2 m^{\prime}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right) \\
& =\left(\left(2\left(m^{\prime}+n^{\prime}-2\right)\right)^{2^{\left(m^{\prime}+n^{\prime}\right)}}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)
\end{aligned}
$$

Corollary 3.2. If π_{1} and π_{2} are potentially $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)$-graphic sequences, where $m^{\prime} \geq 3, m \geq$ $2 m^{\prime}, n \geq 2 m^{\prime}$, then the graphic sequence of the induced subgraph $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right) \dot{\vee}\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)$ of $S_{v e r}$ is $\left(\left(4\left(m^{\prime}-1\right)\right)^{4 m^{\prime}}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)$ and $\sigma\left(\pi^{*}\right)=4 m^{\prime}\left(5 m^{\prime}-6\right)$.

Proof. Put $m^{\prime}=n^{\prime}$ in Theorem 3.1, we get

$$
\begin{aligned}
& \pi^{*}=\left(2 m^{\prime}-4+2 m^{\prime}, 2 m^{\prime}-4+2 m^{\prime}, \cdots, 2 m^{\prime}-4+2 m^{\prime}, 2 m^{\prime}-4+2 m^{\prime}\right. \\
& \left.\cdots, 2 m^{\prime}-4+2 m^{\prime}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right) \\
& =\left(\left(4\left(m^{\prime}-1\right)\right)^{4 m^{\prime}}, 2^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)
\end{aligned}
$$

Also $\sigma\left(\pi^{*}\right)=4 m^{\prime}\left(4\left(m^{\prime}-1\right)\right)+2 m^{\prime}\left(m^{\prime}-2\right) 2=4 m^{\prime}\left(5 m^{\prime}-6\right)$.
The following result shows that the graphic sequence π of $S_{e d}=G_{1} \bar{\vee} G_{2}$ is potentially $K_{4}-e-$ graphical.

Theorem 3.3. If π_{1} and π_{2} respectively are potentially $K_{p_{1}}$ and $K_{p_{2}}$-graphic sequences, where $m \geq$ $3, n \geq 2, p_{1} \leq m$ and $p_{2} \leq n$, then the graphical sequence π of $S_{\text {ed }}$ is potentially $K_{4}-e$-graphical.

Proof. Let π_{1} and π_{2} respectively be potentially $K_{p_{1}}$ and $K_{p_{2}}$-graphic sequences, where $m \geq 3, n \geq$ $2, p_{1} \leq m$ and $p_{2} \leq n$. Let $S_{e d}=G_{1} \bar{\vee} G_{2}$ and π be its graphic sequence. Then $\pi=\left(d_{1}^{1}, d_{2}^{1}, \cdots, d_{m}^{1}, d_{1}^{2}+\right.$
$\left.\left|E_{1}\right|, d_{2}^{2}+\left|E_{1}\right|, \cdots, d_{n}^{2}+\left|E_{1}\right|\right)$. Clearly there are at-least three vertices and at least two edges in G_{1} and there are at least two vertices and at least one edge in G_{2}, since G_{1} and G_{2} are connected. Let v_{i}, v_{j} and v_{k} be any three vertices in G_{1} and u_{i} and u_{j} be any two vertices in G_{2}. Since there are at least two edges in G_{1} and at least one edge in G_{2}, without loss of generality we take $v_{i} v_{j}, v_{j} v_{k} \in E\left(G_{1}\right)$ and $u_{i} u_{j} \in E\left(G_{2}\right)$. By construction, it can easily be seen that the graph G formed from G_{1} and G_{2} contains a subgraph on $u_{i}^{\prime}, u_{j}^{\prime}, u_{i}$ and u_{j} vertices (where u_{i}^{\prime} and u_{j}^{\prime} are the two inserted vertices in $v_{i} v_{j}$ and $v_{j} v_{k}$ of G_{1}) which is $K_{4}-e$. Thus π is potentially $K_{4}-e$ graphical.

Now we obtain the graphic sequence of the induced subgraph $S_{r_{1}, s_{1}} \bar{\nabla} S_{r_{2}, s_{2}}$ of $S_{e d}=G_{1} \bar{\vee} G_{2}$.
Theorem 3.4. If π_{1} and π_{2} respectively are potentially $S_{r_{1}, s_{1}}$ and $S_{r_{2}, s_{2}}$-graphic, then the graphic sequence of the induced subgraph $S_{r_{1}, s_{1}} \bar{\vee} S_{r_{2}, s_{2}}$ of $S_{\text {ed }}$ is

$$
\begin{aligned}
\pi^{*}= & \left(\left(\frac{2\left(r_{2}+s_{2}-1\right)+r_{1}\left(2 s_{1}+r_{1}-1\right)}{2}\right)^{r_{2}},\left(\frac{2 r_{2}+r_{1}\left(2 s_{1}+r_{1}-1\right)}{2}\right)^{s_{2}}\right. \\
& \left.\left(2+r_{2}+s_{2}\right)^{\frac{r_{1}\left(2 s_{1}+r_{1}-1\right)}{2}},\left(r_{1}+s_{1}-1\right)^{r_{1}}, r_{1}^{s_{1}}\right)
\end{aligned}
$$

Proof. Let π^{*} be the graphic sequence of the induced subgraph $S_{r_{1}, s_{1}} \bar{\nabla} S_{r_{2}, s_{2}}$ of $S_{e d}$. By Remark 2.11 and Theorem 2.1, we have

