Journal of Algebra Combinatorics Discrete Structures and Applications

Graphical sequences of some family of induced subgraphs

Research Article

S. Pirzada^{*}, Bilal A. Chat^{**}, Farooq A. Dar

Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, India

Abstract: The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G. The S_{vertex} or S_{ver} join of the graph G_1 with the graph G_2 , denoted by $G_1 \dot{\vee} G_2$, is obtained from $S(G_1)$ and G_2 by joining all vertices of G_1 with all vertices of G_2 . The S_{edge} or S_{ed} join of G_1 and G_2 , denoted by $G_1 \bar{\vee} G_2$, is obtained from $S(G_1)$ and G_2 by joining all vertices of G_2 . In this paper, we obtain graphical sequences of the family of induced subgraphs of $S_J = G_1 \vee G_2$, $S_{ver} = G_1 \dot{\vee} G_2$ and $S_{ed} = G_1 \bar{\vee} G_2$. Also we prove that the graphic sequence of S_{ed} is potentially $K_4 - e$ -graphical.

2010 MSC: 05C07

Keywords: Graphical sequences, Subdivision graph, Join of graphs, Split graph

1. Introduction

Let G = (V(G), E(G)) be a simple graph with n vertices and m edges having vertex set $V(G) = \{v_1, v_2, \cdots, v_n\}$. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \cdots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . There are several famous results, Havel and Hakimi [6–8] and Erdös and Gallai [2] which give necessary and sufficient conditions for a non-negative sequence $\pi = (d_1, d_2, \cdots, d_n)$ to be the degree sequence of a simple graph G. A graphical sequence π is potentially H-graphical if there is a realization of π containing H as a subgraph, while π is forcibly H graphical if every realization of π contains H as a subgraph. If π has a realization in which the r + 1 vertices of largest degree induce a clique, then π is said to be potentially A_{r+1} -graphic [10, 11]. The disjoint union of the graphs G_1 and G_2 is defined by $G_1 \bigcup G_2$. If $G_1 = G_2 = G$, we abbreviate $G_1 \bigcup G_2$ as 2G. Let K_k , C_k and P_k respectively denote a complete graph on k vertices, a cycle on k vertices and a path on k + 1 vertices.

^{*} E-mail: pirzadasd@kashmiruniversity.ac.in

^{**} E-mail: bilalchat99@gmail.com

A sequence $\pi = (d_1, d_2, \dots, d_n)$ is said to be potentially K_{r+1} - graphic if there is a realization G of π containing K_{r+1} as a subgraph. If π is a graphic sequence with a realization G containing H as a subgraph, then in [4], it is shown that there is a realization G of π containing H with the vertices of H having |V(H)| largest degree of π . In 2014 [1], Bu, Yan, X. Zhou and J. Zhou obtained Resistance distance in the subdivision vertex join and edge join type of graphs. Also conditions for r-graphic sequences to be potentially $K_{m+1}^{(r)}$ -graphic can be seen in [12].

2. Definitions and preliminary results

In the simple graph G, let d_i be the degree of v_i for $1 \leq i \leq n$. Then $\pi = (d_1, d_2, \dots, d_n)$ is the degree sequence of G. We note that the vertices have been labelled so that π is in increasing order. The degree sequence $\pi = (d_1, d_2, \dots, d_n)$ is said to be potentially A_{r+1} -graphic if it has a realization H = (V(H), E(H)), where $V(H) = \{u_1, u_2, \dots, u_n\}$ and the degree of u_i is d_i for $1 \leq i \leq n$, such that the subgraph induced by $\{u_1, u_2, \dots, u_{r+1}\}$ is K_{r+1} . For $\pi = (d_1, d_2, \dots, d_n) \in NS_n$ and $1 \leq k \leq n$, let

$$\pi' = (d_1 - 1, \cdots, d_{k-1} - 1, \cdots, d_k + 1 - 1, d_k + 2, \cdots, d_n), \quad if \quad d_k \ge k$$
$$= (d_1 - 1, \cdots, d_k - 1, \cdots, d_k + 1, \cdots, d_{k-1}, d_{k+1}, d_n), \quad if \quad d_k < k.$$

Denote $\pi'_k = (d_1^{i'}, d_2^{i'}, \dots, d_{n-1}^{i'})$ where $1 \leq i' \leq n$ and $d_1^{i'}, d_2^{i'}, \dots, d_{n-1}^{i'}$ is a rearrangement of the n-1 terms of π' . Then π' is called the residual sequence obtained by laying off d_k from π .

Gould, Jacobson and Lehel [4] obtained the following result.

Theorem 2.1. If $\pi = (d_1, d_2, \dots, d_n)$ is the graphic sequence with a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Throughout this paper, we take $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ and $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ respectively to be the graphical sequence of the graphs G_1 and G_2 . Let $\sigma(\pi) = d_1 + d_2 + \dots + d_n$ and d^t in the graphic sequence π means d occurs t-times.

The following definitions will be required for obtaining the main results.

Definition 2.2. The join of G_1 and G_2 is a graph $S_J = G_1 \vee G_2$ with vertex set $V(G_1) \cup V(G_2)$ and an edge set consisting of all edges of G_1 and G_2 , together with the edges joining each vertex of G_1 with every vertex of G_2 .

Definition 2.3. The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G. Equivalently, each edge of G is replaced by a path of length 2. Figure 1 shows the subdivision graph S(G) of the graph G. The vertices inserted are denoted by open circles.

Figure 1.

Definition 2.4. The subdivision vertex join of G_1 onto G_2 , denoted by $S_{ver} = G_1 \dot{\lor} G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex of $V(G_1)$ to every vertex of $V(G_2)$. Figure 2 gives $S_{ver} = K_4 \dot{\lor} K_4$.

Figure 2.

Definition 2.5. Let G_1 and G_2 be two graphs, let $S(G_1)$ be the subdivision graph of G_1 and let $I(G_1)$ be the set of new inserted vertices of $S(G_1)$. The subdivision edge join of G_1 and G_2 denoted by $S_{ed} = G_1 \nabla G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex of $I(G_1)$ to every vertex of $V(G_2)$. Figure 3 below illustrates this operation by taking $S_{ed} = K_4 \nabla K_4$.

Figure 3.

Definition 2.6. If the vertex set of a graph can be partitioned into a clique and an independent set, then it is called a split graph [5]. Let K_r and K_s be complete graphs on r and s vertices. Clearly $K_r \vee \overline{K}_s$ is one type of split graph on r + s vertices and is denoted by $S_{r,s}$.

Pirzada and Bilal [9] defined new types of graphical operations and obtained graphical sequences of some derived graphs.

