
ISSN 2148-838Xhttps://doi.org/10.13069/jacodesmath.1000959

J. Algebra Comb. Discrete Appl.
8(3) • 219–231

Received: 07 December 2020
Accepted: 29 April 2021

Journal of Algebra Combinatorics Discrete Structures and Applications

Cyclic DNA codes over the ring Z4 + uZ4 + u2Z4

Research Article

Karthick Gowdhaman, Somi Gupta, Cruz Mohan, Kenza Guenda, Durairajan
Chinnapillai

Abstract: In this work, we have investigated the one generator cyclic DNA codes with reverse and reverse
complement constraints over the ring R = Z4+uZ4+u

2Z4 with u3 = 0. Skew cyclic codes with reverse
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1. Introduction

DNA is shortened word of Deoxyribonucleic acid. It is a molecule made of two chains that curl around
one another to frame a two-fold helix conveying the hereditary guidelines utilized in the development
of all creatures. This two-fold helix is assembled by blending the four fundamental structure units A-
(ADENINE), C-(CYTOSINE), G-(GUANINE) and T -(THYMINE) which are called the nucleotides held
by Hydrogen ties. The DNA strand is held by an important feature called complementary base pairing
which connects the Watson-Crick complementary bases with each other denoted by A = T,G = C,C =
G,T = A.

In [4] Adleman performed a successful experiment for DNA computing. The basic idea of his work
was to use DNA which is an ideal source of computing due to its dense and self-replicating property to
solve a mathematical problem. After this successful experiment, the area of DNA computing was flooded
with different approaches such as DNA tile assembly, the building of DNA nanostructures, DNA-based
data storage system and study of error-correcting properties of DNA.
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Cyclic codes over rings have been studied by many authors (see for example [6] and [2]). Later
DNA cyclic codes have gained interest of many researchers for their applications (see [16], [11], [18], [12],
[14], [19], [5]). Abhay et al. [10] have studied DNA cyclic codes over the ring Z4 + uZ4 with u2 = 0.
Cyclic codes over the ring R = Z4 + uZ4 + u2Z4 with u3 = 0 have been studied by Ozen et al. in
[15]. Cyclic code over skew polynomial ring have been constructed by [7]. Boucher and Ulmer [8] have
found a link between arithmetic structure of skew polynomials and existence of such codes. In [17] Siap
et al. studied skew cyclic code of arbitrary length and established a strong connection with well known
codes. Most recently, the DNA codes over ring of order 256 has been studied in [9]. They have obtained
DNA skew cyclic codes over the ring F2 + uF2 + vF2 + wF2 + uvF2 + uwF2 + vwF2 + uvwF2, where,
u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv, addressing reversibility problem.

In this work, we have investigated the one generator cyclic DNA codes with reverse and reverse
complement constraint over the ring R = Z4 + uZ4 + u2Z4 with u3 = 0. Skew cyclic codes with reverse
complement constraint are constructed over R. We have also determined a one-to-one correspondence
between elements of the ring R and DNA codons satisfying Watson-Crick complement. Finally, we have
established some examples which satisfy the given constraints. Beside the theoretical results concerning
the reverse and the reverse complement codes over the ring R and the one-to-one correspondence with
codes, our other motivation in choosing this ring is the fact that it contains an additive subgroup of order
16. Then the idea of the additive stem distance characterizing the hybridization energy given in [12] can
be extended to this subgroup and then to the ring.

This paper is structured in the following way: Section 2 contains basic definitions of cyclic DNA
codes. We have established a one-to-one correspondence between elements of the ring R = Z4+uZ4+u

2Z4

with u3 = 0, elements of Z3
4 and 64 codons. In Section 3, we have studied the reversibility condition

of one generator cyclic codes over the ring R and have determined reverse complement codes. Binary
image of the ring and skew cyclic codes are studied in Sections 4 and 5 respectively. In Section 6, we
have obtained some examples. Finally, Section 7 concludes the paper with some establishments of future
work that can be done using this work.

2. Preliminaries

Ozen et al. in [15] have determined cyclic codes over the ring R = Z4 + uZ4 + u2Z4, where u3 = 0.
They obtained that the total number of cyclic codes over R is 13r. They also found the general form of
generator of cyclic codes over R and one generator cyclic codes (cyclic codes generated by one element)
over the ring R.

Let R = Z4 +uZ4 + u2Z4 = {a+ ub+u2c | a, b, c ∈ Z4}, where u3 = 0. The ring R has 11 nontrivial
ideals given by

A2u2 = {0, 2u2}
Au2 = {0, u2, 2u2, 3u2}
A2u = {0, 2u, 2u2, 2u+ 2u2}

A2u+u2 = {0, 2u2, 2u+ u2, 2u+ 3u2}
A2u,u2 = {0, u2, 2u2, 3u2, 2u, 2u+ u2, 2u+ 2u2, 2u+ 3u2}

A2 = {0, 2, 2u, 2u2, 2 + 2u, 2 + 2u2, 2u+ 2u2, 2 + 2u+ 2u2}
A2+u2 = {0, 2u, 2u2, 2u+ 2u2, 2 + u2, 2 + 3u2, 2 + 2u+ u2, 2 + 2u+ 3u2}
A2,u2 = {0, 2, 2u, u2, 2u2, 3u2, 2 + 2u, 2 + u2, 2 + 2u2, 2 + 3u2, 2u+ u2, 2u+ 2u2,

2u+ 3u2, 2 + 2u+ u2, 2 + 2u+ 2u2, 2 + 2u+ 3u2}
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Au = {0, u, 2u, 3u, u2, 2u2, 3u2, u+ u2, u+ 2u2, u+ 3u2, 2u+ u2, 2u+ 2u2,

