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Abstract: For a graph G = (V,E) and a fixed constant d ∈ N, a subset Dhd of the vertex set V is a d-hop
connected dominating set of the graph G if each vertex t ∈ V is situated at most d-steps from at least
one vertex z ∈ Dhd, that is, d(t, z) ≤ d, and the subgraph of G induced by Dhd is connected. If Dhd

has minimum cardinality, then it is a minimum d-hop connected dominating set. In this paper, we
present two O(n)-time algorithms for computing a minimum Dhd of trees with n vertices. We also
design an algorithm to find the central vertices of a tree. Besides that, we also study some properties
related to hop-domination on trees.
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1. Introduction

A simple, connected, undirected graph without any cycles is called a tree. Trees are the very simplest
category of graphs with enormous descriptive structure. Cayley [9] introduced the term “tree” first.
Macky [25] made a tree database with at most 18 vertices. A rooted tree comes with a specified vertex,
known as the root, which is distinct from the other nodes by being the ancestor node of every node
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and every edge of the tree is generated either directly or indirectly from the root. The root is always
drawn at the top of the tree as shown in Figure 1(b). The eccentricity E(z) of a vertex z in tree T is
the maximum distance from vertex z to any other vertex y of T that is, E(z) = max{d(z, y) : y ∈ V }.
Maximum eccentricity is called the diameter of the tree T , i.e., diameter(T ) = max{E(z) : z ∈ V }. A
vertex with minimum eccentricity is the central vertex. Every tree has either one or two central vertices.
A tree is called central tree if it has single central vertex and bi-central tree if it has two central vertices.
Some applications of trees are counting of saturated-hydrocarbons, cryptographic application in modern
computer science and formation of electrical circuits, etc. [20]. A tree is one of the popular and useful
data structure in modern computer science. There are different types of trees for different purposes. For
storing image data effectively, some hierarchical data structures such as quadtrees, octrees are utilized
[35]. For fast key searching in database systems, we use self-balancing binary search trees named AVL
trees.

By the graph structure G = (V (G), E(G)), we mean that V is the node set or vertex set of G and E
is the edge set of G, wherein |V (G)| = n, |E(G)| = m. For an arbitrary graph G, if each node of V is
dominated by at least one node of a node set B ⊆ V , then B is a dominating-set (D-set) of G. A D-set
with minimum cardinality is called a minimum D-set. The cardinality of a minimum D-set is called the
domination number (D-number) and it is denoted by γ(G). A node set Dhd ⊆ V is a d-hop dominating-
set (d-hop D-set) of graph G if every node t ∈ V is situated at most d-distances from at least one node
z ∈ Dhd, that is, d(t, z) ≤ d, where d is a fixed positive integer. Now, a node set Dhd ⊆ V is a d-hop
connected dominating-set (d-HCDS) of graph G if every node t ∈ V is situated at most d-distances from
at least one node z ∈ Dhd, that is, d(t, z) ≤ d, and the subgraph of G induced by Dhd is connected. A
d-HCDS with minimum cardinality is called a minimum d-hop connected dominating-set (MdHCDS). The
d-hop domination number of a graph G is the cardinality of a minimum d-hop connected dominating-set
of G, and it is denoted by γhk(G).

1.1. Survey of the related works

Domination is always an interesting and vital topic to researchers. Claude Berge, in his book, [8]
defined the basic idea of the D-number γ(G) of a graph for the first time. The term D-set and D-number
were first used by Ore [28]. About twenty years ago, Haynes et al. [21] wrote a revolutionary book on
fundamentals of domination, and they recorded over twelve thousand research articles on domination and
its different parameters in graphs. Sampathkumar et al. [31] introduced the term “Connected domination
number” first. Later, Dorbec et al. [17] established independent-domination in cubic graphs. Variations
of domination like connected domination [15], edge domination, k-tuple domination and k-hop domi-
nation [16, 24, 33], weighted domination, paired-domination, perfect domination, secured domination,
independent-domination, roman domination have been briefly discussed in the literature [10, 21, 23].
Slater renames a k-hop Dominating set as a k-basis [33]. Besides these, many researchers studied various
properties of graphs with respect to domination ([11, 13, 21, 22, 34, 36–38]). Like most of the general
graph problems, MdHCDS problem is NP-Complete for random graphs ([39]), even in unit disc graphs
(in short, UDG), this problem is NP-Complete ([27]). On planar graphs, Demaine et al. [16] proposed an
algorithm that takes O(n4) time to determine k-hop dominating set with the fewest members. Natarajan
et al.[26] have done some fundamental works on hop domination number on some special class of graphs.
Also, on permutation-graphs Rana et al. [29] set up an effective algorithm to find a distance-k dominating
set. Later, Ayyaswamy et al. [3] worked on the upper and lower limits of the hop D-number on trees.
Besides these, on UDGs and random graphs many researchers set up some algorithms for solving k-hop
Connected D-set problem [14, 19, 30, 41]. Also, Basuchowdhuri et al. [5] determined influential nodes for
traditional communication networks using k-hop D-set. Kundu et al. [24] set up an optimal algorithm for
determining a k-hop D-set on trees. It is a general work of the prior result to find an 1-hop D-set (with
the fewest cardinality) of a tree [13]. Favaron et al. [18] showed that the diameter of the domination
k-critical graphs is at most 2(k− 1) when k ≥ 2. Later, Ramy S. Shaheen [32] showed the bounds for the
2-domination number of toroidal grid graphs. Also, Barman et al. [4] designed an O(n) time algorithm
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to find minimum d-hop D-set on interval graphs. Recently Adhya et al. [1] presented an algorithm for
computing minimum k-hop connected D-set in O(n) time on permutation graphs.