Definition 2.7. Let K_r and K_s be any two graphs. Let $K_{\dot{r}}$ be the subdivision graph of K_r and \overline{K}_s be the complement of K_s . The graphs $(B_{\dot{r},s}) = K_{\dot{r}} \lor \overline{K}_s$ is called the *r*-vertex sub-division- $S_{r,s}$ -graph and the graph $(B_{\overline{r},s}) = K_{\dot{r}} \lor \overline{K}_s$ is called the *r*-edge sub-division- $S_{r,s}$ -graph. These are illustrated in Figures 4, 5, 6 and 7 below by taking the graphs K_4 and K_2 .

Figure 4.

Figure 5.

In 2014, Pirzada and Bilal [9] proved the following assertion.

Theorem 2.8. If G_1 is a realization of $\pi_1 = (d_1^1, \ldots, d_m^1)$ containing K_p as a subgraph and G_2 is a realization of $\pi_2 = (d_1^2, \ldots, d_n^2)$ containing K_q as a subgraph, then the degree sequence $\pi = (d_1, \ldots, d_{m+n})$ of the join of G_1 and G_2 is K_{p+q} -graphic.

The purpose of this paper is to find the graphic sequence of the family of induced subgraphs of S_J , S_{ver} and S_{ed} . We also give the characterization for a graphic sequence of S_{ed} to be potentially $K_4 - e$ -graphical.

Now we have the following observations.

Remark 2.9. Let $L_r = K_{a_1,a_2,\dots,a_r}$ and $M_r = K_{b_1,b_2,\dots,b_r}$ respectively be the r-partite graphs on $\sum_{i=1}^r a_i$ and $\sum_{i=1}^r b_i$ vertices. Let $l_1 = \sum_{i=1}^r a_i$ and $l'_1 = \sum_{i=1}^r b_i$ and define $l = \sum_{i=1}^r (a_i + b_i), \quad m = \sum_{i=1}^r (a_i^2 + b_i^2).$

Clearly, the number of edges in $K_{a_1,a_2,\cdots,a_r} = |E_{L_r}| = \sum_{i,j=1,i\neq j}^{\binom{r}{2}} a_i a_j$ and the number of edges

in
$$K_{b_1,b_2,\cdots,b_r} = |E_{M_r}| = \sum_{i,j=1,i\neq j}^{\binom{r}{2}} b_i b_j$$

Remark 2.10. Let cl_{2m} be the circular ladder with 2m vertices, $m \ge 3$. The circular ladder is the graph formed by taking two copies of the cycle C_m with corresponding vertices from each copy of C_m being adjacent. A ladder graph on 8 vertices is shown in Figure 8. Let $(K_{2m} - cl_{2m})$ be the graph obtained from K_{2m} by removing the edges of cl_{2m} . For $m \ge 3$, it can be easily seen that $(K_{2m} - cl_{2m})$ is a 2m - 4regular graph on 2m vertices and the number of edges in this graph being 2m(m-2).

 $(B_{\dot{4},2}) = K_{\dot{4}} \dot{\lor} \overline{K_2}$

Figure 6.

Figure 7.

Remark 2.11. In the split graph $S_{r,s}$, the number of vertices is r + s and number of edges is $\frac{r(r-1)}{2} + rs$. That is, $|V(S_{r,s})| = r + s$ and $|E(S_{r,s})| = \frac{r(r-1)}{2} + rs$. Figure 9 ilustrates $S_{3,2}$ and $S_{4,1}$.

Remark 2.12. If π_1 and π_2 respectively are the graphic sequences of G_1 and G_2 , the graphic sequence of $S_{ver} = G_1 \dot{\lor} G_2$ is $\pi = (d_1^1 + n, d_2^1 + n, \cdots, d_m^1 + n, d_1^2 + m, \cdots, d_n^2 + m, 2^{|E_1|})$ and the graphic sequence of $S_{ed} = G_1 \bar{\lor} G_2$ is $\pi = (d_1^1, d_2^1, \cdots, d_m^1, d_1^2 + |E_1|, \cdots, d_n^2 + |E_1|, (2+n)^{|E_1|})$.

3. Main results

In the following result, we find the graphic sequence of the induced subgraph $(K_{2m'} - cl_{2m'})\dot{\vee}(K_{2n'} - cl_{2n'})$ of the graph $S_{ver} = G_1\dot{\vee}G_2$.

Theorem 3.1. If π_1 and π_2 respectively are potentially $(K_{2m'} - cl_{2m'})$ and $(K_{2n'} - cl_{2n'})$ -graphic sequences, $m' \ge 3$, $n' \ge 3$, $m \ge 2m'$, $n \ge 2n'$, then the graphic sequence of $(K_{2m'} - cl_{2m'}) \dot{\vee} (K_{2n'} - cl_{2n'})$ is $((2(m' + n' - 2))^{2(m' + n')}, 2^{2m'(m' - 2)})$.

Proof. By Remark 2.12 and Theorem 2.1, the graphic sequence of S_{ver} is $\pi = (d_1^1 + n, d_2^1 + n, \cdots, d_m^1 + n, d_1^2 + m, \cdots, d_n^2 + m, 2^{|E_1|})$. Now let π^* be the graphic sequence of the induced subgraph $(K_{2m'} - cl_{2m'})\dot{\vee}(K_{2n'} - cl_{2n'})$ of S_{ver} . By taking $|E(K_{2m'} - cl_{2m'})| = 2m'(m' - 2)$, we have

$$\pi^* = \left(d_1^{1'} + 2n', d_2^{1'} + 2n', \cdots, d_{2m'}^{1'} + 2n', d_1^{2'} + 2m', d_2^{2'} + 2m$$

Figure 9.

Figure 8.

$$\cdots, d_{2n'}^{2'} + 2m', 2^{2m'(m'-2)})$$

$$= (2m' - 4 + 2n', 2m' - 4 + 2n', \cdots, 2m' - 4 + 2n', 2n' - 4 + 2m',$$

$$\cdots, 2n' - 4 + 2m', 2^{2m'(m'-2)})$$

$$= ((2(m' + n' - 2))^{2^{(m'+n')}}, 2^{2m'(m'-2)}).$$

Corollary 3.2. If π_1 and π_2 are potentially $(K_{2m'} - cl_{2m'})$ -graphic sequences, where $m' \geq 3$, $m \geq 2m'$, $n \geq 2m'$, then the graphic sequence of the induced subgraph $(K_{2m'} - cl_{2m'})\dot{\vee}(K_{2m'} - cl_{2m'})$ of S_{ver} is $((4(m'-1))^{4m'}, 2^{2m'(m'-2)})$ and $\sigma(\pi^*) = 4m'(5m'-6)$.