$$
\begin{aligned}
\pi^{*}= & \left(d_{1}^{1^{\prime}}, d_{2}^{1^{\prime}}, \cdots, d_{r_{1}}^{1^{\prime}}, d_{r_{1}+1}^{1^{\prime}}, d_{r_{1}+2}^{1^{\prime}}, \cdots, d_{r_{1}+s_{1}}^{1^{\prime}}, d_{1}^{2^{\prime}}, d_{2}^{2^{\prime}}, \cdots, d_{r_{2}+s_{2}}^{2^{\prime}},\left(2+r_{2}+s_{2}\right)^{\left|E\left(S_{\left.r_{1}, s_{1}\right)}\right)\right|}\right) \\
= & \left(r_{1}+s_{1}-1, r_{1}+s_{1}-1, \cdots, r_{1}+s_{1}-1, r_{1}, r_{1}, \cdots, r_{1}, r_{2}+s_{2}-1+\frac{r_{1}\left(r_{1}-1\right)}{2}+\left(r_{1} s_{1}\right),\right. \\
\cdots & \left., r_{2}+s_{2}-1\right) \\
\cdots & \left(r_{1} s_{1}\right),\left(r_{2}+\left|E\left(S_{r_{1}, s_{1}}\right)\right|\right), \\
= & \left(\left(r_{2}+\left|E\left(S_{r_{1}, s_{1}}\right)\right|\right),\left(2+r_{2}+s_{2}\right)^{\mid E\left(S_{\left.r_{1}, s_{1}\right) \mid}\right)}\right) \\
& \left(\frac{2)^{r_{1}}, r_{1}^{s_{1}},\left(\frac{2\left(r_{2}+s_{2}-1\right)+r_{1}\left(r_{1}-1\right)+2 r_{1} s_{1}}{2}\right)^{r_{2}}}{2}, 1\right)+2 r_{1} s_{1} \\
& \left.s^{s_{2}},\left(2+r_{2}+s_{2}\right)^{\frac{r_{1}\left(r_{1}-1\right)+2 r_{1} s_{1}}{2}}\right) \\
= & \left(\left(\frac{2\left(r_{2}+s_{2}-1\right)+r_{1}\left(2 s_{1}+r_{1}-1\right)}{2}\right)^{r_{2}},\left(\frac{2 r_{2}+r_{1}\left(2 s_{1}+r_{1}-1\right)}{2} s_{2}\right.\right. \\
& \left.\left(2+r_{2}+s_{2}\right)^{\frac{r_{1}\left(2 s_{1}+r_{1}-1\right)}{2}},\left(r_{1}+s_{1}-1\right)^{r_{1}}, r_{1}^{s_{1}}\right) .
\end{aligned}
$$

Next we obtain the graphic sequence of the induced subgraph $K_{p_{1}} \bar{\vee} K_{p_{2}}$ and $S_{r_{2}, s_{2}} \bar{\vee} S_{r_{1}, s_{1}}$ of $S_{e d}=$ $G_{1} \bar{\vee} G_{2}$.
Theorem 3.5. If π_{1} and π_{2} respectively are potentially $K_{p_{1}}$ and $K_{p_{2}}$-graphic, then the graphic sequence of the induced subgraph $K_{p_{1}} \vee K_{p_{2}}$ of $S_{\text {ed }}$ is

$$
\pi^{*}=\left(\left(p_{1}-1\right)^{p_{1}},\left(\frac{p_{1}\left(p_{1}-1\right)+2\left(p_{2}-1\right)}{2}\right)^{p_{2}},\left(2+p_{2}\right)^{\frac{p_{1}\left(p_{1}-1\right)}{2}}\right)
$$

where $p_{1} \geq 2, p_{2} \geq 1$.
Proof. By Theorem 2.1, in the graphic sequence of the induced subgraph $K_{p_{1}} \bar{\vee} K_{p_{1}}$ of $S_{\text {ed }}$, we have $d_{1}^{1^{\prime}}=p_{1}-1, d_{2}^{1^{\prime}}=p_{1}-1, \cdots, d_{p_{1}}^{1^{\prime}}=p_{1}-1, d_{1}^{2^{\prime}}=p_{2}-1, \cdots, d_{p_{2}}^{2^{\prime}}=p_{2}-1,\left|E\left(K_{P_{1}}\right)\right|=\frac{p_{1}\left(p_{1}-1\right)}{2}$ and $n=p_{2}$. Thus the graphic sequence π^{*} of the induced subgraph $K_{p_{1}} \nabla K_{p_{1}}$ of $S_{e d}$ is

$$
\pi^{*}=\left(p_{1}-1, \cdots, p_{1}-1, p_{2}-1+\frac{p_{1}\left(p_{1}-1\right)}{2}, \cdots, p_{2}-1+\frac{p_{1}\left(p_{1}-1\right)}{2},\left(2+p_{2}\right)^{\frac{p_{1}\left(p_{1}-1\right)}{2}}\right)
$$

$$
=\left(\left(p_{1}-1\right)^{p_{1}},\left(\frac{p_{1}\left(p_{1}-1\right)+2\left(p_{2}-1\right)}{2}\right)^{p_{2}},\left(2+p_{2}\right)^{\frac{p_{1}\left(p_{1}-1\right)}{2}}\right) .
$$

Theorem 3.6. If π_{1} and π_{2} respectively are potentially $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)$ and $\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$-graphic, where $m^{\prime}, n^{\prime} \geq 3$, then the graphic sequence of the induced subgraph $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right) \bar{\vee}\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$ of $S_{e d}=G_{1} \bar{\vee} G_{2}$ $i s$

$$
\pi^{*}=\left(\left(2\left(m^{\prime}-2\right)\right)^{2 m^{\prime}},\left(2\left(n^{\prime}+m^{\prime 2}\right)-4\left(n^{\prime}+1\right)\right)^{2 n^{\prime}},\left(2\left(1+n^{\prime}\right)\right)^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)
$$

Proof. Let π^{*} is the graphic sequence of $\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right) \bar{V}\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$. Then by Theorem 2.1, we have $d_{1}^{1^{\prime}}=2 m^{\prime}-4=d_{2}^{1^{\prime}}=d_{2 m^{\prime}}^{1^{\prime}}, d_{1}^{2^{\prime}}+\left|E\left(\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)\right)\right|=d_{2}^{2^{\prime}}+\left|E\left(\left(K_{2 m^{\prime}}-c l_{2 m^{\prime}}\right)\right)\right|, \cdots, d_{2 n^{\prime}}^{2^{\prime}}+\mid E\left(\left(K_{2 m^{\prime}}-\right.\right.$ $\left.\left.c l_{2 m^{\prime}}\right)\right) \mid=2 n^{\prime}-4+\left(2 m^{\prime}-4\right) m^{\prime}$. Thus the graphic sequence π^{*} of the required induced subgraph $\left(K_{2 m^{\prime}}-\right.$ $\left.c l_{2 m^{\prime}}\right) \bar{\vee}\left(K_{2 n^{\prime}}-c l_{2 n^{\prime}}\right)$ of $S_{e d}$ becomes $\left(\left(2\left(m^{\prime}-2\right)\right)^{2 m^{\prime}},\left(2\left(n^{\prime}+m^{\prime 2}\right)-4\left(n^{\prime}+1\right)\right)^{2 n^{\prime}},\left(2\left(1+n^{\prime}\right)\right)^{2 m^{\prime}\left(m^{\prime}-2\right)}\right)$.