1.2. Applications

To the best of our knowledge, domination is one of the important and fast-developing research problems
in the core graph theory. Some useful applications [2, 6, 7] of domination are found in many vital areas,
such as computer-based communication networks, wireless-radio stations, kernels of games, coding-theory,
modelling of biological-networks, land-surveying and problems of finding radar-stations. Besides these,
d-hop domination has lots of applications in facility location problems(FLP). Domination appears in FLP
for fixed number of facilities(like relief centres, disaster control centres [2]) and if somebody efforts to
shorten the distance to travel so that he can get the service from the closest facility. The concept of
d-HCDS is used in ad-hoc networks [40, 42] to enhance the performance of efficiency in communication.
Ad-hoc networks have no fixed infrastructure. These networks are used in applications like search and
rescue, mobile commerce and military battlefields.

1.3. Main outcome

Here, we present two O(n) time algorithms to determine an MdHCDS on trees, where n = |V |.
The concept of the problem is the same with computing a connected D-set, only it differs concerning
the number of steps/hops which is required for reaching all the members of V . Actually we generalize
minimum connected hop domination problem as minimum d-hop connected D-set problem of trees.

1.4. Organization of our paper

Section 2 describes the formation of BFS-tree T ′(u) and T (v) of tree T . Here we also present some
notations which are used to solve our proposed problem. We state and prove some essential properties
related with MdHCDS of trees in Section 3. Besides these, we also present two algorithms: one for
co-ordinates generation and other for finding central vertex(s) of tree T . In section 4, we present two
complete optimal algorithms for computing MdHCDS on trees. In this section, we also calculate time
and space complexity of our main algorithms.

2. Construction of BFS-trees T ′(u) and T (v)

In graph theory, there are several graph traversal technique, one of them is BFS technique. It can
form a BFS-tree. Many researchers used BFS to solve different problems. A polynomial time algorithm
which runs in O(n+m) time is available for construction of a BFS-tree on an arbitrary graph. On tree
[12] Chen et al. presented an efficient algorithm for creating a BFS-tree. In this paper, first we make
a BFS-tree T ′(u) taking u as root, where u is an arbitrary vertex of a tree T . After then, we make
another BFS-tree T (v) taking v as root, where v is any leaf node at last level(highest level) of T ′(u).
These two BFS-trees can be made separately in O(m + n) time ≈ O(n) time, because m = n − 1. The
BFS-tree T (v), taking root at v = 1 of the tree of Figure 1(a) is shown in Figure 2(a), taking u = 11.
We denote the level of a node x belongs to any BFS-tree rooted at y by the symbol level(x) and defined
by level(x) = d(x, y), assuming that level(v) = 0.

Lemma 2.1. If w be any vertex at the last level of T (v) then diameter(T ) = d(v, w).
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Proof. Let T (V,E) be an arbitrary tree. Now, we construct a BFS-tree T ′(u) taking u, an arbitrary
vertex of the tree T as root. After then, we make another BFS-tree T (v) taking v, any leaf node at
last level(highest level) of T ′(u) as root. Since the tree T ′(u) is a BFS-tree and level of v is maximum
on it, then v is a farthest vertex from u, i.e., d(u, v) = max{d(u, x) : x ∈ V (T )}, i.e., E(u) = d(u, v).
Again, T (v) is also a BFS-tree, so, w, a vertex at highest level on T (v) is a farthest vertex from v, i.e.,
d(v, w) = max{d(v, y) : y ∈ V (T )}, i.e., E(v) = d(v, w). Now, there are three cases may arise.
Case 1: If level(w) = level(u) on T (v), then u,w are both farthest vertices from v, i.e., d(v, u) = d(v, w) =
max{d(x, y) : x, y ∈ V (T )} = diameter(T ).
Case 2: If the shortest path between v and w passes through u, then d(v, w) = d(v, u) + d(u,w) =
max{d(x, y) : x, y ∈ V (T )} = diameter(T ).
Case 3: If level(w) > level(u) on T (v) and the shortest path between v and w does not pass through u,
then d(v, w) = d(v, u) + d(u,w)− 2×length of the common part of the shortest paths from u to v and u
to w. Also, d(v, w) = max{d(x, y) : x, y ∈ V (T )} = diameter(T ). Hence the result is proved.

Corollary 2.2. If H is the height of the BFS-tree T (v) then diameter(T ) = diameter(T (v)) =
diameter(T ′(u)) = H.
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Figure 1. (a) A tree T and (b) BFS-tree T ′(u) of tree T .

2.1. Identification of central-path lying on BFS-tree T (v)

We consider H as the height of the formed BFS-tree T (v). Also we presume that vlast is an
arbitrary node at level H on T (v). Now we consider the shortest path vlast → parent(vlast) →
parent(parent(vlast))→ · · · → v between v and vlast as the central-path between v and vlast.
We also consider that if a node lying on the central-path at level j, then we denote it by v∗j .

2.2. Notations

In this subsection, we present some useful notations that are needed throughout this paper.
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Figure 2. (a) BFS-tree T (v) and (b) BFS-tree T (v) after 2-tuple weight assignment.

v∗r : The node lying on the central-path of BFS-tree T (v) at level r.
Ts(v

∗
r ) : Rooted sub-tree ( v∗r as root) of T (v) contains all the vertices imitate from

: v∗r (excluding the nodes lying on the central-path except v∗r ). Here v∗r is the
: source vertex of any other vertex of that sub-tree.