Proof. Put m' = n' in Theorem 3.1, we get

$$\pi^* = (2m' - 4 + 2m', 2m' - 4 + 2m', \cdots, 2m' - 4 + 2m', 2m' - 4 + 2m', \cdots, 2m' - 4 + 2m', 2^{2m'(m'-2)}) = ((4(m'-1))^{4m'}, 2^{2m'(m'-2)})$$

Also $\sigma(\pi^*) = 4m'(4(m'-1)) + 2m'(m'-2)2 = 4m'(5m'-6).$

The following result shows that the graphic sequence π of $S_{ed} = G_1 \overline{\vee} G_2$ is potentially $K_4 - e$ -graphical.

Theorem 3.3. If π_1 and π_2 respectively are potentially K_{p_1} and K_{p_2} -graphic sequences, where $m \geq 3$, $n \geq 2$, $p_1 \leq m$ and $p_2 \leq n$, then the graphical sequence π of S_{ed} is potentially $K_4 - e$ -graphical.

Proof. Let π_1 and π_2 respectively be potentially K_{p_1} and K_{p_2} -graphic sequences, where $m \ge 3$, $n \ge 2$, $p_1 \le m$ and $p_2 \le n$. Let $S_{ed} = G_1 \overline{\lor} G_2$ and π be its graphic sequence. Then $\pi = (d_1^1, d_2^1, \cdots, d_m^1, d_1^2 + \cdots, d_m^1, d_1^2 + \cdots, d_m^1, d_1^2 + \cdots)$

 $|E_1|, d_2^2 + |E_1|, \dots, d_n^2 + |E_1|$). Clearly there are at-least three vertices and at least two edges in G_1 and there are at least two vertices and at least one edge in G_2 , since G_1 and G_2 are connected. Let v_i, v_j and v_k be any three vertices in G_1 and u_i and u_j be any two vertices in G_2 . Since there are at least two edges in G_1 and at least one edge in G_2 , without loss of generality we take $v_i v_j, v_j v_k \in E(G_1)$ and $u_i u_j \in E(G_2)$. By construction, it can easily be seen that the graph G formed from G_1 and G_2 contains a subgraph on u'_i, u'_j, u_i and u_j vertices (where u'_i and u'_j are the two inserted vertices in $v_i v_j$ and $v_j v_k$ of G_1) which is $K_4 - e$. Thus π is potentially $K_4 - e$ graphical.

Now we obtain the graphic sequence of the induced subgraph $S_{r_1,s_1} \overline{\vee} S_{r_2,s_2}$ of $S_{ed} = G_1 \overline{\vee} G_2$.

Theorem 3.4. If π_1 and π_2 respectively are potentially S_{r_1,s_1} and S_{r_2,s_2} -graphic, then the graphic sequence of the induced subgraph $S_{r_1,s_1} \overline{\lor} S_{r_2,s_2}$ of S_{ed} is

$$\pi^* = \left(\left(\frac{2(r_2 + s_2 - 1) + r_1(2s_1 + r_1 - 1)}{2} \right)^{r_2}, \left(\frac{2r_2 + r_1(2s_1 + r_1 - 1)}{2} \right)^{s_2}, (2 + r_2 + s_2)^{\frac{r_1(2s_1 + r_1 - 1)}{2}}, (r_1 + s_1 - 1)^{r_1}, r_1^{s_1} \right).$$

Proof. Let π^* be the graphic sequence of the induced subgraph $S_{r_1,s_1} \overline{\vee} S_{r_2,s_2}$ of S_{ed} . By Remark 2.11 and Theorem 2.1, we have

$$\begin{split} \pi^* &= \left(d_1^{1'}, d_2^{1'}, \cdots, d_{r_1}^{1'}, d_{r_1+1}^{1'}, d_{r_1+2}^{1'}, \cdots, d_{r_1+s_1}^{1'}, d_2^{2'}, \cdots, d_{r_2+s_2}^{2'}, (2+r_2+s_2)^{|E(S_{r_1,s_1})|}\right) \\ &= \left(r_1 + s_1 - 1, r_1 + s_1 - 1, \cdots, r_1 + s_1 - 1, r_1, r_1, \cdots, r_1, r_2 + s_2 - 1 + \frac{r_1(r_1 - 1)}{2} + (r_1s_1), \\ \cdots, r_2 + s_2 - 1 + \frac{r_1(r_1 - 1)}{2} + (r_1s_1), (r_2 + |E(S_{r_1,s_1})|), \\ \cdots, (r_2 + |E(S_{r_1,s_1})|), (2+r_2+s_2)^{|E(S_{r_1,s_1})|}\right) \\ &= \left(\left(r_1 + s_1 - 1\right)^{r_1}, r_1^{s_1}, \left(\frac{2(r_2 + s_2 - 1) + r_1(r_1 - 1) + 2r_1s_1}{2}\right)^{r_2}, \\ \left(\frac{2r_2 + r_1(r_1 - 1) + 2r_1s_1}{2}\right)^{s_2}, (2+r_2+s_2)^{\frac{r_1(r_1 - 1) + 2r_1s_1}{2}}\right) \\ &= \left(\left(\frac{2(r_2 + s_2 - 1) + r_1(2s_1 + r_1 - 1)}{2}\right)^{r_2}, \left(\frac{2r_2 + r_1(2s_1 + r_1 - 1)}{2}\right)^{s_2}, \\ (2+r_2+s_2)^{\frac{r_1(2s_1+r_1 - 1)}{2}}, (r_1+s_1 - 1)^{r_1}, r_1^{s_1}\right). \end{split}$$

Next we obtain the graphic sequence of the induced subgraph $K_{p_1} \bar{\vee} K_{p_2}$ and $S_{r_2,s_2} \bar{\vee} S_{r_1,s_1}$ of $S_{ed} = G_1 \bar{\vee} G_2$.

Theorem 3.5. If π_1 and π_2 respectively are potentially K_{p_1} and K_{p_2} -graphic, then the graphic sequence of the induced subgraph $K_{p_1} \nabla K_{p_2}$ of S_{ed} is

$$\pi^* = \left((p_1 - 1)^{p_1}, \left(\frac{p_1(p_1 - 1) + 2(p_2 - 1)}{2} \right)^{p_2}, (2 + p_2)^{\frac{p_1(p_1 - 1)}{2}} \right),$$

where $p_1 \ge 2, p_2 \ge 1$.