Theorem 3.7. If π_{1} and π_{2} respectively are potentially $L_{r}=K_{a_{1}, a_{2}, \cdots, a_{r}}$ and $M_{r}=K_{b_{1}, b_{2}, \cdots, b_{r}}$ graphic, then
(a) the graphic sequence of induced subgraph $L_{r} \dot{\vee} M_{r}$ of $S_{v e r}=G_{1} \dot{\vee} G_{2}$ is

$$
\pi^{*}=\left(\left(l-a_{1}\right)^{a_{1}},\left(l-a_{2}\right)^{a_{2}}, \cdots,\left(l-a_{r}\right)^{a_{r}},\left(l-b_{1}\right)^{b_{1}}, \cdots,\left(l-b_{r}\right)^{b_{r}}, 2^{\binom{r}{2}}\right)
$$

where $\binom{r}{2}$ is the number of combinations of $a_{1}, a_{2}, \cdots, a_{r}$ taken two at a time.
(b) $\sigma\left(\pi^{*}\right)=\sum_{i=1}^{r}\left(a_{i}\left(l-a_{i}\right)+b_{i}\left(l-b_{i}\right)\right)+2\binom{r}{2}$.

Proof. Let π_{1} and π_{2} respectively be potentially $L_{r}=K_{a_{1}, a_{2}, \cdots, a_{r}}$ and $M_{r}=K_{b_{1}, b_{2}, \cdots, b_{r}}$ graphic. So clearly the graphs G_{1} and G_{2} contain respectively L_{r} and M_{r} as a subgraph. Let $S_{v e r}=G_{1} \dot{\vee} G_{2}$ be the graph obtained by sub-division vertex join of graphs and let π be the graphic sequence of $S_{v e r}$. We have

$$
\begin{equation*}
\pi=\left(d_{1}^{1}+n, d_{2}^{1}+n, \cdots, d_{m}^{1}+n, d_{1}^{2}+m, \cdots, d_{n}^{2}+m, 2^{\left|E_{1}\right|}\right) \tag{1}
\end{equation*}
$$

where $\left|E_{1}\right|$ is the size of G_{1}.
Let π^{*} be the graphic sequence of the induced subgraph $L_{r} \dot{\vee} M_{r}$ of $S_{v e r}$. To prove (a) we use induction on r. For $r=1$, the result is obvious. For $r=2$, we have $G_{2}^{\prime}=K_{a_{1}, a_{2}} \dot{\vee} K_{b_{1}, b_{2}}$. Let π_{2}^{\prime} be the graphic sequence of G_{2}^{\prime}. Therefore, by Remark 2.12, we have

$$
\begin{aligned}
\pi_{2}^{\prime}= & \left(\left(a_{2}+b_{1}+b_{2}\right)^{a_{1}},\left(a_{1}+b_{1}+b_{2}\right)^{a_{2}},\left(b_{2}+a_{1}+a_{2}\right)^{b_{1}}\right. \\
& \left.\left(b_{1}+a_{1}+a_{2}\right)^{b_{2}}, 2^{i, \sum_{j=1, i \neq j}^{(2)} a_{i} a_{j}}\right) \\
= & \left(\left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-a_{1}\right)^{a_{1}},\left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-a_{2}\right)^{a_{2}},\left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-b_{1}\right)^{b_{1}},\right. \\
& \left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-b_{2}\right)^{b_{2}}, 2^{i, j=1, i \neq j} \sum_{i}^{(2)} a_{i} a_{j} \\
= & \left(\left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-a_{i}\right)^{a_{i}},\left(\sum_{i=1}^{2}\left(a_{i}+b_{i}\right)-b_{i}\right)^{b_{i}}, 2^{a_{1} a_{2}}\right) .
\end{aligned}
$$

This proves the result for $r=2$. Assume that the result is true for $r=k-1$. Therefore, we have

$$
G_{k-1}^{\prime}=K_{a_{1}, a_{2}, \cdots, a_{k-1}} \dot{\vee} K_{b_{1}, b_{2}, \cdots, b_{k-1}}
$$

and let π_{k-1}^{\prime} be the graphic sequence of G_{k-1}^{\prime}. Then we have

$$
\begin{align*}
& \pi_{k-1}^{\prime}=(\left(\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-a_{1}\right)^{a_{1}}, \cdots,\left(\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-a_{k-1}\right)^{a_{k-1}} \\
&\left.\left(\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-b_{1}\right)^{b_{1}}, \cdots,\left(\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-b_{k-1}\right)^{b_{k-1}}, 2^{i, j, i \neq j} \sum_{i}^{k-1}\right) \tag{2}\\
& \sum_{i} a_{j} \\
&) .
\end{align*}
$$

Now, for $r=k$, we have

$$
\begin{aligned}
G_{k}^{\prime} & =K_{a_{1}, a_{2}, \cdots, a_{k-1}, a_{k}} \dot{\vee} K_{b_{1}, b_{2}, \cdots, b_{k-1}, b_{k}} \\
& =K_{R, a_{k}} \dot{\vee} K_{S, b_{k}},
\end{aligned}
$$

where $R=a_{1}, a_{2}, \cdots, a_{k-1}$ and $S=b_{1}, b_{2}, \cdots, b_{k-1}$.
Since the result is proved for all $r=k-1$ and using the fact that the result is proved for each pair and since the result is already proved for $r=2$, it follows by induction hypothesis that the result holds for $r=k$ also. That is,