Mj : Mj is the set of vertices at level j on the BFS-tree T (v).
xj : xj is any member of the set Mj − {v∗j }.
H : Height of the BFS-tree T (v).
d : d is a fixed positive integer.
Dhd : Dhd is MdHCDS.
u(r, j) : Vertex u with 2-tuple weight assignment, where r, j are respectively 1st and

: 2nd weight components on T (v).
parent(z) : Parent node of the vertex z.
x ↪→ y : Shortest path between x and y.

2.3. Weight assignment on vertices

Here we describe the weight assignment process to some vertices, when d < b(H/2)c. For the BFS-tree
T (v), we assign a new kind of 2-tuple weights (of the form (x, y), where x, y are respectively the 1st and
2nd weight components) on the vertices of rooted sub-trees Ts(v∗d+1), Ts(v

∗
d+2),

. . . , Ts(v
∗
H−d−1) rooted at respectively v∗d+1, v

∗
d+2, . . . , v

∗
H−d−1. First, select the vertex v∗d+1 and assign

its 1st weight component as 0 and then move to child nodes and assign their first weight components
as 1. After that for each child nodes of v∗d+1, we move to its child nodes and place their first weight
components as 2. This process will be continued until all the vertices of the rooted sub-trees rooted at
v∗d+1 get their first weight components. Then we start back tracing from the last level (highest level) of
the sub-tree Ts(v∗d+1), selecting (one by one) a vertex z having no 2nd weight component and assign its
2nd weight component as 0. After that we assign the 2nd weight component of the parent vertex of z as
1 and for the parent of the parent vertex of z as 2 and continue until v∗d+1 gets 2nd weight component.
Again we start back tracing from the 2nd last level (2nd highest level) of the sub-tree Ts(v∗d+1), selecting
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(one by one) a vertex y (if exits) having no 2nd weight component and assign its 2nd weight component
as 0. After that we assign the 2nd weight component (if it’s absent) of the parent vertex of y as 1 and
for the parent of the parent vertex of y as 2 and so on. This process will be continued until all the
members of the sub-rooted trees rooted at v∗d+1 get their second weight components. It is to be keep
in mind that during this weight assignment process, if a vertex of Ts(v∗d+1) has already got 2nd weight
component then we skip it. We apply the same procedure to assign the 2-tuple weight assignment on
the vertices of rooted sub-trees Ts(v∗d+2), Ts(v

∗
d+3), . . . , Ts(v

∗
H−d−1) separately. In this way, we assign the

2-tuple weight assignment (as shown in Figure 2(a)) on all the vertices of the rooted sub-trees, rooted at
v∗r , where r ∈ {d+ 1, d+ 2, . . . ,H − d− 1}.

2.4. Algorithm for 2-tuple weight assignment

Algorithm 2TUP-WT
Input : Tree T (v).
Output: 2-tuple weight assignment of ∪H−d−1r=d+1 V (Ts(v

∗
r )).

Initially d(< b(H/2)c) ∈ N.
Step 1: Identify the nodes v∗i , i = 0, 1, ...,H, lying on the central-path of T (v).
Step 2: Set r = d+ 1.
Step 3: Do {

Step 3.1: Select a vertex v∗r and assign its 1st weight component as 0.
Step 3.2: Move to the child nodes of v∗r on Ts(v∗r ) and assign their 1st weight

components as 1.
Step 3.3: For each child nodes of v∗r , move to its child nodes and assign their

1st weight components as 2.
Step 3.4: Continue till all the members of the set V (Ts(v

∗
r )) get their 1st weight

components.
Step 3.5: Compute the level of any vertex placed at last level (highest level) of Ts(v∗d+1)

and assign it with L.
Step 3.6: Do{

Step 3.6.1: Assign the 2nd weight components of all the vertices of Ts(v∗d+1) at
Lth level as 0, if unavailable; else skip.

Step 3.6.2: For each vertex z at Lth level of Ts(v∗d+1) move to its parent vertex
and assign the 2nd weight component of the parent(z) as 1, if
unavailable; else skip.

Step 3.6.3: Similarly assign 2nd weight component of parent(parent(z)) as 2 and
continue until all internal nodes (including v∗d+1) of the path between
z and v∗d+1 get 2nd weight components.

Step 3.6.4: Set L = L− 1.
} while (L > r).

Step 3.7: r = r + 1.
} while (r ≤ (H − d− 1)).

End 2TUP-WT.