Proof. By Theorem 2.1, in the graphic sequence of the induced subgraph $K_{p_1} \overline{\vee} K_{p_1}$ of S_{ed} , we have $d_1^{1'} = p_1 - 1, d_2^{1'} = p_1 - 1, d_1^{2'} = p_2 - 1, \dots, d_{p_2}^{2'} = p_2 - 1, |E(K_{P_1})| = \frac{p_1(p_1-1)}{2}$ and $n = p_2$. Thus the graphic sequence π^* of the induced subgraph $K_{p_1} \overline{\vee} K_{p_1}$ of S_{ed} is

$$\pi^* = \left(p_1 - 1, \cdots, p_1 - 1, p_2 - 1 + \frac{p_1(p_1 - 1)}{2}, \cdots, p_2 - 1 + \frac{p_1(p_1 - 1)}{2}, (2 + p_2)^{\frac{p_1(p_1 - 1)}{2}}\right)$$

$$=\left((p_1-1)^{p_1}, \left(\frac{p_1(p_1-1)+2(p_2-1)}{2}\right)^{p_2}, (2+p_2)^{\frac{p_1(p_1-1)}{2}}\right).$$

Theorem 3.6. If π_1 and π_2 respectively are potentially $(K_{2m'} - cl_{2m'})$ and $(K_{2n'} - cl_{2n'})$ -graphic, where $m', n' \geq 3$, then the graphic sequence of the induced subgraph $(K_{2m'} - cl_{2m'})\overline{\vee}(K_{2n'} - cl_{2n'})$ of $S_{ed} = G_1\overline{\vee}G_2$ is

$$\pi^* = \left(\left(2(m'-2) \right)^{2m'}, \left(2(n'+m'^2) - 4(n'+1) \right)^{2n'}, \left(2(1+n') \right)^{2m'(m'-2)} \right).$$

Proof. Let π^* is the graphic sequence of $(K_{2m'} - cl_{2m'})\overline{\vee}(K_{2n'} - cl_{2n'})$. Then by Theorem 2.1, we have $d_1^{1'} = 2m' - 4 = d_2^{1'} = d_{2m'}^{1'}, d_1^{2'} + |E((K_{2m'} - cl_{2m'}))| = d_2^{2'} + |E((K_{2m'} - cl_{2m'}))|, \dots, d_{2n'}^{2'} + |E((K_{2m'} - cl_{2m'}))| = 2n' - 4 + (2m' - 4)m'$. Thus the graphic sequence π^* of the required induced subgraph $(K_{2m'} - cl_{2m'})\overline{\vee}(K_{2n'} - cl_{2n'})$ of S_{ed} becomes $((2(m'-2))^{2m'}, (2(n'+m'^2)-4(n'+1))^{2n'}, (2(1+n'))^{2m'(m'-2)})$. \Box

Theorem 3.7. If π_1 and π_2 respectively are potentially $L_r = K_{a_1,a_2,\cdots,a_r}$ and $M_r = K_{b_1,b_2,\cdots,b_r}$ graphic, then

(a) the graphic sequence of induced subgraph $L_r \dot{\lor} M_r$ of $S_{ver} = G_1 \dot{\lor} G_2$ is

$$\pi^* = \left(\left(l - a_1\right)^{a_1}, \left(l - a_2\right)^{a_2}, \cdots, \left(l - a_r\right)^{a_r}, \left(l - b_1\right)^{b_1}, \cdots, \left(l - b_r\right)^{b_r}, 2^{\binom{r}{2}} \right),$$

where $\binom{r}{2}$ is the number of combinations of a_1, a_2, \cdots, a_r taken two at a time. (b) $\sigma(\pi^*) = \sum_{i=1}^r \left(a_i(l-a_i) + b_i(l-b_i) \right) + 2\binom{r}{2}$.

Proof. Let π_1 and π_2 respectively be potentially $L_r = K_{a_1,a_2,\dots,a_r}$ and $M_r = K_{b_1,b_2,\dots,b_r}$ graphic. So clearly the graphs G_1 and G_2 contain respectively L_r and M_r as a subgraph. Let $S_{ver} = G_1 \dot{\lor} G_2$ be the graph obtained by sub-division vertex join of graphs and let π be the graphic sequence of S_{ver} . We have

$$\pi = \left(d_1^1 + n, d_2^1 + n, \cdots, d_m^1 + n, d_1^2 + m, \cdots, d_n^2 + m, 2^{|E_1|}\right)$$
(1)

where $|E_1|$ is the size of G_1 .

Let π^* be the graphic sequence of the induced subgraph $L_r \dot{\vee} M_r$ of S_{ver} . To prove (a) we use induction on r. For r = 1, the result is obvious. For r = 2, we have $G'_2 = K_{a_1,a_2} \dot{\vee} K_{b_1,b_2}$. Let π'_2 be the graphic sequence of G'_2 . Therefore, by Remark 2.12, we have

$$\begin{aligned} \pi_2' &= \left(\left(a_2 + b_1 + b_2\right)^{a_1}, \left(a_1 + b_1 + b_2\right)^{a_2}, \left(b_2 + a_1 + a_2\right)^{b_1}, \\ &\left(b_1 + a_1 + a_2\right)^{b_2}, 2^{\sum\limits_{i,j=1,i\neq j}^{a_i,a_j}} \right) \\ &= \left(\left(\sum\limits_{i=1}^2 (a_i + b_i) - a_1\right)^{a_1}, \left(\sum\limits_{i=1}^2 (a_i + b_i) - a_2\right)^{a_2}, \left(\sum\limits_{i=1}^2 (a_i + b_i) - b_1\right)^{b_1} \\ &\left(\sum\limits_{i=1}^2 (a_i + b_i) - b_2\right)^{b_2}, 2^{\sum\limits_{i,j=1,i\neq j}^{(2)} a_i a_j} \right) \\ &= \left(\left(\sum\limits_{i=1}^2 (a_i + b_i) - a_i\right)^{a_i}, \left(\sum\limits_{i=1}^2 (a_i + b_i) - b_i\right)^{b_i}, 2^{a_1 a_2} \right). \end{aligned}$$

This proves the result for r = 2. Assume that the result is true for r = k - 1. Therefore, we have

$$G'_{k-1} = K_{a_1, a_2, \cdots, a_{k-1}} \dot{\lor} K_{b_1, b_2, \cdots, b_{k-1}}$$

and let π'_{k-1} be the graphic sequence of G'_{k-1} . Then we have

$$\pi_{k-1}' = \left(\left(\sum_{i=1}^{k-1} (a_i + b_i) - a_1 \right)^{a_1}, \cdots, \left(\sum_{i=1}^{k-1} (a_i + b_i) - a_{k-1} \right)^{a_{k-1}}, \left(\sum_{i=1}^{k-1} (a_i + b_i) - b_1 \right)^{b_1}, \cdots, \left(\sum_{i=1}^{k-1} (a_i + b_i) - b_{k-1} \right)^{b_{k-1}}, 2^{\sum_{i,j,i\neq j}^{k-1} a_i a_j} \right).$$

$$(2)$$

Now, for r = k, we have

$$G'_{k} = K_{a_{1},a_{2},\cdots,a_{k-1},a_{k}} \dot{\vee} K_{b_{1},b_{2},\cdots,b_{k-1},b_{k}}$$

= $K_{R,a_{k}} \dot{\vee} K_{S,b_{k}},$

where $R = a_1, a_2, \cdots, a_{k-1}$ and $S = b_1, b_2, \cdots, b_{k-1}$.