$$
\left.\left.\begin{array}{rl}
\pi^{*}=\pi_{k}^{\prime}= & \left(\left(a_{k}+b_{k}+\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-a_{1}\right)^{a_{1}}, \cdots,\left(a_{k}+b_{k}+\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-a_{k-1}\right)^{a_{k-1}},\right. \\
& \left(a_{k}+b_{k}+\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)-a_{k}\right)^{a_{k}},\left(a_{k}+b_{k}+\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-b_{1}\right)^{b_{1}}, \cdots, \\
& \left.\left(a_{k}+b_{k}+\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-b_{k-1}\right)^{b_{k-1}},\left(a_{k}+b_{k}+\sum_{i=1}^{k-1}\left(a_{i}+b_{i}\right)-b_{k}\right)^{b_{k}}, 2^{\left(\sum_{i, j, i \neq j}^{k-1} \sum_{i}\right)} a_{i} a_{j}+\sum_{i=1}^{k-1} a_{k} a_{i}\right)
\end{array}\right), a^{a_{2}}, \cdots,\left(l-a_{r}\right)^{a_{r}},\left(l-b_{1}\right)^{b_{1}}, \cdots,\left(l-b_{r}\right)^{b_{r}}, 2^{\binom{r}{2}}\right) .
$$

This proves part (a).
Now we have

$$
\begin{aligned}
\sigma\left(\pi^{*}\right) & \left.=a_{1}\left(l-a_{1}\right)+\cdots+a_{r}\left(l-a_{r}\right)+b_{1}\left(l-b_{1}\right)+\cdots+b_{r}\left(l-b_{r}\right)+2^{\left(\sum_{i, j=1, i \neq j}^{\left(\begin{array}{l}
k \\
2
\end{array}\right.} a_{i} a_{j}\right.}\right) \\
& =\sum_{i=1}^{r}\left(a_{i}\left(l-a_{i}\right)+b_{i}\left(l-b_{i}\right)\right)+2\binom{r}{2} .
\end{aligned}
$$

Theorem 3.8. If π_{1} and π_{2} respectively are potentially $L_{r}=K_{a_{1}, a_{2}, \cdots, a_{r}}$ and $M_{r}=K_{b_{1}, b_{2}, \cdots, b_{r}}$-graphic, then the graphic sequence of the induced subgraph $L \bar{\vee} M$ of $S_{e d}$ is

$$
\pi^{*}=\left(\left(\left(l_{1}-a_{i}\right)^{a_{i}},\left(l_{1}^{\prime}+\left|E_{L}\right|-b_{i}\right)^{b_{i}}\right)_{i=1}^{r},\left(2+l_{1}^{\prime}\right)^{\left|E_{L}\right|}\right)
$$

and $\sigma\left(\pi^{*}\right)=l_{1}^{2}+l_{1}^{\prime 2}-m+2\left(1+l_{1}^{\prime}\right)\left|E_{L}\right|$, where $l_{1}=\sum_{i=1}^{r} a_{i}$ and $l_{1}^{\prime}=\sum_{i=1}^{r} b_{i}$.

Proof. Let π_{1} and π_{2} respectively be potentially L_{r} and M_{r} graphic. Then the graphs G_{1} and G_{2} contain L_{r} and M_{r} as a subgraph. Let $S_{e d}=G_{1} \bar{\vee} G_{2}$ be the graph obtained by sub-division edge join of graphs and let π be the graphic sequence of $S_{e d}$. Then, we have

$$
\begin{equation*}
\pi=\left(d_{1}^{1}, d_{2}^{1}, \cdots, d_{m}^{1}, d_{1}^{2}+\left|E_{1}\right|, \cdots, d_{n}^{2}+\left|E_{1}\right|,(2+n)^{\left|E_{1}\right|}\right) \tag{3}
\end{equation*}
$$

where $\left|E_{1}\right|$ is the size of G_{1}. Let π^{*} be the graphic sequence of the induced subgraph $L_{r} \bar{\nabla} M_{r}$ of $S_{e d}$. To prove the result we use induction on r. For $r=1$, the result follows by Theorem 3.5. For $r=2$, we have $G_{2}^{\prime}=K_{a_{1}, a_{2}} \bar{\vee} K_{b_{1}, b_{2}}$. Let π_{2}^{\prime} be the graphic sequence of G_{2}^{\prime}. Therefore, by Remark 2.12, we have

$$
\begin{aligned}
& \pi_{2}^{\prime}=\left(a_{2}^{a_{1}}, a_{1}^{a_{2}},\left(a_{1} a_{2}+b_{2}\right)^{b_{1}},\left(a_{1} a_{2}+b_{1}\right)^{b_{2}},\left(2+b_{1}+b_{2}\right)^{a_{1} a_{2}}\right) \\
&=\left(\left(\sum_{i=1}^{2} a_{i}-a_{1}\right)^{a_{1}},\left(\sum_{i=1}^{2} a_{i}-a_{2}\right)^{a_{2}},\left(\sum_{i, j, i \neq j}^{\binom{2}{2}} a_{i} a_{j}+b_{2}\right)^{b_{1}},\right. \\
&\left(\sum_{i, j, i \neq j}^{2} C_{2}\right. \\
&\left.\left.C_{i} a_{j}+b_{1}\right)^{b_{2}},\left(2+\sum_{i=1}^{2} b_{i}\right)^{\sum_{i, j, i \neq j}^{(2)} a_{i}^{2} a_{j}} a_{i}\right) \\
&=\left(\left(l_{1}^{*}-a_{1}\right)^{a_{1}},\left(l_{1}^{*}-a_{2}\right)^{a_{2}},\left(\left|E\left(L_{2}\right)\right|+b_{2}\right)^{b_{1}},\left(\left|E\left(L_{2}\right)\right|+b_{1}\right)^{b_{2}},\left(2+l_{1}^{\prime}\right)^{\left|E\left(L_{2}\right)\right|}\right) \\
&=\left(\left(\left(l_{1}^{*}-a_{i}\right)^{a_{i}},\left(\left|E\left(L_{2}\right)\right|+l_{1}^{\prime}-b_{i}\right)^{b_{i}}\right)_{i=1}^{2},\left(2+l_{1}^{\prime}\right)^{\left|E\left(L_{2}\right)\right|}\right)
\end{aligned}
$$

where $l_{1}^{*}=\sum_{i=1}^{2} a_{i}$ and $\left|E\left(L_{2}\right)\right|=\left|E\left(K_{a_{1}, a_{2}}\right)\right|=a_{1} a_{2}$. This proves the result for $r=2$. Assume that the result is true for $r=k-1$, therefore, we have

$$
G_{k-1}^{\prime}=K_{a_{1}, a_{2}, \cdots, a_{k-1}} \bar{\vee} K_{b_{1}, b_{2}, \cdots, b_{k-1}} .
$$