2.5. Illustrative example of 2-tuple weight assignment

To describe the procedures of the above algorithm (Algorithm 2TUP-WT), we first consider the tree
T (v) of Figure 2(a). So, H = 6. Initially, we assume that d = 2 ≤ b(H/2)c. In Step 1, we identify the
members on the central-path (considering vlast = 22) as v∗0 = 1, v∗1 = 4, v∗2 = 6, v∗3 = 11, v∗4 = 17, v∗5 =
21, v∗6 = 22. In Step 2, we set r = 2+1 = 3. In Step 3, we enter in the do-while loop for (r ≤ (H−d−1))
to assign 2-tuple weight on vertices. In step 3.1, we select the root v∗3 = 11 of the rooted sub-tree
Ts(v

∗
d+1) = Ts(v

∗
3) and assign its 1st weight component as 0 and write like 11(0,−). After that, in Step

138



A. S. Adhya et. al. / J. Algebra Comb. Discrete Appl. 9(3) (2022) 133–147

3.2, we move to its child nodes and assign their 1st weight components as 1, 12(1,−), 15(1,−), 16(1,−).
In Step 3.3, for each child nodes of 11, we move to their child nodes and assign their 1st 1st weight
components as 2, i.e, 13(2,−). Similarly vertex 14 get its 1st weight component as 14(3,−) in Step
3.4. Thus all vertices of the tree Ts(v∗3) are assigned with their 1st weight components. In Step 3.5, we
compute L = 6. In Step 3.6, we enter into another do-while loop for L > r. In this loop we will the
2nd weight components of the vertices of Ts(v∗3). At first, in Step 3.6.1, we move to vertices placed at
the last level (6th) of Ts(v∗3) and see that there is only one vertex which is 14 and it has no 2nd weight
component. So we assign 2nd weight component of the vertex 14 as 0, i.e., 14(3, 0). In Step 3.6.2, we
select the parent node of 14, which is 13 and put its 2nd weigh component as 13(2, 1). Similarly, in
Step 3.6.3, the vertices 12 and 11 get their 2nd weight components as 2 and 3 respectively and write
like 12(1, 2) and 11(0, 3). Next in Step 3.6.4, we reset L = L − 1 = 5 and move to the Step 3.6.1 as
L > r. Since, all vertices of Ts(v∗3) at level 5 have 2nd weight components, so move to the Step 3.6.4,
and reset Again, we move to the Step 3.6.1 (as L > r) and see that there are two vertices 15 and 16
which have no 2nd weight components. So we assign 2nd weight components of 15 and 16 as 0. Since
parent(15) = parent(16) = 11 and vertex 11 has already got 2nd weight component, so, we move to the
Step 3.6.4, and reset L = L− 1 = 3. Since L < r, so the present do-while loop for L > r is finished and
move to the Step 3.7. Here we reset r = r + 1 = 4. Since, r > H − d − 1 = 3, so the do-while loop for
r ≤ H − d − 1 is finished. Thus the execution process of Algorithm 2TUP-WT is finished. The final
2-tuple weight assignment of the vertices of T (v) is shown in Figure 2(b).

Theorem 2.3. The run time of Algorithm 2TUP-WT is O(n).

Proof. In Step 1, the time needed for identifying the vertices v∗i , i = 0, 1, 2, . . . ,H, on the central path
of the tree T (v) is O(n). Step 2 takes constant time. Since, V (Ts(v

∗
d+1)), V (Ts(v

∗
d+2)), . . . ,

V (Ts(v
∗
H−d−1)) are mutually disjoint, so, in Step 3, the time for assigning 1st weight components of the

vertices ∪H−d−1r=d+1 V (Ts(v
∗
r )) is O(n+m) ≈ O(n) time (in a worst case) and the time required for assigning

2nd weight components of the same vertices is also O(n) time. So, Step 3 can be finished in O(n) time.
Hence, the overall time complexity of Algorithm 2TUP-WT is O(n).

2.6. Algorithm for computation of central node(s) of T

Algorithm T-CENTER
Input : Tree T .
Output: Central node(s) of tree T.
Step 1: Make BFS-tree T ′(u) taking u as root, where u is an arbitrary vertex.
Step 2: Make BFS-tree T (v) taking v as root, where v is an arbitrary pendant vertex

at highest level of T ′(u).
Step 3: Identify the central-path and determine the height H.
Step 4: If H is even then central node of T is v∗bH/2c

Else central nodes of T are v∗bH/2c and v
∗
bH/2c+1.

End If
End T-CENTER.

The Algorithm T-CENTER provides that the central vertex of the tree T shown in the Figure 1(a) is
V ∗3 = 11.

Theorem 2.4. The run time of Algorithm T-CENTER for determining the central node(s) of tree T
is O(n), where |V | = n.

Proof. At Step 1 and Step 2, two BFS-trees T ′(u) and T (v) can be made separately in O(n)-time. In
Step 3, the members of the central-path and the height H can be determined in O(n)-time, because there
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is only (H + 1)(≤ n) nodes located on the central-path. Again, we can finish Step 4 in constant time.
So, overall time complexity of the algorithm T-CENTER is O(n).

3. Important properties related to MdHCDS Dhd of trees.

Here, we have proved some emergent results related to MdHCDS Dhd of trees.

Lemma 3.1. If r ≤ bH/2c and zj is any leaf node at jth level on Ts(v
∗
r ) then d(v∗r , xj) ≤ r.

Proof. We know, by Corollary 2.2, that H = diameter(T ) = diameter(T (v)), i.e., v∗0 → v∗1 → · · · →
v∗r → v∗r+1 → · · · → v∗H is the longest shortest path on both trees T and T (v). Now, if r ≤ bH/2c and zj
be any leaf node at jth level on Ts(v∗r ), then r < j ≤ H. Again, d(v∗0 , v∗r ) = r and d(v∗r , v∗H) = (H − r).
So, d(v∗r , v∗H) ≥ d(v∗0 , v

∗
r ) as r ≤ bH/2c. Let us assume that d(v∗r , zj) > r. So (j − r) > r ⇒ j > 2r ⇒

(j − 2r) > 0. Therefore, d(v∗H , zj) = d(v∗H , v
∗
r ) + d(v∗r , zj) = (H − r) + (j − r) = H + (j − 2r) > H as

(j − 2r) > 0. So, v∗H ↪→ v∗r ↪→ zj is the longest shortest path on T (v) which is impossible as diameter is
H. So, our assumption is wrong. Therefore, d(v∗r , zj) ≤ r.