Since the result is proved for all r = k - 1 and using the fact that the result is proved for each pair and since the result is already proved for r = 2, it follows by induction hypothesis that the result holds for r = k also. That is,

$$\pi^* = \pi'_k = \left(\left(a_k + b_k + \sum_{i=1}^{k-1} (a_i + b_i) - a_1 \right)^{a_1}, \cdots, \left(a_k + b_k + \sum_{i=1}^{k-1} (a_i + b_i) - a_{k-1} \right)^{a_{k-1}}, \\ \left(a_k + b_k + \sum_{i=1}^k (a_i + b_i) - a_k \right)^{a_k}, \left(a_k + b_k + \sum_{i=1}^{k-1} (a_i + b_i) - b_1 \right)^{b_1}, \cdots, \\ \left(a_k + b_k + \sum_{i=1}^{k-1} (a_i + b_i) - b_{k-1} \right)^{b_{k-1}}, \left(a_k + b_k + \sum_{i=1}^{k-1} (a_i + b_i) - b_k \right)^{b_k}, 2^{\binom{\binom{k-1}{2}}{i,j,i\neq j} a_i a_j + \sum_{i=1}^{k-1} a_k a_i} \right) \\ = \left(\left(l - a_1 \right)^{a_1}, \left(l - a_2 \right)^{a_2}, \cdots, \left(l - a_r \right)^{a_r}, \left(l - b_1 \right)^{b_1}, \cdots, \left(l - b_r \right)^{b_r}, 2^{\binom{r}{2}} \right).$$

This proves part (a).

Now we have

$$\sigma(\pi^*) = a_1(l-a_1) + \dots + a_r(l-a_r) + b_1(l-b_1) + \dots + b_r(l-b_r) + 2 \begin{pmatrix} \binom{k}{2} \\ \sum_{i,j=1,i\neq j} a_i a_j \end{pmatrix}$$
$$= \sum_{i=1}^r \left(a_i(l-a_i) + b_i(l-b_i) \right) + 2 \binom{r}{2}.$$

Theorem 3.8. If π_1 and π_2 respectively are potentially $L_r = K_{a_1,a_2,\dots,a_r}$ and $M_r = K_{b_1,b_2,\dots,b_r}$ -graphic, then the graphic sequence of the induced subgraph $L \nabla M$ of S_{ed} is

$$\pi^* = \left(\left((l_1 - a_i)^{a_i}, (l_1' + |E_L| - b_i)^{b_i} \right)_{i=1}^r, (2 + l_1')^{|E_L|} \right)$$

and $\sigma(\pi^*) = l_1^2 + {l_1'}^2 - m + 2(1 + l_1')|E_L|$, where $l_1 = \sum_{i=1}^r a_i$ and $l_1' = \sum_{i=1}^r b_i$.

103

Proof. Let π_1 and π_2 respectively be potentially L_r and M_r graphic. Then the graphs G_1 and G_2 contain L_r and M_r as a subgraph. Let $S_{ed} = G_1 \overline{\vee} G_2$ be the graph obtained by sub-division edge join of graphs and let π be the graphic sequence of S_{ed} . Then, we have

$$\pi = \left(d_1^1, d_2^1, \cdots, d_m^1, d_1^2 + |E_1|, \cdots, d_n^2 + |E_1|, (2+n)^{|E_1|}\right)$$
(3)

where $|E_1|$ is the size of G_1 . Let π^* be the graphic sequence of the induced subgraph $L_r \bar{\vee} M_r$ of S_{ed} . To prove the result we use induction on r. For r = 1, the result follows by Theorem 3.5. For r = 2, we have $G'_2 = K_{a_1,a_2} \bar{\vee} K_{b_1,b_2}$. Let π'_2 be the graphic sequence of G'_2 . Therefore, by Remark 2.12, we have

$$\begin{aligned} \pi_2' &= \left(a_2^{a_1}, a_1^{a_2}, \left(a_1a_2 + b_2\right)^{b_1}, \left(a_1a_2 + b_1\right)^{b_2}, \left(2 + b_1 + b_2\right)^{a_1a_2}\right) \\ &= \left(\left(\sum_{i=1}^2 a_i - a_1\right)^{a_1}, \left(\sum_{i=1}^2 a_i - a_2\right)^{a_2}, \left(\sum_{i,j,i\neq j}^{\binom{2}{2}} a_ia_j + b_2\right)^{b_1}, \\ &\left(\sum_{i,j,i\neq j}^{2C_2} a_ia_j + b_1\right)^{b_2}, \left(2 + \sum_{i=1}^2 b_i\right)^{\sum_{i,j,i\neq j}^{\binom{2}{2}} a_ia_j}\right) \\ &= \left(\left(l_1^* - a_1\right)^{a_1}, \left(l_1^* - a_2\right)^{a_2}, \left(|E(L_2)| + b_2\right)^{b_1}, \left(|E(L_2)| + b_1\right)^{b_2}, \left(2 + l_1'\right)^{|E(L_2)|}\right) \\ &= \left(\left(\left(l_1^* - a_i\right)^{a_i}, \left(|E(L_2)| + l_1' - b_i\right)^{b_i}\right)^2_{i=1}, \left(2 + l_1'\right)^{|E(L_2)|}\right) \end{aligned}$$

where $l_1^* = \sum_{i=1}^2 a_i$ and $|E(L_2)| = |E(K_{a_1,a_2})| = a_1a_2$. This proves the result for r = 2. Assume that the result is true for r = k - 1, therefore, we have

$$G'_{k-1} = K_{a_1, a_2, \cdots, a_{k-1}} \bar{\vee} K_{b_1, b_2, \cdots, b_{k-1}}.$$

Let π'_{k-1} be the graphic sequence of G'_{k-1} , then we have

$$\pi_{k-1}' = \left(\left(\left(l_1^{**} - a_i \right), \left(|E(L_{k-1})| + l_1' - b_i \right)^{b_i} \right)_{i=1}^{k-1}, \left(2 + l_1' \right)^{|E(L_{k-1})|} \right)$$

where $l_1^{**} = \sum_{i=1}^{k-1} a_i$.