2u+ 3u2, 3u+ u2, 3u+ 2u2, 3u+ 3u2}
A2+u = {0, 2u, u2, 2u2, 3u2, 2 + u, 2 + 3u, 2u+ u2, 2u+ 2u2, 2u+ 3u2, 2 + u+ u2,

2 + u+ 2u2, 2 + u+ 3u2, 2 + 3u+ u2, 2 + 3u+ 2u2, 2 + 3u+ 3u2}
A2,u = {0, 2, u, 2u, 3u, u2, 2u2, 3u2, 2 + u, 2 + 2u, 2 + 3u, 2 + u2, 2 + 2u2, 2 + 3u2,

u+ u2, u+ 2u2, u+ 3u2, 2u+ u2, 2u+ 2u2, 2u+ 3u2, 3u+ u2, 3u+ 2u2,

3u+ 3u2, 2 + u+ u2, 2 + u+ 2u2, 2 + u+ 3u, 2 + 2u+ u2, 2 + 2u+ 2u2,

2 + 2u+ 3u2, 2 + 3u+ u2, 2 + 3u+ 2u2, 2 + 3u+ 3u2}.

The ring R is a finite local ring with A2,u as its unique maximal ideal (as it contains all the non-zero
divisors of R). The residue field of R is K = R/A2,u = {0 + A2, u, 1 + A2, u} ∼= Z2. Let p(x) be a monic
basic irreducible polynomial of degree m in R[x], then the Galois ring extension over R is defined by the
residue class ring Qm = R[x]/(p(x)) having 64m elements.

The triplet of nucleotides called codons is the basic coding unit for amino acids during the protein
synthesis in living organisms. Since the ring R has 64 elements, then it is convenient to describe a
one-to-one correspondence between the elements of R and the codons. In the following table, we give
a one-to-one correspondence between the elements of R, the elements of Z3

4 and the codons. The one-
to-one correspondence, called Gray map between the rings R and Z3

4 is defined as ψ : R → Z3
4 with

(a+ ub+ u2c) 7→ (a, b, c), where a, b, c ∈ Z4. Another important one-to-one correspondence between the
elements of Z3

4 and D3 is denoted by φ : Z3
4 → D3, where D denotes the set of all nucleotides. The full

names of codons have been taken from http://www.hgmd.cf.ac.uk/docs/cd_amino.html.

Table 1. Correspondence between elements of R, Z3
4 and Codons

a ∈ R ψ(a) ∈ Z3
4 φ(a) ∈ D3 Full Name of Codons

0 (0, 0, 0) GTG Valine
u (0, 1, 0) CCG Alanine

u+u2 (0, 1, 1) CGA Arginine
u+2u2 (0, 1, 2) CAA Glutamine
u+3u2 (0, 1 ,3) TAG Termination (amber)
2u+u2 (0,2 , 1) CAT Histidine
2u+2u2 (0, 2, 2) CTC Serine
2u+3u2 (0, 2, 3) ATA Isoleucine
3u+u2 (0, 3, 1) GCG Alanine
3u+2u2 (0, 3, 2) TCG Serine
3u+3u2 (0, 3, 3) TAA Termination (ochre)

1 (1, 0, 0) GGC Arginine
1+u (1, 1, 0) TGA Termination (opal or umber)

1+u+u2 (1, 1, 1) GGG Glycine
1+ u+2u2 (1, 1, 2) GCA Alanine
1+u+3u2 (1, 1, 3) GAA Glutamate

1+2u (1, 2, 0) CCA Proline
1+ 2u+u2 (1, 2, 1) TTT Phenylalanine
1+2u+2u2 (1, 2, 2) CCT Proline
1+2u+3u2 (1, 2, 3) AGG Arginine

1+3u (1, 3, 0) TGG Trytophan
1+3u+u2 (1, 3, 1) TTA Leucine
1+3u+2u2 (1, 3, 2) TAC Tyrosine
1+3u+3u2 (1, 3, 3) TGC Cysteine

2 (2, 0, 0) GAG Arginine
2u (0, 2,0) ACA Threonine

2+u (2, 1, 0) AGC Serine
2+2u (2, 2, 0) AGA Glutamate
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2+ u+u2 (2, 1, 1) ATT Isoleucine
2+ u+2u2 ( 2, 1, 2) GAT Aspartate
2+u+3u2 (2, 1, 3) CGC Arginine
2+2u+u2 (2, 2, 1) CAG Glutamine
2+2u+2u2 (2, 2, 2) CAC Histidine
2+2 u+3u2 (2, 2, 3) GAC Aspartate

2+3u (2, 3, 0) GTT Valine
2+3 u+u2 (2, 3, 1) ATC Isoleucine
2+3u+2u2 (2, 3, 2) GGC Glycine
2+3 u+3u2 (2, 3, 3) GCT Valine

3 (3, 0, 0) GGA Glycine
3u (0, 3, 0) CTA Leucine

3+u (3, 1, 0) ATG Methionine
3+u+u2 (3, 1, 1) ACG Threonine
3+u+2u2 (3, 1, 2) ACC Threonine
3+u+3u2 (3, 1, 3) AAT Asparagine

3+2u (3, 2, 0) TCA Serine
3+2u+u2 (3, 2, 1) AAG Lysine
3+2u+2u2 (3, 2, 2) CCG Alanine
3+2u+3u2 (3, 2, 3) TTG Leucine

3+3u (3, 3, 0) CGT Arginine
3+3u+u2 (3, 3, 1) CTT Leucine
3+3u+2u2 (3, 3, 2) ACT Threonine
3+3u+3u2 (3 ,3 ,3) CCC Proline