Lemma 3.2. If bH/2c < r and zj is any leaf node at jth level on Ts(v
∗
r ) then d(v∗r , zj) ≤ H − r.

Proof. We know, by Corollary 2.2, that H = diameter(T ) = diameter(T (v)), i.e., v∗0 → v∗1 → · · · →
v∗r → v∗r+1 → · · · → v∗H is the longest shortest path on both trees T and T (v). Now, if r > bH/2c and zj
be any leaf node at jth level on Ts(v∗r ), then bH/2c < r < j. Also, d(v∗0 , v∗r ) = r and d(v∗r , v∗H) = (H − r).
Since, r > bH/2c, d(v∗0 , v∗r ) > d(v∗r , v

∗
H). Let us assume that d(v∗r , zj) > H − r. Now, d(v∗r , zj) = (j − r).

So, (j−r) > (H−r) that implies j > H, i.e., d(v∗0 , zj) = j > H which is impossible, as H is the diameter
of T . So, our assumption is wrong. Therefore, d(v∗r , zj) ≤ (H − r).

Corollary 3.3. If zr be any member at even level r > 1 on T (v), then its source vertex will be any one
of {v∗r−1,∗ , v∗r−2, . . . , v∗r/2}.

Corollary 3.4. If zr be any member at odd level r > 2 on T (v), then its source vertex will be any one
of {v∗r−1,∗ , v∗r−2, . . . , v∗(r+1)/2}.

Lemma 3.5. The tree T (v) with at least three nodes has only one internal node at level 1.

Proof. Let T be any tree having at least three nodes. Now, for constructing T (v), at first we make a
BFS-tree T ′(u) where u is any leaf node on T . Then we construct T (v), where v is any leaf node at the
highest level(last level) on T ′(u). This implies that the vertex v is incident only one edge i.e., v is the
parent of only one internal vertex on T (v).

Corollary 3.6. There is no leaf nodes at level 1 on T (v).

Lemma 3.7. For each z ∈ ∪2dr=0Mr, d(v∗d, z) ≤ d.

Proof. Let zr be any member of {Mr − v∗r}, for r = 2, 3, . . . , 2d. So, for r = 0, 1, . . . , d, d(v∗d, v
∗
r ) ≤

(d − r). Now if r is even and 2 ≤ r ≤ d then, using Corollary 3.3, d + 2 − r ≤ d(zr, v
∗
d) ≤ d(as

zr → v∗r−1 → v∗r → v∗r+1 → · · · → v∗d or zr → zr−1 → v∗r−2 → v∗r−1 → v∗r → v∗r+1 → · · · → v∗d or
. . . zr → zr−1 → · · · → z(r/2)+1 → v∗r/2 → v∗(r/2)+1 → · · · → v∗d). Again if r is odd and 3 ≤ r ≤ d

then, using Corollary 3.4, d + 2 − r ≤ d(zr, v
∗
d) ≤ (d − 1)(as zr → v∗r−1 → v∗r → v∗r+1 → · · · → v∗d

or zr → zr−1 → v∗r−2 → v∗r−1 → v∗r → v∗r+1 → · · · → v∗d or . . . zr → zr−1 → · · · → z((r+1)/2)+1 →
v∗(r+1)/2 → v∗((r+1)/2)+1 → · · · → v∗d). Therefore, d(v∗d, z) ≤ d, ∀ z ∈ ∪dr=0Mr. Again, d(v∗d, v

∗
r ) ≤ (r − d),

for r = d + 1, d + 2, . . . , 2d. Also if r is even and d + 1 ≤ r ≤ 2d − 2, then r − d ≤ d(v∗d, zr) ≤ d(as
zr → v∗r−1 → v∗r−2 → · · · → v∗d or zr → zr−1 → v∗r−2 → v∗r−3 → · · · → v∗d or . . . or zr → zr−1 →
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zr−2 → · · · → zd+1 → v∗d or zr → zr−1 → · · · → zd → v∗d−1 → v∗d or zr → zr−1 → · · · → zd → zd−1 →
v∗d−2 → v∗d−1 → v∗d or . . . or zr → zr−1 → · · · → z(r/2)+1 → v∗r/2 → v∗(r/2)+1 → · · · → v∗d). Again if
r is odd and d + 1 ≤ r < 2d − 2, then r − d ≤ d(v∗d, zr) ≤ d − 1(as zr → v∗r−1 → v∗r−2 → · · · → v∗d
or zr → zr−1 → v∗r−2 → v∗r−3 → · · · → v∗d or . . . or zr → zr−1 → zr−2 → · · · → zd+1 → v∗d or
zr → zr−1 → · · · → zd → v∗d−1 → v∗d or zr → zr−1 → · · · → zd → zd−1 → v∗d−2 → v∗d−1 → v∗d or
. . . or zr → zr−1 → · · · → z((r+1)/2)+1 → v∗(r+1)/2 → v∗((r+1)/2)+1 → · · · → v∗d). Also for r = 2d − 1, 2d

d(v∗d, zr) = d (or d− 1) if r is even (or odd) (as zr → v∗r−1 → v∗r−2 → · · · → v∗d or zr → zr−1 → v∗r−2 →
v∗r−3 → · · · → v∗d or . . . or zr → zr−1 → zr−2 → · · · → zd+1 → v∗d). So, d(v∗d, z) ≤ d, ∀ z ∈ ∪2dr=d+1Mr.
Therefore d(v∗d, z) ≤ d, ∀ z ∈ ∪2dr=0Mr.