Now we show that the result holds for r = k. We have

$$G'_k = K_{a_1, a_2, \cdots, a_{k-1}, a_k} \overline{\vee} K_{b_1, b_2, \cdots, b_{k-1}, b_k}$$
$$= K_{R, a_k} \overline{\vee} K_{S, b_k}$$

where $R = a_1, a_2, \cdots, a_{k-1}$ and $S = b_1, b_2, \cdots, b_{k-1}$.

Since the result is proved for every r = k - 1 and using the fact that the result is proved for each pair and since the result is already proved for r = 2, it follows by induction hypothesis that the result holds for r = k also. That is,

$$\pi^* = \pi'_k = \left(\left(a_k + \sum_{i=1}^{k-1} a_i - a_1 \right)^{a_1}, \left(a_k + \sum_{i=1}^{k-1} a_i - a_2 \right)^{a_2}, \cdots, \left(a_k + \sum_{i=1}^{k-1} a_i - a_k \right)^{a_k}, \right)$$

$$\begin{pmatrix} a_k a_1 + a_k a_2 + \dots + a_k a_{k-1} + \sum_{i,j,i \neq j}^{\binom{k-1}{2}} a_i a_j + b_2 \end{pmatrix}^{b_1}, \\ \begin{pmatrix} a_k a_1 + a_k a_2 + \dots + a_k a_{k-1} + \sum_{i,j,i \neq j}^{\binom{k-1}{2}} a_i a_j + b_2 \end{pmatrix}^{b_2}, \dots, \\ \begin{pmatrix} a_k a_1 + a_k a_2 + \dots + a_k a_{k-1} + \sum_{i,j,i \neq j}^{\binom{k-1}{2}} a_i a_j + b_k \end{pmatrix}^{b_k}, \left(2 + b_k + \sum_{i=1}^{k-1} b_i\right)^{\binom{\binom{k-1}{2}}{i,j,i \neq j}} a_i a_j + \sum_{i=1}^{k-1} a_k a_i} \end{pmatrix} \\ = \left(\left(\left(l_1 - a_i \right)^{a_i}, \left(|E_{L_r}| + l_1' - b_1 \right)^{b_i} \right)_{i=1}^k, \left(2 + l_1' \right)^{|E_{L_r}|} \right)$$

Also, we have

$$\sigma(\pi^*) = a_1(l_1 - a_1) + \dots + a_r(l_1 - a_r) + b_1(l'_1 + |E_L| - b_1)$$

+ \dots + b_r(l'_1 + |E_L| - b_r) + $\sum_{i,j=1, i \neq j}^{k_{C_2}} a_i a_j (2 + 2l'_1)$
= $l_1^2 + {l'_1}^2 - m + 2(1 + l'_1)|E_L|.$

This completes the proof.

Let G_1 and G_2 be any two graphs. Let $S_J = G_1 \vee G_2$ and let $S_{J^*} = (B_{\dot{m}_1,n_1}) \vee (B_{\dot{m}_2,n_2})$ be the induced subgraph of S_J and let π^* be the graphic sequence of S_J^* .

Theorem 3.9. If π_1 and π_2 respectively be potentially B_{m_1,n_1} and B_{m_2,n_2} , then (a) the graphic sequence π^* of induced subgraph $(B_{m_1,n_1}) \vee (B_{m_2,n_2})$ of S_J is

$$\pi^* = \left(\left(A + |E(K_{m_2})| - 1 \right)^{m_1}, \left(A + |E(K_{m_1})| - 1 \right)^{m_2}, \left(A + |E(K_{m_2})| + 2 - (m_1 + n_1) \right)^{|E(K_{m_1})|}, \left(A + |E(K_{m_1})| + 2 - (m_2 + n_2) \right)^{|E(K_{m_2})|}, \left(A + |E(K_{m_2})| - n_1 \right)^{n_1}, \left(A + |E(K_{m_1})| - n_2 \right)^{n_2} \right)$$

and

$$\begin{array}{ll} (b) & \sigma(\pi^*) = & A\left(A + \sum_{i=1}^2 |E(K_{m_i})|\right) + \prod_{i,j=1, i \neq j}^2 \left(m_i + n_i\right) |E(K_{m_j})| \\ & + 2\left(|E(K_{m_1})||E(K_{m_2})| + \sum_i^2 |E(K_{m_i})|\right) - \sum_{i=1}^2 \left(m_i + \left(m_i + n_i\right) |E(K_{m_i})|\right) - \sum_{i=1}^2 n_i^2. \end{array}$$

$$where \ A = \sum_{i=1}^2 (m_i + n_i) \ and \ |E(K_{m_i})| = \frac{m_i(m_i - 1)}{2}.$$

Proof. The graphic sequence of B_{m_1,n_1} and B_{m_2,n_2} respectively are

$$\pi_1' = \left(\left(m_1 + n_1 - 1 \right)^{m_1}, 2^{\frac{m_1(m_1 - 1)}{2}}, m_1^{n_1} \right) \tag{4}$$

$$\pi_2' = \left(\left(m_2 + n_2 - 1 \right)^{m_2}, 2^{\frac{m_2(m_2 - 1)}{2}}, m_2^{n_2} \right) \tag{5}$$

Clearly from (4) and (5), the graphic sequence of S_J^\ast is

$$\pi^{*} = \left(\left(m_{1} + m_{2} + n_{1} + n_{2} - 1 + \frac{m_{2}(m_{2} - 1)}{2} \right)^{m_{1}}, \left(m_{1} + m_{2} + n_{1} + n_{2} - 1 + \frac{m_{1}(m_{1} - 1)}{2} \right)^{m_{2}}, \left(2 + m_{2} + n_{2} + \frac{m_{2}(m_{2} - 1)}{2} \right)^{\frac{m_{1}(m_{1} - 1)}{2}}, \left(2 + m_{1} + n_{1} + \frac{m_{1}(m_{1} - 1)}{2} \right)^{\frac{m_{2}(m_{2} - 1)}{2}} \left(m_{1} + m_{2} + n_{2} + \frac{m_{2}(m_{2} - 1)}{2} \right)^{n_{1}}, \left(m_{1} + m_{2} + n_{1} + \frac{m_{1}(m_{1} - 1)}{2} \right)^{n_{2}} \right)$$
$$= \left(\left(A + |E(K_{m_{2}})| - 1 \right)^{m_{1}}, \left(A + |E(K_{m_{1}})| - 1 \right)^{m_{2}}, \left(A + |E(K_{m_{2}})| + 2 - (m_{1} + n_{1}) \right)^{|E(K_{m_{1}})|}, \left(A + |E(K_{m_{1}})| + 2 - (m_{2} + n_{2}) \right)^{|E(K_{m_{2}})|}, \left(A + |E(K_{m_{2}})| - n_{1} \right)^{n_{1}}, \left(A + |E(K_{m_{1}})| - n_{2} \right)^{n_{2}} \right)$$

This proves (a).