Let π_{k-1}^{\prime} be the graphic sequence of G_{k-1}^{\prime}, then we have

$$
\pi_{k-1}^{\prime}=\left(\left(\left(l_{1}^{* *}-a_{i}\right),\left(\left|E\left(L_{k-1}\right)\right|+l_{1}^{\prime}-b_{i}\right)^{b_{i}}\right)_{i=1}^{k-1},\left(2+l_{1}^{\prime}\right)^{\left|E\left(L_{k-1}\right)\right|}\right)
$$

where $l_{1}^{* *}=\sum_{i=1}^{k-1} a_{i}$.
Now we show that the result holds for $r=k$. We have

$$
\begin{aligned}
G_{k}^{\prime} & =K_{a_{1}, a_{2}, \cdots, a_{k-1}, a_{k}} \bar{\nabla} K_{b_{1}, b_{2}, \cdots, b_{k-1}, b_{k}} \\
& =K_{R, a_{k}} \bar{\nabla} K_{S, b_{k}}
\end{aligned}
$$

where $R=a_{1}, a_{2}, \cdots, a_{k-1}$ and $S=b_{1}, b_{2}, \cdots, b_{k-1}$.
Since the result is proved for every $r=k-1$ and using the fact that the result is proved for each pair and since the result is already proved for $r=2$, it follows by induction hypothesis that the result holds for $r=k$ also. That is,

$$
\pi^{*}=\pi_{k}^{\prime}=\left(\left(a_{k}+\sum_{i=1}^{k-1} a_{i}-a_{1}\right)^{a_{1}},\left(a_{k}+\sum_{i=1}^{k-1} a_{i}-a_{2}\right)^{a_{2}}, \cdots,\left(a_{k}+\sum_{i=1}^{k-1} a_{i}-a_{k}\right)^{a_{k}}\right.
$$

$$
\begin{aligned}
& \left(a_{k} a_{1}+a_{k} a_{2}+\cdots+a_{k} a_{k-1}+\sum_{i, j, i \neq j}^{\binom{k-1}{2}} a_{i} a_{j}+b_{2}\right)^{b_{1}} \\
& \left(a_{k} a_{1}+a_{k} a_{2}+\cdots+a_{k} a_{k-1}+\sum_{i, j, i \neq j}^{\binom{k-1}{2}} a_{i} a_{j}+b_{2}\right)^{b_{2}}, \cdots, \\
& \left.\left(a_{k} a_{1}+a_{k} a_{2}+\cdots+a_{k} a_{k-1}+\sum_{i, j, i \neq j}^{\binom{k-1}{2}} a_{i} a_{j}+b_{k}\right)^{b_{k}},\left(2+b_{k}+\sum_{i=1}^{k-1} b_{i}\right)^{\left(\begin{array}{c}
\left(\sum_{i, j, i \neq j}^{2-1}\right) \\
2
\end{array} a_{i} a_{j}+\sum_{i=1}^{k-1} a_{k} a_{i}\right)}\right) \\
& =\left(\left(\left(l_{1}-a_{i}\right)^{a_{i}},\left(\left|E_{L_{r}}\right|+l_{1}^{\prime}-b_{1}\right)^{b_{i}}\right)_{i=1}^{k},\left(2+l_{1}^{\prime}\right)^{\left|E_{L_{r}}\right|}\right)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\sigma\left(\pi^{*}\right) & =a_{1}\left(l_{1}-a_{1}\right)+\cdots+a_{r}\left(l_{1}-a_{r}\right)+b_{1}\left(l_{1}^{\prime}+\left|E_{L}\right|-b_{1}\right) \\
& +\cdots+b_{r}\left(l_{1}^{\prime}+\left|E_{L}\right|-b_{r}\right)+\sum_{i, j=1, i \neq j}^{k_{k} C_{2}} a_{i} a_{j}\left(2+2 l_{1}^{\prime}\right) \\
& =l_{1}^{2}+l_{1}^{\prime 2}-m+2\left(1+l_{1}^{\prime}\right)\left|E_{L}\right| .
\end{aligned}
$$

This completes the proof.
Let G_{1} and G_{2} be any two graphs. Let $S_{J}=G_{1} \vee G_{2}$ and let $S_{J^{*}}=\left(B_{m_{1}, n_{1}}\right) \vee\left(B_{m_{m_{2}}, n_{2}}\right)$ be the induced subgraph of S_{J} and let π^{*} be the graphic sequence of S_{J}^{*}.
Theorem 3.9. If π_{1} and π_{2} respectively be potentially $B_{\dot{m}_{1}, n_{1}}$ and $B_{\dot{m}_{2}, n_{2}}$, then (a) the graphic sequence π^{*} of induced subgraph $\left(B_{\dot{m}_{1}, n_{1}}\right) \vee\left(B_{\dot{m}_{2}, n_{2}}\right)$ of S_{J} is

$$
\begin{aligned}
\pi^{*}= & \left(\left(A+\left|E\left(K_{m_{2}}\right)\right|-1\right)^{m_{1}},\left(A+\left|E\left(K_{m_{1}}\right)\right|-1\right)^{m_{2}},\left(A+\left|E\left(K_{m_{2}}\right)\right|+2-\left(m_{1}+n_{1}\right)\right)^{\left|E\left(K_{m_{1}}\right)\right|}\right. \\
& \left.\left.\left.\left(A+\left|E\left(K_{m_{1}}\right)\right|+2-\left(m_{2}+n_{2}\right)\right)^{\left|E\left(K_{m_{2}}\right)\right|},\left(A+\left|E\left(K_{m_{2}}\right)\right|-n_{1}\right)\right)^{n_{1}},\left(A+\left|E\left(K_{m_{1}}\right)\right|-n_{2}\right)\right)^{n_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { (b) } \sigma\left(\pi^{*}\right)=A\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)+\prod_{i, j=1, i \neq j}^{2}\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{j}}\right)\right| \\
& +2\left(\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|+\sum_{i}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)-\sum_{i=1}^{2}\left(m_{i}+\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{i}}\right)\right|\right)-\sum_{i=1}^{2} n_{i}^{2}
\end{aligned}
$$