Corollary 3.8. v∗d is a possible member of Dhd.

Corollary 3.9. All the members of ∪dr=1V (Ts(v
∗
r )) are within d distances from v∗d.

Lemma 3.10. For each z ∈ ∪dr=1V (Ts(v
∗
H−r)), d(v

∗
H−d, z) ≤ d.

Proof. Let zr be any node at level r on T (v) and (H−d) < r ≤ H. Also, let zr ∈ ∪dr=1V (Ts(v
∗
H−r)), i.e.,

source vertex of zr be one of the set {v∗H−d, v∗H−d+1, ..., v
∗
H−1}. Now, d(v∗H−d, v∗H) = d and d(v∗H−d, zr) =

(r −H + d) ≤ d (as zr → v∗r−1 → v∗r−2 → · · · → v∗H−d or zr → zr−1 → v∗r−2 → v∗r−3 → · · · → v∗H−d or
. . . or zr → v∗H−d). So, the result is proved.

Now, by observing the last result, we present the following result.

Corollary 3.11. v∗H−d is a possible member of Dhd.

Lemma 3.12. If u(r, j) ∈ Ts(v∗l (0, r + j)), j ≥ d and v∗l (0, r + j) ∈ Dhd, then u(r + j − d, d), u(r + j −
d− 1, d+ 1), . . . , u(1, r + j − 1) are the possible members of Dhd.

Proof. Let u(r, j) ∈ Ts(v
∗
l (0, r + j)), j ≥ d and v∗l (0, r + j) ∈ Dhd, that is there exists a path of

length (r + j) imitate from v∗l (0, r + j) and u(r + j, 0) passing through u(r, j) of the form v∗l (0, r + j)→
u(1, r + j − 1) → u(2, r + j − 2) → · · · → u(r, j) → u(r + 1, j − 1) → · · · → u(r + j − d − 1, d + 1) →
u(r+j−d, d)→ u(r+j−d+1, d−1)→ · · · → u(r+j, 0). So, d(v∗l (0, r+j), u(r+j, 0)) = r+j ≥ r+k and
d(u(r+j−d, d), u(r+j, 0)) = d. Therefore, u(r+j−d, d) is a possible member of Dhd. Also, v∗l (0, r+j) ∈
Dhd. So, for computing d-HCDS, we have to select u(r+ j−d, d), u(r+ j−d−1, d+1), . . . , u(1, r+ j−1)
as the possible member of Dhd.

Lemma 3.13. If H ≤ d, then Dhd = {v∗r}, where r refers any single member of {0, 1, 2,3,...,H}.

Proof. Let zr be a member of Mr − {v∗r}, for r = 2, 3, . . . ,H. Now, d(v∗0 , v∗H) = H ≤ d. We know
(Corollary 3.6) that there is no leaf nodes at level 1 on T (v). So v∗0 be a probable member of Dhd

because d(v∗0 , zr) = r ≤ d (as v∗0 → v∗1 → . . . → v∗r−1 → zr or v∗0 → v∗1 → . . . → v∗r−2 → zr−1 → zr or
v∗0 → v∗1 → . . . → v∗i−3 → zr−2 → zr−1 → zr or. . . or v∗0 → v∗1 → z2 → z3 → . . . → zr−3 → zr−2 →
zr−1 → zr), for r = 2, 3, . . . ,H. Furthermore, if r is even and 2 ≤ r ≤ H then d(zr, v∗H) ≤ H ≤ d (as
zr → v∗r−1 → v∗r → . . . → v∗H or zr → zr−1 → v∗r−2 → v∗r−1 → v∗r . . . → v∗H or . . . or zr → zr−1 →
. . . → z(r−(r/2)+1) → v∗(r−(r/2) → v∗(r−(r/2)+1) → . . . → v∗H). Again, if r is odd and 3 ≤ r ≤ H then
d(zr, v

∗
H) ≤ H ≤ d− 1 < d (as zr → v∗r−1 → v∗r → . . .→ v∗H or zr → zr−1 → v∗r−2 → v∗r−1 → v∗r . . .→ v∗H

or . . . or zr → zr−1 → . . . → z(r−((r+1)/2)+1) → v∗r−((r+1)/2) → v∗(r−((r+1)/2)+1) → . . . → v∗H). Hence,
v∗H is a possible member of Dhd. Similarly, other members of the central path on T (v) may be possible
members of Dhd. So, if H ≤ d, then Dhd = {v∗r}, where r refers any single member of {0, 1, 2,...,H}.

Lemma 3.14. d-HDS Dhd of a tree T is

Dhd =

{
{z : z is the central node(s) of T} if bH/2c = d,

{z : z any single central vertices of T} if bH/2c < d.
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Proof. Let diameter(T ) = diameter(T (v)) = H. Now, two cases may appear —
Case 1: d > bH/2c and Case 2: d = bH/2c.
Case 1: In this case, d(v∗0 , v∗H) = H. Now two sub-cases may appear here. Sub-case 1.1: when H is even.
In this sub-case, T is mono-centric and the central vertex is v∗(H/2). So, d(v

∗
(H/2), x) ≤

H
2 < d, ∀ z ∈ V (T ).