1+u2 (1, 0, 1) AAC Asparagine
1+2u2 (1, 0, 2) AGT Serine
1+3u2 (1, 0, 3) TTC Phenylalanine
2+u2 (2, 0 , 1) TAT Tyrosine
2+2u2 (2, 0, 2) TGT Cysteine
2+3u2 (2, 0, 3) GTA Valine
3+u2 (3, 0, 1) TCC Serine
3+2u2 (3, 0, 2) GGT Glycine
3+3u2 (3, 0,3) AAA Lysine
u2 (0, 0, 1) CTG Leucine
2u2 (0, 0, 2) TCT Leucine
3u2 (0, 0, 3) GTC Valine

Definition 2.1. Let a, b ∈ Z4, then we define a distance called Gray distance by dG(a, b) =
dH(φ(a), φ(b)), where φ(a), φ(b) ∈ D3. Note that it can be extended upto length n. Hence the map φ
is a distance preserving map from (Rn, dG) to (D3n, dH).

Example 2.2. Let a = 1 + u+ u2 and b = 2 + 2u+ 2u2, then

dG(a, b) = dH(GGG,CAC) = 3.

Definition 2.3. If C is invariant under the cyclic shift operator δ : Rn → Rn given by δ(c1, c2, · · · , cn) =
(cn, c1, · · · , cn−1), then the code C is called a cyclic code of length n.

Definition 2.4. Let C be a code of arbitrary length n over any finite set A. Then C is called reversible
code if it remains invariant under the reversal of each codeword, i.e., if c = (c1, c2, . . . , cn) ∈ C, then
cR = (cn, cn−1, . . . , c1) ∈ C.

While working with cyclic and reversible codes we need to deal with a polynomial called self-
reciprocal polynomial defined in the following definition.

Definition 2.5. Let p(x) = a0 + a1x + · · · + anx
n be a polynomial of degree n. The polynomial g(x) =

an + an−1x + · · · + a0x
n is called reciprocal polynomial of p(x). A polynomial p(x) over R is said to be

self-reciprocal polynomial if p(x) = p∗(x), where p∗(x) = xnp
(
1
x

)
.
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We follow the definition of a DNA code from [12]. A code C is called a DNA code if it satisfies some
of the following properties:

(i) The Hamming distance constraint is defined as dH(a, b) ≥ d for all a, b ∈ C and a 6= b for
some predefined distance d.

(ii) The reverse constraint is defined as dH(aR, b) ≥ d for all a, b ∈ C and a 6= b for some predefined
distance d and where aR denotes the reverse sequence of alphabets in a.

(iii) The reverse complement constraint is defined as dH(aR, b) ≥ d for all a, b ∈ C, a 6= b for some
predefined distance d and where b denotes a word in which each alphabet of b is replaced by its
Watson-Crick complement. DNA code satisfying reverse complement constraint is called the reverse
complement DNA code.

(iv) The fixed GC-content constraint specifies that each codeword must have fixed number of G’s
and C’s. Generally this fixed number is bn2 c where n denotes the length of codewords.

Definition 2.6. Let C be a code of arbitrary length n over D. Then C is called reverse complement
code if it contains both the reverse and the complement of every codeword in C, that is, if (c1, c2, . . . , cn) ∈
C, then (cn, cn−1, . . . , c1) ∈ C.

It is interesting to observe that one-to-one correspondence we define is a customized gray map
between the DNA codons and elements of the ring R. The elements of ideal A2 correspond only to self
reversible DNA codons. This map take care of GC content for the ideals A2u2 and A2u. The GC content
is 30 to 50 percentage in these ideals. Further, the map satisfies the following property.

Lemma 2.7. Let a ∈ R, then a = a+ 2(1 + u+ u2).

3. Cyclic DNA codes over R

In this section, we study the reverse and the reverse complement cyclic codes over R. For this, we
will use the following Lemmas.

Lemma 3.1. [1] Let p(x) and q(x) be polynomials over Z4 with deg p(x) ≥ deg q(x). Then

(i) [p(x)q(x)]∗ = p∗(x)q∗(x)

(ii) [p(x) + q(x)]∗ = p∗(x) + x(deg p(x)−deg q(x))q∗(x).

Lemma 3.2. [3] Let C = 〈p(x)〉 be a cyclic code of odd length n over Z4; where p(x) is a monic polynomial
of degree r over Z4. Then C is reversible if and only if p(x) is self reciprocal polynomial.

Now, we are able to prove the following result which will be useful thereafter.

Lemma 3.3. Let p1(x), p2(x), . . . , pr(x) be polynomials over Z4 with deg pi(x) = ki and kr ≤ kr−1 ≤
· · · ≤ k1, then

(i) [p1(x)p2(x) · · · pr(x)]∗ = p∗1(x)p
∗
2(x) · · · p∗r(x) and

(ii) [p1(x) + p2(x) + · · ·+ pr(x)]
∗ = p∗1(x) + xk1−k2p∗2(x) + · · ·+ xk1−kip∗i (x) + · · ·+ xk1−krp∗r(x).

Proof. We prove this by induction on r. By Lemma 3.1, this is true for r = 2. Let us assume that this
is true for less than or equal to l, that is,

[p1(x)p2(x) · · · pl(x)]∗ = p∗1(x)p
∗
2(x) · · · p∗l (x),

[p1(x) + p2(x) + · · ·+ pl(x)]
∗ = p∗1(x) + xk1−k2p∗2(x) + · · ·+ xk1−klp∗l (x).
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Now, we will check whether the hypothesis is true for r = l+ 1. By using hypothesis for r = 2 and r = l
consecutively,

[p1(x)p2(x) · · · pl(x)pl+1(x)]
∗ = [p1(x)p2(x) · · · pl(x)]∗p∗l+1(x)

= p∗1(x)p
∗
2(x) · · · p∗l+1(x).

