Journal of Algebra Combinatorics Discrete Structures and Applications

Cordiality of digraphs

Abstract: A $(0,1)$-labelling of a set is said to be friendly if approximately one half the elements of the set are labelled 0 and one half labelled 1. Let g be a labelling of the edge set of a graph that is induced by a labelling f of the vertex set. If both g and f are friendly then g is said to be a cordial labelling of the graph. We extend this concept to directed graphs and investigate the cordiality of sets of directed graphs. We investigate a specific type of cordiality on digraphs, a restriction of quasigroup-cordiality called $(2,3)$-cordiality. A directed graph is $(2,3)$-cordial if there is a friendly labelling f of the vertex set which induces a $(1,-1,0)$-labelling of the arc set g such that about one third of the arcs are labelled 1, about one third labelled -1 and about one third labelled 0 . In particular we determine which tournaments are $(2,3)$-cordial, which orientations of the n-wheel are $(2,3)$-cordial, and which orientations of the n-fan are $(2,3)$-cordial.

2010 MSC: 05C20, 05C38, 05C78
Keywords: Tournament, Wheel graph, Fan graph, (2,3)-cordial

1. Introduction

The study of cordial graphs began in 1987 with an article by I. Cahit [2]: "Cordial Graphs: A Weaker Version of Graceful and Harmonious Graphs". In 1991, Hovey [3] generalized this concept to \mathcal{A}-cordial graphs where \mathcal{A} is an abelian group. A further generalization, one that included cordiality of directed graphs, appeared in 2012 with an article by Pechenik and Wise [4], where the \mathcal{A} was allowed to be any quasi group, not necessarily Abelian. We modify this concept to (A, \mathcal{A})-cordial digraphs where A is a subset of the quasigroup \mathcal{A}.

Let $G=(V, E)$ be an undirected graph with vertex set V and edge set E. A $(0,1)$-labelling of the vertex set is a mapping $f: V \rightarrow\{0,1\}$ and is said to be friendly if approximately one half of the vertices are labelled 0 and the others labelled 1. An induced labelling of the edge set is a mapping $g: E \rightarrow\{0,1\}$ where for an edge $u v, g(u v)=\hat{g}(f(u), f(v))$ for some $\hat{g}:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$ and is said to be cordial

[^0]if f is friendly and about one half the edges of G are labelled 0 and the others labelled 1. A graph, G, is called cordial if there exists a cordial induced labelling of the edge set of G. In this article, as in [1], we define a cordial labelling of directed graphs that is not merely a cordial labelling of the underlying undirected graph.

A specific type of (A, \mathcal{A})-cordial digraph is a $(2,3)$-cordial digraph defined by Beasley in [1]. Let $D=(V, A)$ be a directed graph with vertex set V and arc set A. Let $f: V \rightarrow\{0,1\}$ be a friendly vertex labelling and let g be the induced labelling of the arc set, $g: A \rightarrow\{0,1,-1\}$ where fon an arc $\overrightarrow{u v}, g(\overrightarrow{u v})=f(v)-f(u)$. The labellings f and g are $(2,3)$-cordial if f is friendly and about one third the arcs of D are labelled 1, one third are labelled -1 and one third labelled 0 . A digraph, D, is called $(2,3)$-cordial if there exist $(2,3)$-cordial labellings f of the vertex set and g of the arc set of D.

Note that here and what follows, the term "about" when talking about fractions of a quantity we shall mean as close is possible in integral arithmetic, so about half of 9 is either 4 or 5 , but not 3 or 6 .

2. Preliminaries

Definition 2.1. A quasigroup is a set \mathcal{Q} with binary operation ofuch that given any $a, b \in \mathcal{Q}$ there are $x, y \in \mathcal{Q}$ such that $a \circ x=b$ and $y \circ a=b$.

Fact: All two element quasigroups are Abelian.
Proof. Suppose that $\mathcal{Q}=\{a, b\}$ is a quasi group with binary operation \circ. Then, there are $x, y \in \mathcal{Q}$ such that $a \circ x=a$ and $y \circ a=a$. If $x=y=b$ then \mathcal{Q} is Abelian. Otherwise, we must have $a \circ a=a$. Similarly either \mathcal{Q} is abelian or $b \circ b=b$.