where $A=\sum_{i=1}^{2}\left(m_{i}+n_{i}\right)$ and $\left|E\left(K_{m_{i}}\right)\right|=\frac{m_{i}\left(m_{i}-1\right)}{2}$.
Proof. The graphic sequence of $B_{m_{1}, n_{1}}$ and $B_{m_{2}, n_{2}}$ respectively are

$$
\begin{align*}
& \pi_{1}^{\prime}=\left(\left(m_{1}+n_{1}-1\right)^{m_{1}}, 2^{\frac{m_{1}\left(m_{1}-1\right)}{2}}, m_{1}^{n_{1}}\right) \tag{4}\\
& \pi_{2}^{\prime}=\left(\left(m_{2}+n_{2}-1\right)^{m_{2}}, 2^{\frac{m_{2}\left(m_{2}-1\right)}{2}}, m_{2}^{n_{2}}\right) \tag{5}
\end{align*}
$$

Clearly from (4) and (5), the graphic sequence of S_{J}^{*} is

$$
\begin{aligned}
\pi^{*}= & \left(\left(m_{1}+m_{2}+n_{1}+n_{2}-1+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{m_{1}},\left(m_{1}+m_{2}+n_{1}+n_{2}-1+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{m_{2}}\right. \\
& \left(2+m_{2}+n_{2}+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{\frac{m_{1}\left(m_{1}-1\right)}{2}},\left(2+m_{1}+n_{1}+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{\frac{m_{2}\left(m_{2}-1\right)}{2}} \\
& \left.\left(m_{1}+m_{2}+n_{2}+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{n_{1}},\left(m_{1}+m_{2}+n_{1}+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{n_{2}}\right) \\
& =\left(\left(A+\left|E\left(K_{m_{2}}\right)\right|-1\right)^{m_{1}},\left(A+\left|E\left(K_{m_{1}}\right)\right|-1\right)^{m_{2}},\left(A+\left|E\left(K_{m_{2}}\right)\right|+2-\left(m_{1}+n_{1}\right)\right)^{\left|E\left(K_{m_{1}}\right)\right|},\right. \\
& \left.\left.\left.\left(A+\left|E\left(K_{m_{1}}\right)\right|+2-\left(m_{2}+n_{2}\right)\right)^{\left|E\left(K_{m_{2}}\right)\right|},\left(A+\left|E\left(K_{m_{2}}\right)\right|-n_{1}\right)\right)^{n_{1}},\left(A+\left|E\left(K_{m_{1}}\right)\right|-n_{2}\right)\right)^{n_{2}}\right)
\end{aligned}
$$

This proves (a).
Further

$$
\begin{aligned}
\sigma\left(\pi^{*}\right)= & m_{1}\left(A+\left|E\left(K_{m_{2}}\right)\right|-1\right)+m_{2}\left(A+\mid E\left(K_{m_{1}} \mid-1\right)\right. \\
& +\left|E\left(K_{m_{1}}\right)\right|\left(A+\left|E\left(K_{m_{2}}\right)\right|+2-m_{1}-n_{1}\right) \\
& +\left|E\left(K_{m_{2}}\right)\right|\left(A+\left|E\left(K_{m_{1}}\right)\right|+2-m_{2}-n_{2}\right) \\
& +n_{1}\left(A+\mid E\left(K_{m_{2}} \mid-n_{1}\right)+n_{2}\left(A+\left|E\left(K_{m_{1}}\right)\right|-n_{2}\right)\right. \\
= & m_{1} A+m_{1}\left|E\left(K_{m_{2}}\right)\right|-m_{1}+\left|E\left(K_{m_{2}}\right)\right| A+m_{2}\left|E\left(K_{m_{1}}\right)\right|-m_{2} \\
& +\left|E\left(K_{m_{1}}\right)\right| A+\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|+2\left|E\left(K_{m_{1}}\right)\right|-\left|E\left(K_{m_{1}}\right)\right| m_{1}-n_{1}\left|E\left(K_{m_{1}}\right)\right| \\
& +A\left|E\left(K_{m_{2}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|\left|E\left(K_{m_{1}}\right)\right|+2\left|E\left(K_{m_{2}}\right)\right|-m_{2}\left|E\left(K_{m_{2}}\right)\right|-n_{2}\left|E\left(K_{m_{2}}\right)\right| \\
& +n_{1} A+n_{1}\left|E\left(K_{m_{2}}\right)\right|-n_{1}^{2}+n_{2} A+n_{2}\left|E\left(K_{m_{1}}\right)\right|-n_{2}^{2} \\
= & \left(m_{1}+n_{1}+m_{2}+n_{2}\right) A+\left(\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|\right) A+m_{1}\left|E\left(K_{m_{2}}\right)\right| \\
& +m_{2}\left|E\left(K_{m_{1}}\right)\right|+n_{2}\left|E\left(K_{m_{1}}\right)\right|+n_{1}\left|E\left(K_{m_{2}}\right)\right|-m_{1}\left|E\left(K_{m_{1}}\right)\right|-n_{1}\left|E\left(K_{m_{1}}\right)\right| \\
& -m_{2}\left|E\left(K_{m_{2}}\right)\right|-n_{2}\left|E\left(K_{m_{2}}\right)\right|-\left(m_{1}+m_{2}\right) \\
& +2\left(\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|\right)+2\left(\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{1}}\right)\right|\right)-\left(n_{1}^{2}+n_{2}^{2}\right) \\
= & A^{2}+A \sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|+\prod_{i, j=1, i \neq j}^{2} m_{i}\left|E\left(K_{m_{j}}\right)\right|+\prod_{i, i \neq j}^{2} n_{i}\left|E\left(K_{m_{j}}\right)\right| \\
& -\sum_{i=1}^{2}\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{i}}\right)\right|-\sum_{i=1}^{2} m_{i}+2\left(\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)-\sum_{i=1}^{2} n_{i}^{2} \\
= & A\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)+\prod_{i, j=1, i \neq j}^{2}\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{j}}\right)\right| \\
& +2\left(\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|+\sum_{i}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)-\sum_{i=1}^{2}\left(m_{i}+\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{i}}\right)\right|\right)-\sum_{i=1}^{2} n_{i}^{2} .
\end{aligned}
$$

which proves (b).
Let G_{1} and G_{2} be two graphs. Let $S_{J}=G_{1} \vee G_{2}$ and let $S_{J}^{* *}=\left(B_{\bar{m}_{1}, n_{1}}\right) \vee\left(B_{\bar{m}_{2}, n_{2}}\right)$ be the induced subgraph of S_{J} and let $\pi^{* *}$ be the graphic sequence of $S_{J}^{* *}$.