Repeat the same process to prove the second identity.

[p1(x) + p2(x) + · · ·+ pl+1(x)]
∗ = [p1(x) + p2(x) + · · ·+ pl(x)]

∗ + x(k1−kl+1)p∗l+1(x)

= p∗1(x) + xk1−k2p∗2(x) + · · ·+ xk1−klp∗l (x) + x(k1−kl+1)p∗l+1(x).

Hence the induction hypothesis is true for r = l+1. Therefore, by mathematical induction, the statement
is true for all positive integer r.

Proposition 3.4. Let pi(x) and qi(x) be in Z4[x] for i = 1, 2 and 3. If the following equality holds

p1(x) + up2(x) + u2p3(x) = q1(x) + uq2(x) + u2q3(x), (1)

then pi(x) = qi(x) for i = 1, 2 and 3.

Proof. Assume that equation (1) is true. Multiplying it by u2 and using u3 = 0, we have u2p1(x) =
u2q1(x). Therefore p1(x) = q1(x), because p1(x), q1(x) ∈ Z4[x].

Again multiplying (1) by u and substituting p1(x) = q1(x), we get u2p2(x) = u2q2(x) and hence
p2(x) = q2(x). Similarly, we get p3(x) = q3(x).

Now, we study the reverse constraint of one generator cyclic code of odd length n over R. For this,
first we need the following result which states one generator cyclic codes of odd length n over the ring R.
This result with its proof can be found in [15].

Theorem 3.5. [15] Let C be a cyclic code of odd length n over R. If C = 〈h1(x) + ug1(x) +
u2b1(x), uh2(x) + u2b2(x), u

2h3(x)〉 and h1(x) and h3(x) are equal, then

C = 〈h1(x) + ug1(x) + u2b1(x)〉.

Definition 3.6. Let R be a ring and p(x) ∈ R[x] is called regular polynomial if it is not a zero divisor
in R[x].

Theorem 3.7. Let C be a cyclic code of odd length n over the ring R. Let p(x) be a regular polynomial
in Z4[x] and C =

〈
p(x) + uq(x) + u2h(x)

〉
where p(x), q(x) and h(x) are in Z4[x]. If deg p(x) = r,

deg q(x) = s and deg h(x) = t with r ≥ s ≥ t, then C is reversible if and only if

(a) p(x) is a self reciprocal polynomial.

(b) (i) xr−sq∗(x) = q(x) and xr−th∗(x) = h(x), or
(ii) xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = q(x) + h(x), or
(iii) xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = p(x) + q(x) + h(x), or
(iv) xr−sq∗(x) = q(x) and xr−th∗(x) = p(x) + h(x).

Proof. Let us assume that C is a reversible code over R. Then C mod u = 〈p(x)〉 is a reversible code
over Z4. Therefore, by Lemma 3.2 we have that p(x) is a self reciprocal polynomial in Z4[x].
Now, by Lemma 3.3 we have

[p(x) + uq(x) + u2h(x)]∗ =p∗(x) + uxr−sq∗(x) + u2xr−th∗(x)

=p(x) + uxr−sq∗(x) + u2xr−th∗(x)

=(p(x) + uq(x) + u2h(x))k(x) ∈ C.
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Since the degrees of both sides are the same, we have k(x) is a constant in R, i.e., k = k1 + uk2 + u2k3
and hence

p(x) + uxr−sq∗(x) + u2xr−th∗(x) =(p(x) + uq(x) + u2h(x))k

=(p(x) + uq(x) + u2h(x))(k1 + uk2 + u2k3)

=p(x)k1 + u(p(x)k2 + q(x)k1) + u2(p(x)k3 + q(x)k2 + h(x)k1) (2)

Now by Proposition 3.4, we get k1 = 1 and each k2 and k3 have 4 possibilities. Therefore, we have 16
possible cases, i.e., conditions for k = 1, 1 + u, 1 + 2u, 1 + 3u, 1 + u + u2, 1 + u + 2u2, 1 + u + 3u2, 1 +
2u+ u2, 1 + 2u+ 2u2, 1 + 2u+ 3u2, 1 + 3u+ u2, 1 + 3u+ 2u2, 1 + 3u+ 3u2, 1 + u2, 1 + 2u2, 1 + 3u2. We
have investigated all these cases by substituting values of k in (2). Then we get the following summarized
results:

Constant k Conditions Obtained
k = 1 xr−sq∗(x) = q(x) and xr−th∗(x) = h(x)

k = 1 + u xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = q(x) + h(x)
k = 1 + 2u 2xr−sq∗(x) = 2q(x) and 2xr−th∗(x) = 2h(x)
k = 1 + 3u 2xr−sq∗(x) = 2p(x) + 2q(x) and 2xr−th∗(x) = 2q(x) + 2h(x)

k = 1 + u+ u2 xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = p(x) + q(x) + h(x)
k = 1 + u+ 2u2 2xr−sq∗(x) = 2p(x) + 2q(x) and 2xr−th∗(x) = 2q(x) + 2h(x)
k = 1 + u+ 3u2 xr−sq∗(x) = p(x) + q(x) and 2xr−th∗(x) = 2p(x) + 2q(x) + 2h(x)
k = 1 + 2u+ u2 2xr−sq∗(x) = 2q(x) and 2xr−th∗(x) = 2p(x) + 2h(x)
k = 1 + 2u+ 2u2 2xr−sq∗(x) = 2q(x) and 2xr−th∗(x) = 2h(x)
k = 1 + 2u+ 3u2 2xr−sq∗(x) = 2q(x) and 2xr−th∗(x) = 2p(x) + 2h(x)
k = 1 + 3u+ u2 2xr−sq∗(x) = 2p(x) + 2q(x) and 2xr−th∗(x) = 2p(x) + 2q(x) + 2h(x)
k = 1 + 3u+ 2u2 2xr−sq∗(x) = 2p(x) + 2q(x) and 2xr−th∗(x) = 2q(x) + 2h(x)
k = 1 + 3u+ 3u2 2xr−sq∗(x) = 2p(x) + 2q(x) and 2xr−th∗(x) = 2p(x) + 2q(x) + 2h(x)