Further

$$\begin{split} \sigma(\pi^*) &= m_1(A + |E(K_{m_2})| - 1) + m_2(A + |E(K_{m_1}| - 1) \\ &+ |E(K_{m_1})|(A + |E(K_{m_2})| + 2 - m_1 - n_1) \\ &+ |E(K_{m_2})|(A + |E(K_{m_1})| + 2 - m_2 - n_2) \\ &+ n_1(A + |E(K_{m_2})| - n_1) + n_2(A + |E(K_{m_1})| - n_2) \\ &= m_1A + m_1|E(K_{m_2})| - m_1 + |E(K_{m_2})|A + m_2|E(K_{m_1})| - m_1 + n_1|E(K_{m_1})| \\ &+ A|E(K_{m_1})|A + |E(K_{m_1})||E(K_{m_2})| + 2|E(K_{m_1})| - |E(K_{m_1})|m_1 - n_1|E(K_{m_2})| \\ &+ n_1A + n_1|E(K_{m_2})| - n_1^2 + n_2A + n_2|E(K_{m_1})| - n_2^2 \\ &= (m_1 + n_1 + m_2 + n_2)A + (|E(K_{m_1})| + |E(K_{m_2})|)A + m_1|E(K_{m_2})| \\ &+ m_2|E(K_{m_1})| + n_2|E(K_{m_1})| + n_1|E(K_{m_2})| - m_1|E(K_{m_1})| - n_1|E(K_{m_1})| \\ &- m_2|E(K_{m_2})| - n_2|E(K_{m_2})| - (m_1 + m_2) \\ &+ 2(|E(K_{m_1})||E(K_{m_2})|) + 2(|E(K_{m_1})| + |E(K_{m_1})|) - (n_1^2 + n_2^2) \\ &= A^2 + A \sum_{i=1}^2 |E(K_{m_i})| + \prod_{i,j=1, i \neq j}^2 m_i |E(K_{m_j})| + \prod_{i,j=1, i \neq j}^2 n_i |E(K_{m_j})| \\ &- \sum_{i=1}^2 (m_i + n_i)|E(K_{m_i})| - \sum_{i=1}^2 m_i + 2(|E(K_{m_1})||E(K_{m_2})| + \sum_{i=1}^2 |E(K_{m_i})|) - \sum_{i=1}^2 n_i^2 \\ &= A\left(A + \sum_{i=1}^2 |E(K_{m_i})|\right) + \prod_{i,j=1, i \neq j}^2 (m_i + n_i)|E(K_{m_j})| \\ &+ 2\left(|E(K_{m_1})||E(K_{m_2})| + \sum_i^2 |E(K_{m_i})|\right) - \sum_{i=1}^2 (m_i + (m_i + n_i)|E(K_{m_i})|\right) - \sum_{i=1}^2 n_i^2. \end{split}$$

which proves (b).

Let G_1 and G_2 be two graphs. Let $S_J = G_1 \vee G_2$ and let $S_J^{**} = (B_{\bar{m}_1,n_1}) \vee (B_{\bar{m}_2,n_2})$ be the induced subgraph of S_J and let π^{**} be the graphic sequence of S_J^{**} .

Theorem 3.10. If π_1 and π_2 respectively are potentially $(B_{\bar{m}_1,n_1})$ and $(B_{\bar{m}_2,n_2})$, then the graphic sequence of induced subgraph $(B_{\bar{m}_1,n_1}) \lor (B_{\bar{m}_1,n_1})$ of S_J is

$$\pi^{**} = \left(\left(A + |E(K_{m_2})| - (n_1 + 1) \right)^{m_1}, \left(A + |E(K_{m_2}| + 2 - m_1)^{|E(K_{m_1}|)}, \left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_1 + n_1) \right)^{n_1}, \left(A + |E(K_{m_1}| - (n_2 + 1))^{m_2} \right)^{m_2} \right) \\ \left(A + |E(K_{m_1}| + 2 - m_2)^{|(K_{m_2}|)}, \left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_2 + n_2) \right)^{n_2} \right) \right)$$

and

$$\sigma(\pi^{**}) = A\left(A + \sum_{i=1}^{2} |E(K_{m_i})|\right) + \prod_{i,j=1, i\neq j}^{2} (m_i + n_i)|E(K_{m_j})| + \prod_{i,j=1, i\neq j}^{2} |E(K_{m_i})||E(K_{m_j})| + \sum_{i=1}^{2} (2 + n_i)|E(K_{m_i})| - \sum_{i=1}^{2} (2n_i + 1 + |E(K_{m_i})|)m_i - \sum_{i=1}^{2} n_i^2.$$

Proof. The graphic sequence of $B_{\bar{m_1},n_1}$ and $B_{\bar{m_2},n_2}$ respectively are

$$\pi_1' = \left(\left(m_1 - 1 \right)^{m_1}, \left(\frac{m_1(m_1 - 1)}{2} \right)^{n_1}, (2 + n_1)^{\frac{m_1(m_1 - 1)}{2}} \right) \tag{6}$$

$$\pi_2' = \left(\left(m_2 - 1 \right)^{m_2}, \left(\frac{m_2(m_2 - 1)}{2} \right)^{n_2}, (2 + n_2)^{\frac{m_2(m_2 - 1)}{2}} \right).$$
(7)

Then by (6), (7) and by Definition 2.2, we have

$$\begin{aligned} \pi^{**} &= \left(\left(m_1 - 1 + m_2 + n_2 + \frac{m_2(m_2 - 1)}{2} \right)^{m_1}, \left(m_2 - 1 + m_1 + n_1 + \frac{m_1(m_1 - 1)}{2} \right)^{m_2}, \\ &\left(\frac{m_1(m_1 - 1)}{2} + m_2 + n_2 + \frac{m_2(m_2 - 1)}{2} \right)^{n_1}, \left(\frac{m_2(m_2 - 1)}{2} + m_1 + n_1 + \frac{m_1(m_1 - 1)}{2} \right)^{n_2}, \\ &\left(2 + n_1 + m_2 + n_2 + \frac{m_2(m_2 - 1)}{2} \right)^{\frac{m_1(m_1 - 1)}{2}}, \left(2 + n_2 + m_1 + n_1 + \frac{m_1(m_1 - 1)}{2} \right)^{\frac{m_2(m_2 - 1)}{2}} \right) \\ &= \left(\left(A + |E(K_{m_2})| - (n_1 + 1) \right)^{m_1}, \left(A + |E(K_{m_2}| + 2 - m_1) \right)^{|E(K_{m_1}|}, \\ &\left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_1 + n_1) \right)^{n_1}, \left(A + |E(K_{m_1}| - (n_2 + 1) \right)^{m_2} \\ &\left(A + |E(K_{m_1}| + 2 - m_2)^{|(K_{m_2}|}, \left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_2 + n_2) \right)^{n_2} \right). \end{aligned}$$