Theorem 3.10. If π_{1} and π_{2} respectively are potentially $\left(B_{\bar{m}_{1}, n_{1}}\right)$ and $\left(B_{\bar{m}_{2}, n_{2}}\right)$, then the graphic sequence of induced subgraph $\left(B_{\bar{m}_{1}, n_{1}}\right) \vee\left(B_{\bar{m}_{1}, n_{1}}\right)$ of S_{J} is

$$
\begin{aligned}
\pi^{* *}= & \left(\left(A+\left|E\left(K_{m_{2}}\right)\right|-\left(n_{1}+1\right)\right)^{m_{1}},\left(A+\mid E\left(K_{m_{2}} \mid+2-m_{1}\right)^{\mid E\left(K_{m_{1}} \mid\right.}\right.\right. \\
& \left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{1}+n_{1}\right)\right)^{n_{1}},\left(A+\mid E\left(K_{m_{1}} \mid-\left(n_{2}+1\right)\right)^{m_{2}}\right. \\
& \left(A+\mid E\left(K_{m_{1}} \mid+2-m_{2}\right)^{\mid\left(K_{m_{2}} \mid\right.},\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{2}+n_{2}\right)\right)^{n_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma\left(\pi^{* *}\right)= & A\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)+\prod_{i, j=1, i \neq j}^{2}\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{j}}\right)\right|+\prod_{i, j=1, i \neq j}^{2}\left|E\left(K_{m_{i}}\right)\right|\left|E\left(K_{m_{j}}\right)\right| \\
& +\sum_{i=1}^{2}\left(2+n_{i}\right)\left|E\left(K_{m_{i}}\right)\right|-\sum_{i=1}^{2}\left(2 n_{i}+1+\left|E\left(K_{m_{i}}\right)\right|\right) m_{i}-\sum_{i=1}^{2} n_{i}^{2} .
\end{aligned}
$$

Proof. The graphic sequence of $B_{\bar{m}_{1}, n_{1}}$ and $B_{\bar{m}_{2}, n_{2}}$ respectively are

$$
\begin{align*}
& \pi_{1}^{\prime}=\left(\left(m_{1}-1\right)^{m_{1}},\left(\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{n_{1}},\left(2+n_{1}\right)^{\frac{m_{1}\left(m_{1}-1\right)}{2}}\right) \tag{6}\\
& \pi_{2}^{\prime}=\left(\left(m_{2}-1\right)^{m_{2}},\left(\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{n_{2}},\left(2+n_{2}\right)^{\frac{m_{2}\left(m_{2}-1\right)}{2}}\right) \tag{7}
\end{align*}
$$

Then by (6), (7) and by Definition 2.2, we have

$$
\begin{aligned}
\pi^{* *}= & \left(\left(m_{1}-1+m_{2}+n_{2}+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{m_{1}},\left(m_{2}-1+m_{1}+n_{1}+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{m_{2}},\right. \\
& \left(\frac{m_{1}\left(m_{1}-1\right)}{2}+m_{2}+n_{2}+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{n_{1}},\left(\frac{m_{2}\left(m_{2}-1\right)}{2}+m_{1}+n_{1}+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{n_{2}}, \\
& \left.\left(2+n_{1}+m_{2}+n_{2}+\frac{m_{2}\left(m_{2}-1\right)}{2}\right)^{\frac{m_{1}\left(m_{1}-1\right)}{2}},\left(2+n_{2}+m_{1}+n_{1}+\frac{m_{1}\left(m_{1}-1\right)}{2}\right)^{\frac{m_{2}\left(m_{2}-1\right)}{2}}\right) \\
= & \left(\left(A+\left|E\left(K_{m_{2}}\right)\right|-\left(n_{1}+1\right)\right)^{m_{1}},\left(A+\mid E\left(K_{m_{2}} \mid+2-m_{1}\right)\right)^{\mid E\left(K_{m_{1}} \mid\right.},\right. \\
& \left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{1}+n_{1}\right)\right)^{n_{1}},\left(A+\mid E\left(K_{m_{1}} \mid-\left(n_{2}+1\right)\right)^{m_{2}}\right. \\
& \left(A+\mid E\left(K_{m_{1}} \mid+2-m_{2}\right)^{\mid\left(K_{m_{2}} \mid\right.},\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{2}+n_{2}\right)\right)^{n_{2}}\right) .
\end{aligned}
$$