k = 1 + u2 xr−sq∗(x) = q(x) and xr−th∗(x) = p(x) + h(x)
k = 1 + 2u2 xr−sq∗(x) = q(x) and 2xr−th∗(x) = 2h(x)
k = 1 + 3u2 xr−sq∗(x) = q(x) and 2xr−th∗(x) = 2p(x) + 2h(x)

From the above table, we can observe that there are 12 similar cases. Therefore, we can reduce above
conditions into following four cases.

(i) xr−sq∗(x) = q(x) and xr−th∗(x) = h(x), or

(ii) xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = q(x) + h(x), or

(iii) xr−sq∗(x) = p(x) + q(x) and xr−th∗(x) = p(x) + q(x) + h(x), or

(iv) xr−sq∗(x) = q(x) and xr−th∗(x) = p(x) + h(x).

For the converse part, let us assume that the hypothesis is true. Since C is a cyclic code over R, it is
enough to show that [p(x) + uq(x) + u2h(x)]∗ belong to C.

[p(x) + uq(x) + u2h(x)]∗ =p∗(x) + uxr−sq∗(x) + u2xr−th∗(x)

=p(x) + uxr−sq∗(x) + u2xr−th∗(x).

Now using conditions in the hypothesis, we have

[p(x) + uq(x) + u2h(x)]∗ = (p(x) + uq(x) + u2h(x))k ∈ C

where the constant k ∈ {1, 1 + u, 1 + 2u, 1 + 3u, 1 + u+ u2, 1 + u+ 2u2, 1 + u+ 3u2, 1 + 2u+ u2, 1 + 2u+
2u2, 1 + 2u+ 3u2, 1 + 3u+ u2, 1 + 3u+ 2u2, 1 + 3u+ 3u2, 1 + u2, 1 + 2u2, 1 + 3u2} ⊆ R. Therefore, C is a
reversible cyclic code in R[x].
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By using Table 1 and Lemma 2.7, we have the following result.

Theorem 3.8. Let C =
〈
p(x) + uq(x) + u2h(x)

〉
be a cyclic code over R where p(x), q(x), h(x) ∈ Z4[x].

If deg p(x) = r, deg q(x) = s and deg h(x) = t with r ≥ s ≥ t, then C is a reverse complement code if and
only if

1. the element 2(1+u+u2)(xn−1)
(x−1) ∈ C and

2. the cyclic code C is reversible.

Proof. Let C be the code satisfying the hypothesis. Let c(x) = c0 + c1x + · · · + ckx
k ∈ C. Since

C is reversible, c∗(x) = ck + ck−1x + · · · + c0x
k ∈ C. As C is an ideal of R[x]

〈xn−1〉 , so xn−k−1c∗(x) =

ckx
n−k−1 + ck−1x

n−k + · · · + c0x
n−1 belongs to C. By hypothesis 2(1 + u + u2) (x

n−1)
(x−1) ∈ C, therefore

2(1 + u+ u2) (x
n−1)

(x−1) + xn−k−1c∗(x) ∈ C. Then

2(1 + u+ u2)
(xn − 1)

(x− 1)
+ xn−k−1c∗(x) =2(1 + u+ u2)(1 + x+ x2 + · · ·+ xn−k−2)

+ (ck + 2(1 + u+ u2))xn−k−1 + · · ·
+ (c0 + 2(1 + u+ u2))xn−1

=2(1 + u+ u2)(1 + x+ x2 + · · ·+ xn−k−2)

+ ckx
n−k−1 + ck−1x

n−k + · · ·+ c0x
n−1

2(1 + u+ u2)
(xn − 1)

(x− 1)
+ xn−k−1c∗(x) =c∗(x). (using Lemma(2.7))

Hence, we conclude that C is a reverse complement code.

Conversely, we assume that C is a reverse complement code, i.e., if c(x) ∈ C, then c∗(x) ∈ C. First
we observe that since C is linear this implies that the element a(x) = 0 ∈ C and therefore

a(x) = 2(1 + u+ u2)(1 + x+ · · ·+ xn−1) = 2(1 + u+ u2)
(xn − 1)

(x− 1)
∈ C.

Now, let c(x) = c0 + c1x+ · · ·+ ckx
k ∈ C, then

c∗(x) =2(1 + u+ u2)(1 + x+ · · ·+ xn−k−2) + xn−k−1ck + · · ·+ c0

=2(1 + u+ u2)(1 + x+ · · ·+ xn−k−2) + xn−k−1(ck + 2(1 + u+ u2))+

· · ·+ (c0 + 2(1 + u+ u2))xn−1

Adding 2(1 + u+ u2) (x
n−1)

(x−1) to the above equation, we get

c∗(x) + 2(1 + u+ u2)
(xn − 1)

(x− 1)
=ckx

n−k−1 + ck−1x
n−k + · · ·+ c0x

n−1

=xn−k−1(ck + ck−1x+ · · ·+ c0x
k)

Multiplying both side by xk+1, we get

xk+1(c∗(x) + 2(1 + u+ u2)
(xn − 1)

(x− 1)
) = ck + ck−1x+ · · ·+ c0x

k = c∗(x).