Further

$$\sigma(\pi^{**}) = \left(\left(A + |E(K_{m_2})| - (n_1 + 1) \right)^{m_1} + \left(A + |E(K_{m_2}|2 - m_1)^{|E(K_{m_1})|} + \left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_1 + n_1) \right)^{n_1} + \left(A + |E(K_{m_1}| - (n_2 + 1))^{m_2} \right)^{m_2} \right)$$

$$\begin{split} & \left(A + |E(K_{m_1}| + 2 - m_2)^{|(K_{m_2}|} + \left(A + \sum_{i=1}^2 |E(K_{m_i})| - (m_2 + n_2)\right)^{n_2}\right), \\ &= m_1 \left(A + |E(K_{m_2})| - n_1 - 1\right) + |E(K_{m_1})| \left(A + |E(K_{m_2})| + 2 - m_1\right) + \\ & n_1 \left(A + |E(K_{m_1})| + |E(K_{m_2})| - m_1 - n_1\right) + m_2 \left(A + |E(K_{m_1})| + n_2 - n_2\right) + \\ & |E(K_{m_2})| \left(A + |E(K_{m_1})| + 2 - m_2\right) + n_2 \left(A + |E(K_{m_1})| + |E(K_{m_2})| - m_2 - n_2\right) \\ &= m_1 A + m_1 |E(K_{m_2})| - n_1 m_1 - m_1 + |E(K_{m_1})| A + |E(K_{m_1})| |E(K_{m_2})| + 2|E(K_{m_1})| \\ & - |E(K_{m_1})|m_1 + n_1 A + n_1|E(K_{m_1})| + n_1|E(K_{m_2})| - n_1 m_1 - n_1^2 + m_2 A + m_2|E(K_{m_1})| \\ &- m_2 n_2 - m_2 + |E(K_{m_2})|A + |E(K_{m_2})||E(K_{m_1})| + 2|E(K_{m_2})| - |E(K_{m_2})|m_2 \\ &+ n_2 A + n_2 |E(K_{m_2})| - n_2 m_2 - n_2^2 + n_2 |E(K_{m_1})| \\ &= (m_1 + n_1 + m_2 + n_2)A + (|E(K_{m_1})| + |E(K_{m_2})|)A + m_1|E(K_{m_2})| \\ &+ m_2 |E(K_{m_1})| + n_1|E(K_{m_1})| + n_2 |E(K_{m_2})| + |E(K_{m_2})||A + m_1|E(K_{m_2})| \\ &+ m_2 |E(K_{m_1})| + n_1|E(K_{m_1})| + n_2 |E(K_{m_2})| + |E(K_{m_2})||A + m_1|E(K_{m_2})| \\ &+ n_2 |E(K_{m_1})| + n_1|E(K_{m_2})|m_2) \\ &= A^2 + A \sum_{i=1}^2 |E(K_{m_i})| + \prod_{i,j=1, i\neq j}^2 m_i |E(K_{m_j})| + \prod_{i,j=1, i\neq j}^2 n_i |E(K_{m_i})| \\ &+ \prod_{i,j=1, i\neq j}^2 |E(K_{m_i})| |E(K_{m_j})| + 2 \sum_{i=1}^2 |E(K_{m_i})| + \sum_{i=1}^2 n_i |E(K_{m_i})| \\ &- 2 \sum_{i=1}^2 n_i m_i - \sum_{i=1}^2 m_i - \sum_{i=1}^2 |E(K_{m_i})|m_i - \sum_{i=1}^2 n_i^2 \\ &= A \left(A + \sum_{i=1}^2 |E(K_{m_i})|\right) + \prod_{i,j=1, i\neq j}^2 (m_i + n_i)|E(K_{m_j})| + \sum_{i=1}^2 (2 + n_i)|E(K_{m_i})| \\ &- \sum_{i=1}^2 (2 n_i + 1 + |E(K_{m_i})|)m_i - \sum_{i=1}^2 n_i^2. \end{split}$$

This completes the proof.

Acknowledgements: The authors are grateful to the anonymous referee for his useful comments and suggestions which improved the presentation of the paper.

References

- C. Bu, B. Yan, X. Zhou, J. Zhou, Resistance distance in subdivision-vertex join and subdivision-edge join of graphs, Linear Algebria and its Applications, 458, 454-462, 2014.
- [2] P. Erdős, T. Gallai, Graphs with prescribed degrees, (in Hungarian) Matemoutiki Lapor, 11, 264-274, 1960.
- [3] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, Canad. J. Math., 17, 166-177, 1965.

- [4] R. J. Gould, M. S. Jacobson, J. Lehel, *Potentially G-graphical degree sequences*, in Combinatorics, Graph Theory and Algorithms, vol. 2, (Y. Alavi et al., eds.), New Issues Press, Kalamazoo MI, 451-460, 1999.
- [5] J. L. Gross, J. Yellen, P. Zhang, Handbook of graph theory, CRC Press, Boca Raton, FL, 2013.
- [6] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10, 496-506, 1962.
- [7] V. Havel, A Remark on the existance of finite graphs, (Czech) Casopis Pest. Mat. 80, 477-480, 1955.
- [8] S. Pirzada, An introduction to graph theory, Universities Press, Orient Blackswan, India, 2012.
- [9] S. Pirzada, B. A. Chat, Potentially graphic sequences of split graphs, Kragujevac J. Math 38(1), 73-81, 2014.
- [10] A. R. Rao, An Erdos-Gallai type result on the clique number of a realization of a degree sequence, Preprint.
- [11] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (ed. A. R. Rao), Macmillan and Co. India Ltd, I.S.I. Lecture Notes Series, 4, 251-267, 1979.
- [12] J. H. Yin, Conditions for r-graphic sequences to be potentially $K_{m+1}^{(r)}$ -graphic, Disc. Math., 309, 6271-6276, 2009.