Further

$$
\begin{aligned}
\sigma\left(\pi^{* *}\right)= & \left(\left(A+\left|E\left(K_{m_{2}}\right)\right|-\left(n_{1}+1\right)\right)^{m_{1}}+\left(A+\mid E\left(K_{m_{2}} \mid 2-m_{1}\right)^{\mid E\left(K_{m_{1}} \mid\right.}+\right.\right. \\
& +\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{1}+n_{1}\right)\right)^{n_{1}}+\left(A+\mid E\left(K_{m_{1}} \mid-\left(n_{2}+1\right)\right)^{m_{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(A+\mid E\left(K_{m_{1}} \mid+2-m_{2}\right)^{\mid\left(K_{m_{2}} \mid\right.}+\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|-\left(m_{2}+n_{2}\right)\right)^{n_{2}}\right) . \\
= & m_{1}\left(A+\left|E\left(K_{m_{2}}\right)\right|-n_{1}-1\right)+\left|E\left(K_{m_{1}}\right)\right|\left(A+\left|E\left(K_{m_{2}}\right)\right|+2-m_{1}\right)+ \\
& n_{1}\left(A+\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|-m_{1}-n_{1}\right)+m_{2}\left(A+\left|E\left(K_{m_{1}}\right)\right|-n_{2}-1\right)+ \\
= & \left|E\left(K_{m_{2}}\right)\right|\left(A+\left|E\left(K_{m_{1}}\right)\right|+2-m_{2}\right)+n_{2}\left(A+\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|-m_{2}-n_{2}\right) \\
= & m_{1} A+m_{1}\left|E\left(K_{m_{2}}\right)\right|-n_{1} m_{1}-m_{1}+\left|E\left(K_{m_{1}}\right)\right| A+\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right|+2\left|E\left(K_{m_{1}}\right)\right| \\
& -\left|E\left(K_{m_{1}}\right)\right| m_{1}+n_{1} A+n_{1}\left|E\left(K_{m_{1}}\right)\right|+n_{1}\left|E\left(K_{m_{2}}\right)\right|-n_{1} m_{1}-n_{1}^{2}+m_{2} A+m_{2}\left|E\left(K_{m_{1}}\right)\right| \\
& -m_{2} n_{2}-m_{2}+\left|E\left(K_{m_{2}}\right)\right| A+\left|E\left(K_{m_{2}}\right)\right|\left|E\left(K_{m_{1}}\right)\right|+2\left|E\left(K_{m_{2}}\right)\right|-\left|E\left(K_{m_{2}}\right)\right| m_{2} \\
& +n_{2} A+n_{2}\left|E\left(K_{m_{2}}\right)\right|-n_{2} m_{2}-n_{2}^{2}+n_{2}\left|E\left(K_{m_{1}}\right)\right| \\
= & \left(m_{1}+n_{1}+m_{2}+n_{2}\right) A+\left(\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|\right) A+m_{1}\left|E\left(K_{m_{2}}\right)\right| \\
& +m_{2}\left|E\left(K_{m_{1}}\right)\right|+n_{1}\left|E\left(K_{m_{1}}\right)\right|+n_{2}\left|E\left(K_{m_{2}}\right)\right|+\left|E\left(K_{m_{1}}\right)\right|\left|E\left(K_{m_{2}}\right)\right| \\
& +\left|E\left(K_{m_{2}}\right)\right|\left|E\left(K_{m_{1}}\right)\right|+2\left(\left|E\left(K_{m_{1}}\right)\right|+\left|E\left(K_{m_{2}}\right)\right|\right)+n_{1}\left|E\left(K_{m_{2}}\right)\right| \\
& +n_{2}\left|E\left(K_{m_{1}}\right)\right|-2 n_{1} m_{1}-2 n_{2} m_{2}-\left(m_{1}+m_{2}\right) \\
& -\left(\left|E\left(K_{m_{1}}\right)\right| m_{1}+\left|E\left(K_{m_{2}}\right)\right| m_{2}\right) \\
& A^{2}+A \sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|+\prod_{i, j=1, i \neq j}^{2} m_{i}\left|E\left(K_{m_{j}}\right)\right|+\prod_{i=1, i \neq j}^{2} n_{i}\left|E\left(K_{m_{j}}\right)\right| \\
& +\prod_{i, j=1, i \neq j}^{2}\left|E\left(K_{m_{i}}\right)\right|\left|E\left(K_{m_{j}}\right)\right|+2 \sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|+\sum_{i=1}^{2} n_{i}\left|E\left(K_{m_{i}}\right)\right| \\
& -2 \sum_{i=1}^{2} n_{i} m_{i}-\sum_{i=1}^{2} m_{i}-\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right| m_{i}-\sum_{i=1}^{2} n_{i}^{2} \\
= & A\left(A+\sum_{i=1}^{2}\left|E\left(K_{m_{i}}\right)\right|\right)+\prod_{i, j=1, i \neq j}^{2}\left(m_{i}+n_{i}\right)\left|E\left(K_{m_{j}}\right)\right|+\sum_{i=1}^{2}\left(2+n_{i}\right)\left|E\left(K_{m_{i}}\right)\right| \\
& -\sum_{i=1}^{2}\left(2 n_{i}+1+\left|E\left(K_{m_{i}}\right)\right|\right) m_{i}-\sum_{i=1}^{2} n_{i}^{2} .
\end{aligned}
$$

This completes the proof.
Acknowledgements: The authors are grateful to the anonymous referee for his useful comments and suggestions which improved the presentation of the paper.

References

[1] C. Bu, B. Yan, X. Zhou, J. Zhou, Resistance distance in subdivision-vertex join and subdivision-edge join of graphs, Linear Algebria and its Applications, 458, 454-462, 2014.
[2] P. Erdős, T. Gallai, Graphs with prescribed degrees, (in Hungarian) Matemoutiki Lapor, 11, 264-274, 1960.
[3] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, Canad. J. Math., 17, 166-177, 1965.
[4] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in Combinatorics, Graph Theory and Algorithms, vol. 2, (Y. Alavi et al., eds.), New Issues Press, Kalamazoo MI, 451-460, 1999.
[5] J. L. Gross, J. Yellen, P. Zhang, Handbook of graph theory, CRC Press, Boca Raton, FL, 2013.
[6] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10, 496-506, 1962.
[7] V. Havel, A Remark on the existance of finite graphs, (Czech) Casopis Pest. Mat. 80, 477-480, 1955.
[8] S. Pirzada, An introduction to graph theory, Universities Press, Orient Blackswan, India, 2012.
[9] S. Pirzada, B. A. Chat, Potentially graphic sequences of split graphs, Kragujevac J. Math 38(1), 73-81, 2014.
[10] A. R. Rao, An Erdos-Gallai type result on the clique number of a realization of a degree sequence, Preprint.
[11] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (ed. A. R. Rao), Macmillan and Co. India Ltd, I.S.I. Lecture Notes Series, 4, 251-267, 1979.
[12] J. H. Yin, Conditions for r-graphic sequences to be potentially $K_{m+1}^{(r)}$-graphic, Disc. Math., 309, 6271-6276, 2009.

[^0]: * E-mail: pirzadasd@kashmiruniversity.ac.in
 ** E-mail: bilalchat99@gmail.com