Thus, we have C is reversible code.
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Theorem 3.9. Let C be a cyclic code of odd length n which satisfies the conditions of Theorem 3.8, then
C is a DNA code.

Proof. Combining the proof of Theorem 3.7 and Theorem 3.8, we get the result.

Example 3.10. Let x = (2u+2u2, 2+2u2, 2+2u) and y = (2+2u, 2+2u2, 2u+2u2). We define a code
C consisting of all cyclic shifts and linear combinations of the vectors x and y over R. Thus we obtain
corresponding DNA code of parameters (9, 32, 4) as follows,

CTCTGTAGA GAGCACGAG CACGAGGAG CTCCTCGTG
GTGGTGGTG AGATGTCTC TCTACAGAG CACCACCAC
GTGCTCCTC GAGGAGCAC CTCGTGCTC GAGACATCT
ACAGAGTCT CTCAGATGT AGAGTGAGA CACTCTTCT
TCTTCTCAC TGTGTGTGT TCTGAGACA GTGTGTTGT
TGTAGACTC ACAACACAC TGTTGTGAG ACATCTGAG
CACACAACA AGACTCTGT ACACACACA AGAAGAGTG
GTGAGAAGA TCTCACTCT GAGTCTACA TGTCTCAGA

Example 3.11. Let x = (2, 2 + 2u, 2u, 2 + 2u + 2u2), then we define a code generated by a generator
matrix consisting of the cyclic shifts of the vector x over R. Thus, we have a DNA code of parameters
(12, 16, 6) as follows,

TGTGTGACAGTG TGTTGTACAACA GTGGTGGTGGTG GTGTGTGTGACA
TGTACAACATGT TGTCACACACAC GTGACAGTGTGT GTGCACGTGCAC
CACGTGCACGTG CACTGTCACACA ACAGTGTGTGTG ACATGTTGTACA
CACACACACTGT CACCACCACCAC ACAACATGTTGT ACACACTGTCAC

4. Binary image of elements in R

In this section, we define binary images of elements of the ring R which will be useful for DNA
computing. An element in the ring R is of the form a+ ub+ u2c; where a, b, c ∈ Z4. Now, we can define
a map between R and Z2. A one-to-one correspondence between R and Z3

4 is defined as ψ : R→ Z3
4 with

(a+ ub+ u2c) 7→ (a, b, c) where a, b, c ∈ Z4.

We define a Gray map ϕ : Z4 → Z2
2 using 2-adic expansion of elements in Z4 which are as follows:

c π(c) ρ(c) υ(c)
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 0

We have ϕ(c) = (ρ(c), υ(c)) for all c ∈ Z4 (as in [13]). Therefore,

0→ 00, 1→ 01, 2→ 11, 3→ 10.

For any v ∈ Z4, the Lee weight wL(v) is defined as min(v, 4 − v). This Lee weight can be extended
to the ring R as follow: for x = a + ub + u2c Lee weight of x is defined as wL(x) = wL(a, b, c). The
Hamming distance dH(c1, c2) between two codewords c1 and c2 is the Hamming weight of the codeword
wH(c1− c2) that is the number of non zero element in (c1− c2). Define χ : R→ Z6

2 by χ(a+ ub+ u2c) =
(ρ(a), υ(a), ρ(b), υ(b), ρ(c), υ(c)). The map χ is clearly a linear map.

Lemma 4.1. The Gray map from Rn to Z6n
2 is a distance preserving map.
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Proof. Let x1, x2 be two elements of Rn. Then dL(x1, x2) = wL(x1 − x2). Since the map is bijective,
we have wL(x1 − x2) = wH(χ(x1 − x2)) = wH(χ(x1) − χ(x2)). Therefore, the Gray map χ is distance
preserving.

Given an element c of length n in a cyclic code C. If the cyclic shift δ(c) ∈ C then ψ(δ(C)) will be
quasi cyclic code of length 3n with index 3 over Z3n

4 . Then it can be easily seen that ϕ(ψ(δ(c))) satisfies
quasi cyclic shift of length 6n with index 6 over Z6n

2 . Thus we have the following theorem.

Theorem 4.2. If C is a cyclic code of length n, then its image is a quasi cyclic code of length 6n and
with index 6 over Z2.

5. Skew cyclic codes over R

Let θ be a non-trivial automorphism defined by θ : R→ R such that (a+ ub+ u2c) 7→ a− ub+ u2c.
The order of θ is 2 that is θ(θ(a+ ub+ u2c)) = a+ ub+ u2c. The ring R[x, θ] = {a0 + a1x+ a2x

2 + · · ·+
an−1x

n−1 : ai ∈ R,n ∈ N}, a non commutative ring with usual addition and multiplication defined as
axi · bxj = aθi(b)xi+j is called skew polynomial ring.

Definition 5.1. A set C of codewords over Rn is skew cyclic code if it satisfies the following

(i) C is a submodule over R.

(ii) Whenever (c0, c1, . . . , cn−1) ∈ C then (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Let p(x) + 〈xn − 1〉 ∈ Rθ = R[x, θ]/〈xn − 1〉 and r(x) ∈ R[x, θ], then define multiplication as
r(x)(p(x) + 〈xn − 1〉) = r(x)p(x) + 〈xn − 1〉, for any r(x) ∈ R[x, θ]. Clearly Rθ is left R[x, θ]−module.

Theorem 5.2. A code C over R is a skew cyclic code of length n if and only if C is left ideal of R[x, θ]-
module Rnθ .

Proof. The proof is same as the proof of [7, Theorem 1].

Theorem 5.3. Let C be a skew cyclic code of length n over R. If C contains a monic polynomial of
minimal degree p(x), then C = 〈p(x)〉, where p(x) is a right divisor of xn − 1.