Therefore, Dhd = {v∗H/2}. Sub-case 1.2: When H is odd. In this subcase T is bi-centric, and the central
vertices are v∗bH/2c and v

∗
bH/2c+1. So, d(v

∗
bH/2c, z) ≤ br/2c+1 ≤ d and d(v∗bH/2c+1, z) ≤ bH/2c+1 ≤ d, ∀

z ∈ V (T ). Therefore, Dhd = {v∗bH/2c} or Dhd = {v∗bH/2c+1}.
Case 2: In this case, two sub-cases may appear. Sub-case 2.1: when H is even. In this sub-case, T has
single central vertex v∗H/2. So, d(v∗H/2, x) ≤ H/2 = d, ∀ z ∈ V (T ). Therefore, Dhd = {v∗H/2}. Sub-case
2.2: When H is odd. In this sub-case T has two central vertices v∗bH/2c and v

∗
bH/2c+1. So, d(v

∗
bH/2c, z) ≤

br/2c = d ∀ z ∈ ∪H−1r=0 Mr but d(v∗bH/2c, zH) = br/2c + 1 = d + 1 > d, where zH ∈ MH . For instance
d(v∗bH/2c, v

∗
H) = br/2c + 1 = d + 1 (as v∗H → v∗H−1 → v∗H−2 → . . . → v∗bH/2c). Again, d(v∗bH/2c+1, z) ≤

br/2c = d ∀ z ∈ ∪Hr=1Mr but d(v∗bH/2c+1, v
∗
0) = d + 1 > d (as v∗H → v∗H−1 → v∗H−2 → . . . → v∗0). So, all

the vertices of T are within d distances from the members of the set Dhd = {v∗bH/2c, v
∗
bH/2c+1}. Hence

the result.

4. Complete algorithms and their complexities

Here, we have presented two optimal algorithms for determining minimum d-HCDS Dhd of tree T .

4.1. First complete algorithm

From the results discussed in Section 3, it is observed that when d ≤ bH/2c and if H is even, then
v∗H/2 is a possible member of Dhd, and if H is odd, then v∗bH/2c and v

∗
bH/2c+1 are two possible members

of Dhd. Two possible cases for selecting the members of Dhd are discussed in Lemma 3.14. The first
complete Algorithm MDHCDST1 is designed for computing a MdHCDSDhd of tree T , presented below.

Algorithm MDHCDST1
Input: A tree T (V,E).
Output: MdHCDS Dhd of tree T.
Step 1: Make the BFS-tree T ′(u) taking u as root, where u is any arbitrary vertex.
Step 2: Make BFS-tree T (v) taking v as root, where v is any leaf node at

highest level of T ′(u).
Step 3: Identify central path and compute height H of T and set H= diameter(T ).
Step 4: Find the center(s) of T .//by Algorithm T-CENTER//
Step 5: If d ≤ bH/2c, then

Step 5.1: Construct a subtree T1(v) of T (v), by removing the set V1 of all pendant
vertices from T (v).

Step 5.2: For r = 2, 3, ..., d, construct the subtree Tr(v) of Tr−1(v), by removing the set
Vr of all pendant vertices from Tr−1(v).

Step 5.3: Assign Dhd = {V (Td(v))}.
Else Dhd= {z : z is any one central node of T.}} //Lemma 3.14//
End If

End MDHCDST1.

If we apply the Algorithm MDHCDST1 for d = 2 on the tree T of Figure 1 (a), then we get a
minimum 2-hop connected dominating set Dh2 = {6, 11, 17, 12}.
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Figure 3. Flowchart of Algorithm MDHCDST1.

Lemma 4.1. The Algorithm MDHCDST1 gives a MdHCDS Dhd of trees.

Proof. In Algorithm MDHCDST1, if d ≤ bH/2c (Step 4), then we set Dhd = V (TbH/2c(v)). In this
case, Dhd is a minimum because if we eliminate anyone pendent vertex from TbH/2c(v), then d(x, y) ≥ d,
for all x ∈ V (T ) and y ∈ V (TbH/2c(v)). Again Dhd is connected as TbH/2c(v) is a connected sub-graph of
T . Moreover, by Lemma 3.13, when H is even and d > bH/2c, then T is mono-centric and the central
node is v∗H/2. For this reason we set Dhd = {v∗H/2}. Again, when H is odd and d > bH/2c, then T is
bi-centric and the central nodes are v∗bH/2c and v

∗
bH/2c+1. Also each of these vertices can dominate each

vertex of T by d or less steps. Therefore, we set Dhd = {v∗bH/2c} or {v∗bH/2c+1}. Therefore, Dhd is a
MdHCDS of trees.

Theorem 4.2. The run time of the Algorithm MDHCDST1 is O(n), where |V | = n.

Proof. Step 1 and Step 2 need O(n) time, respectively, for building the BFS-trees T ′(u) and T (v).
In Step 3, we can compute the members of the central path and the diameter in O(n) time as H=
diameter(T ) and there are only H+1 ≤ n vertices in the central path on T (v). In Step 4, central node(s)
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of T (v) can be identified in O(n) time (Theorem 2.4). At first iteration of Step 5, we find, and then delete
the set V1 of pendent vertices of tree T (v) and it can be done in |V1| time. Similarly, other iterations can
be finished. Hence, Step 5 takes O(∪bH/2c

r=1 |Vr|) ≈ O(n) time as Vr, r = 1, 2, 3, . . . , bH/2c are mutually
disjoint. Therefore, the Algorithm MDHCDST1 runs in O(n)-time.