Proof. The proof is same as the proof of [7, Lemma 1]].

Now, we will introduce reverse complement skew cyclic codes over R. For this we have to notice
that the multiplication over R[x, θ] is not commutative therefore we need to see things differently. Let
c = (c0, c1, . . . , cn−1) be in R[x, θ] then reversal of c denoted by cR is given by cR = (cn−1, cn−2, · · · , c0).

c(x−1) · xn−1 = (c0 + c1x
−1 + · · ·+ cn−1x

−n+1) · xn−1

= c0 · xn−1 + c1x
−1 · xn−1 + · · ·+ cn−1x

−n+1 · xn−1

= c0θ
0(1)xn−1 + c1θ

−1xn−1−1 + · · ·+ cn−1θ
−n+1x−n+1+n−1

= c0x
n−1 + c1x

n−2 + · · ·+ cn−1 = cR

As θ is an automorphism we have θ(1) = 1 and θr(1) = 1 for all r ∈ Z. Note that the reciprocal polynomial
c∗(x) and cR(x) are different due to the operations on them. Also see (p(x) · q(x))R 6= pR(x) · qR(x) as
in Lemma 3.3. If pR(x) coincide with (rpR(x)), then p(x) is called self reciprocal polynomial where r is
a constant in R.

Theorem 5.4. Let C = 〈p(x)〉 be a skew cyclic code of length n, where p(x) is a monic polynomial. Then
if C is reverse complement cyclic code then p(x) is a self reciprocal polynomial and 2(1 + u + u2)(xn −
1)/(x− 1) ∈ C.
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Proof. Let C = 〈p(x)〉 be a reverse complement cyclic code. Since C is linear (0, · · · , 0) ∈ C, therefore
2(1 + u+ u2)(xn − 1)/(x− 1) ∈ C. Let p(x) = 1 + p1x+ p2x

2 + · · ·+ xk. Then,

p(x)
R
= (p(x−1) · xk−1)
= 2(1 + u+ u2)(1 + x+ · · ·+ xn−k−2) + 1xn−k−1 + pk−1x

n−k + · · ·+ 1xn−1

= 2(1 + u+ u2)(1 + x+ · · ·+ xn−k−2) + (3 + 2(1 + u+ u2))xn−k−1+

(3pk−1 + 1 + u+ u2)xn−k + · · ·+ (3 + 2(1 + u+ u2))xn−1

Now as the C is a reverse complement code therefore p(x)
R
∈ C. Using linearity of C we have

2(1 + u+ u2)(xn − 1)/(x− 1) + p(x)
R
= 3xn−k−1 + 3pk−1x

n−k + · · ·+ 3xn−1 ∈ C.
Multiplying xk+1−n both side and making use of C is a left ideal of R[x, θ]-module Rnθ we get,

(2(1 + u+ u2)(xn − 1)/(x− 1) + p(x)
R
) · xk+1−n = 3(θn−k−1(1) + pk−1θ

n−k(1)x+ · · ·+ θn−1(1)xk)

= 3(1 + pk−1x + · · · + xk) = 3pR(x) ∈ C. Since C = 〈p(x)〉 implies 3pR(x) = h(x)p(x) for some
h(x) ∈ R[x, θ] degree of p(x) and pR(x) is same implies h(x) is constant. Hence p(x) is self reciprocal.

Example 5.5. Let p(x) = a+bx+cx2+dx3, where a = 1+u+u2, b = 2+2u+2u2 = c and d = 1+3u+u2.

We define a code C obtained by using G =

 p(x)
xp(x)
x2p(x)
x3p(x)

 as a generator matrix. Then C correspond to DNA

code which is reverse complement skew cyclic code of length 21 and |C| = 48 · 22.

6. Examples

Example 6.1. For n = 9, x9−1 = (x+3)(x2+x+1)(x6+x3+1), let C = 〈g(x)+up(x)+u2h(x)〉, where
g(x) = p(x) = h(x) = (x2 + x+1)(x6 + x3 +1). Clearly, this code satisfies g(x) = g∗(x), p(x) = xip∗(x),
h(x) = xjh∗(x), where i, j = 0, gives that C is a reverse complement cyclic DNA code of length n = 27
with minimum distance d = 9 and cardinality | C |= 64. The codewords in C are as follows.

ATCATCATCATCATCATCATCATCATC GCGGCGGCGGCGGCGGCGGCGGCGGCG
GTAGTAGTAGTAGTAGTAGTAGTAGTA GGAGGAGGAGGAGGAGGAGGAGGAGGA
TCATCATCATCATCATCATCATCATCA TCGTCGTCGTCGTCGTCGTCGTCGTCG
AAAAAAAAAAAAAAAAAAAAAAAAAAA GCAGCAGCAGCAGCAGCAGCAGCAGCA
CTACTACTACTACTACTACTACTACTA ACGACGACGACGACGACGACGACGACG
TTTTTTTTTTTTTTTTTTTTTTTTTTT GATGATGATGATGATGATGATGATGAT
ATAATAATAATAATAATAATAATAATA AGAAGAAGAAGAAGAAGAAGAAGAAGA
CCCCCCCCCCCCCCCCCCCCCCCCCCC GAGGAGGAGGAGGAGGAGGAGGAGGAG
ACAACAACAACAACAACAACAACAACA AATAATAATAATAATAATAATAATAAT
AAGAAGAAGAAGAAGAAGAAGAAGAAG GACGACGACGACGACGACGACGACGAC
AACAACAACAACAACAACAACAACAAC TTATTATTATTATTATTATTATTATTA
TGATGATGATGATGATGATGATGATGA GTTGTTGTTGTTGTTGTTGTTGTTGTT
TATTATTATTATTATTATTATTATTAT TAGTAGTAGTAGTAGTAGTAGTAGTAG
TACTACTACTACTACTACTACTACTAC GTGGTGGTGGTGGTGGTGGTGGTGGTG
TTGTTGTTGTTGTTGTTGTTGTTGTTG TTCTTCTTCTTCTTCTTCTTCTTCTTC
TGTTGTTGTTGTTGTTGTTGTTGTTGT GTCGTCGTCGTCGTCGTCGTCGTCGTC
TGGTGGTGGTGGTGGTGGTGGTGGTGG TGCTGCTGCTGCTGCTGCTGCTGCTGC
TCTTCTTCTTCTTCTTCTTCTTCTTCT GGTGGTGGTGGTGGTGGTGGTGGTGGT
TCCTCCTCCTCCTCCTCCTCCTCCTCC TAATAATAATAATAATAATAATAATAA
ATTATTATTATTATTATTATTATTATT GGCGGCGGCGGCGGCGGCGGCGGCGGC
ATGATGATGATGATGATGATGATGATG AGTAGTAGTAGTAGTAGTAGTAGTAGT
AGGAGGAGGAGGAGGAGGAGGAGGAGG GCTGCTGCTGCTGCTGCTGCTGCTGCT
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AGCAGCAGCAGCAGCAGCAGCAGCAGC ACTACTACTACTACTACTACTACTACT
ACCACCACCACCACCACCACCACCACC GCCGCCGCCGCCGCCGCCGCCGCCGCC
GAAGAAGAAGAAGAAGAAGAAGAAGAA CAACAACAACAACAACAACAACAACAA
CGACGACGACGACGACGACGACGACGA CCACCACCACCACCACCACCACCACCA
CATCATCATCATCATCATCATCATCAT CAGCAGCAGCAGCAGCAGCAGCAGCAG
CACCACCACCACCACCACCACCACCAC CTTCTTCTTCTTCTTCTTCTTCTTCTT
CTGCTGCTGCTGCTGCTGCTGCTGCTG CTCCTCCTCCTCCTCCTCCTCCTCCTC
CGTCGTCGTCGTCGTCGTCGTCGTCGT CGTCGTCGTCGTCGTCGTCGTCGTCGT
CGCCGCCGCCGCCGCCGCCGCCGCCGC CCTCCTCCTCCTCCTCCTCCTCCTCCT
CCGCCGCCGCCGCCGCCGCCGCCGCCG GGGGGGGGGGGGGGGGGGGGGGGGGGG

Example 6.2. For n = 5, x5− 1 = (x+3)(x4 +x3 +x2 +x+1), let C = 〈g(x)+up(x)+u2h(x)〉, where
g(x) = p(x) = h(x) = (x2 + x+1)(x6 + x3 +1). Clearly, this code satisfies g(x) = g∗(x), p(x) = xip∗(x),
h(x) = xjh∗(x) and hence this is a reverse complement DNA cyclic code of length n = 15 with minimum
distance d = 5 and cardinality | C |= 64. The code C contains the following codewords.

ATCATCATCATCATC GCGGCGGCGGCGGCG
GTAGTAGTAGTAGTA GGAGGAGGAGGAGGA
TCATCATCATCATCA TCGTCGTCGTCGTCG
AAAAAAAAAAAAAAA GCAGCAGCAGCAGCA
CTACTACTACTACTA ACGACGACGACGACG
TTTTTTTTTTTTTTT GATGATGATGATGAT
ATAATAATAATAATA AGAAGAAGAAGAAGA
CCCCCCCCCCCCCCC GAGGAGGAGGAGGAG
ACAACAACAACAACA AATAATAATAATAAT
AAGAAGAAGAAGAAG GACGACGACGACGAC
AACAACAACAACAAC TTATTATTATTATTA
TGATGATGATGATGA GTTGTTGTTGTTGTT
TATTATTATTATTAT TAGTAGTAGTAGTAG
TACTACTACTACTAC GTGGTGGTGGTGGTG
TTGTTGTTGTTGTTG TTCTTCTTCTTCTTC
TGTTGTTGTTGTTGT GTCGTCGTCGTCGTC
TGGTGGTGGTGGTGG TGCTGCTGCTGCTGC
TCTTCTTCTTCTTCT GGTGGTGGTGGTGGT
TCCTCCTCCTCCTCC TAATAATAATAATAA
ATTATTATTATTATT GGCGGCGGCGGCGGC
ATGATGATGATGATG AGTAGTAGTAGTAGT
AGGAGGAGGAGGAGG GCTGCTGCTGCTGCT
AGCAGCAGCAGCAGC ACTACTACTACTACT
ACCACCACCACCACC GCCGCCGCCGCCGCC
GAAGAAGAAGAAGAA CAACAACAACAACAA
CGACGACGACGACGA CCACCACCACCACCA
CATCATCATCATCAT CAGCAGCAGCAGCAG
CACCACCACCACCAC CTTCTTCTTCTTCTT
CTGCTGCTGCTGCTG CTCCTCCTCCTCCTC
CGTCGTCGTCGTCGT CGTCGTCGTCGTCGT
CGCCGCCGCCGCCGC CCTCCTCCTCCTCCT
CCGCCGCCGCCGCCG GGGGGGGGGGGGGGG

7. Conclusion

In this paper, we have investigated one generator cyclic codes over the ring R = Z4 + uZ4 + u2Z4,
where u3 = 0 with reverse and reverse complement constraint. We have determined a mapping between
codons and elements of R. We have studied binary image and skew cyclic codes over R with reverse and
reverse complement constraints. This work can be used to generate general DNA cyclic code over R.
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