4.2. Second complete algorithm

In Section 3, we proved that if H ≤ d, then v∗l can be accepted as an element of Dhd, where l is only
one arbitrary element of {0, 1, . . . ,H} (Lemma 3.12). Also, if H > d, then by Corollary 3.6, Corollary 3.9
and Lemma 3.10, we can take the vertices of the set {v∗d, v∗d+1, . . . , v

∗
H−d} ∪ {u(r, j) ∈ T ∗(v) : j ≥ d} as

members of Dhd. All probable cases for choosing the elements of Dhd are already discussed in section 3.
The second complete Algorithm MDHCDST2 for determining a MdHCDS Dhd of tree T is presented
below.

Algorithm MDHCDST2
Input: A tree T .
Output: MdHCDS Dhd of tree T.

Initially Dhd = φ.
Step 1: Make BFS-tree T ′(u) taking u as root, where u is any vertex of V (T ).
Step 2: Make BFS-tree T (v) taking v as root, where v is any leaf node at highest

level of T ′(u).
Step 3: Identify the central-path and determine the vertices lying on that central-path

of T (v) and denote them by v∗r , r = 0, 1, . . . ,H.
Step 4: Do 2-tuple weight assignment of V (Ts(v

∗
r )), r = d+ 1, d+ 2, . . . ,H − d− 1.

Step 5: If H ≤ d, then
Dhd = Dhd ∪ {v∗l }, where l is only one arbitrary element of
{0, 1, . . . ,H}. //Lemma 3.12//

Else
Dhd = Dhd ∪ {v∗d, v∗d+1, . . . , v

∗
H−d} ∪ {u(r, j) ∈ T ∗(v) : j ≥ d and r 6= 0}

// (Lemma 3.10, Corollary 3.6 and Corollary 3.9)//
End If

End MDHCDST2.

If we apply the Algorithm MDHCDST2 for d = 2 on the tree T of Figure 1 (a), then we get a
M2HCDS Dh2 = {6, 11, 17, 12}.

Lemma 4.3. The Algorithm MDHCDST2 gives a MdHCDS Dhd of trees.

Proof. We have noticed in Algorithm MDHCDST2 that if H ≤ d then, using the result of Lemma
3.12, we find Dhd ={v∗l }, where l is only one arbitrary element of {0, 1, 2, 3, . . . ,H}. So, in that case,
Dhd is MdHDS. If H > d, we select first member of Dhd as v∗d, by Corollary 3.6, which dominates
| ∪dr=0 Mr| vertices & d(v∗H−d, z) = d, and choose second element of Dhd as v∗H−d (by Corollary 3.9)
because d(v∗H−d, z) = d, ∀ z ∈ MH . In Step 4, we do 2-tuple weight assignment of the vertices of
the sub-trees Ts(v∗d+1), Ts(v

∗
d+2), . . . , Ts(v

∗
H−d−1) rooted at, respectively, v∗d+1, v

∗
d+2, . . . , v

∗
H−d−1. These

roots are consecutively adjacent and lie on the central path on T (v). So these are essential for making
connectedness of Dhd. Besides these, we select some vertices whose second weight components are greater
or equal to d (Lemma 3.10). During this selection process, we always keep in mind that selected members
cover the maximum number of nodes of V and every node of V is located within d distances from at
least one element of Dhd. So, Dhd is MdHDS. Now, we have to prove that Dhd is connected. Since some
members of Dhd stay consecutively on the central path of BFS-tree T (v), so they form a sub-central
path, so they are connected. The remaining members of Dhd which are imitated from some vertices lie
on the central-path, they are connected with the previous sub-central path (Lemma 3.10). Hence, Dhd

is connected. Therefore, Dhd is a MdHCDS of trees.
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Figure 4. Flowchart of Algorithm MDHCDST2.

Theorem 4.4. The Algorithm MDHCDST2 runs in O(n) time, where n = |V |.

Proof. Step 1 takes O(n) time for constructing the BFS-tree T ′(u). Similarly O(n) time is required
for building the BFS-tree T (v) in Step 2. In Step 3, the vertices on the central path can be identified in
O(n) time, as there is only H + 1 ≤ n vertices in the central path. For 2-tuple weight assignment of the
vertices of V (Ts(v

∗
r ), r = d + 1, d + 2, . . . ,H − d − 1, O(n) time is needed, in Step 4, as V (Ts(v

∗
r )), r =

d+1, d+2, . . . ,H − d− 1 are mutually disjoint. If H ≤ d, then we can compute Dhd in constant time as
|Dhd| = 1. On the other hand if H > d, the time needed to find the members of Dhd is O(n). Therefore,
overall time complexity of Algorithm MDHCDST2 is O(n) time.

5. Conclusion

Domination is always an attractive and crucial problem to the researchers who work in graph theory.
Within the various types of dominations, we can apply connected domination in many practical-life
problems, and many researchers have done much research on this in the past. Nowadays, in advanced
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graph theory, minimum d-hop connected domination problem is a momentous research topic because it
can be applied in communication networks, such as wireless mobile networks.

In this paper, we propose two algorithms for the determination of an MdHCDS of trees. In future,
we have a plan to design an O(n) time algorithm to determine an MdHCDS of the social network graph,
unit-disk graph, circular-arc graph or other intersection graphs.
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