Now, suppose that $a \circ a=a$ and $b \circ b=b$. Then there are $c, d \in \mathcal{Q}$ such that $a \circ d=b$ and $c \circ a=b$. Since $a \circ a=a$., we must have that both $c=b$ and $d=b$. That is \mathcal{Q} is Abelian.

We now formalize the terms mentioned in the introduction. We let \mathbb{Z}_{k} denote the set of integers $\{0,1, \ldots, k\}$ with arithmetic modulo k. Further let \mathbb{Z}_{k}^{-}denote the set \mathbb{Z}_{k} with binary operation "-", subtraction modulo k. Clearly, for $k \geq 3, \mathbb{Z}_{k}^{-}$is a nonabelian quasigroup.

Definition 2.2. $A \mathbb{Z}_{k}$-labelling (or simply a k-labelling) of a finite set, \mathcal{X}, is a mapping $f: \mathcal{X} \rightarrow \mathbb{Z}_{k}$ and is said to be friendly if the labelling is evenly distributed over \mathbb{Z}_{k}, that is, given any $i, j \in \mathbb{Z}_{k}$, $-1 \leq\left|f^{-1}(i)\right|-\left|f^{-1}(j)\right| \leq 1$ where $|\mathcal{X}|$ denotes the cardinality of the set \mathcal{X}.
Definition 2.3. Let $G=(V, E)$ be an undirected graph with vertex set V and edge set E, and let f be a friendly $(0,1)$-labelling of the vertex set V. Given this friendly vertex labelling f, an induced $(0,1)$ labelling of the edge set is a mapping $g: E \rightarrow\{0,1\}$ where for an edge $u v, g(u v)=\hat{g}(f(u), f(v))$ for some $\hat{g}:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$ and is said to be cordial if g is also friendly, that is about one half the edges of G are labelled 0 and the others are labelled 1, or $-1 \leq\left|g^{-1}(0)\right|-\left|g^{-1}(1)\right| \leq 1$. A graph, G, is called cordial if there exists a induced cordial labelling of the edge set of G.

The induced labelling g in a cordial graph is usually $g(u, v)=\hat{g}(f(u), f(v))=|f(v)-f(u)|$ [2], $g(u, v)=\hat{g}(f(u), f(v))=f(v)+f(u)\left(\right.$ in $\left.\mathbb{Z}_{2}\right)[3]$, or $g(u, v)=\hat{g}(f(u), f(v))=f(v) f(u)$ (product cordiality) [5].

In [3], Hovey introduced \mathcal{A}-friendly labellings where \mathcal{A} is an Abelian group. A labelling $f: V(G) \rightarrow \mathcal{A}$ is said to be \mathcal{A}-friendly if given any $a, b \in \mathcal{A},-1 \leq\left|f^{-1}(b)\right|-\left|f^{-1}(a)\right| \leq 1$. If g is an induced edge labelling and \bar{f} and g are both \mathcal{A}-friendly Then g is said to be an \mathcal{A}-cordial labelling and G is said to be \mathcal{A}-cordial. When $\mathcal{A}=\mathbb{Z}_{k}$ we say that G is k-cordial. We shall use this concept with digraphs.

Given an undirected graph or a digraph, G, let \hat{G} denote the subgraph (or subdigraph) of G induced by its nonisolated vertices. So \hat{G} never has an isolated vertex. The need for this will become apparent in Example 3.4.

In this article, we will be concerned mainly with digraphs. We let \mathcal{D}_{n} denote the set of all simple directed graphs on the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Note that the arc set of members of \mathcal{D}_{n} may contain digons, a pair of arcs between two vertices each directed opposite from the other. We shall let \mathcal{T}_{n} denote the set of all subdigraphs of a tournament digraph. So the members of \mathcal{T}_{n} contain no digons. Let $D \in \mathcal{D}_{n}, D=(V, A)$ where A is the arc set of D. Then D has no loops, and no multiple arcs. An arc in D directed from vertex u to vertex v will be denoted $\overrightarrow{u v}, \overleftarrow{v u}$ or by the ordered pair (u, v). We also let \mathcal{G}_{n} denote the set of all simple undirected graphs on the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. So all members of \mathcal{T}_{n} are orientations of graphs in \mathcal{G}_{n}.

In [4], Pechenik and Wise introduced quasigroup cordiality. When the quasigroup is nonabelian, this type of cordiality is quite suitable for studying labellings of directed graphs. In fact, if \mathcal{Q} is a quasigroup with any binary operation \circ with the property that for any $a, b \in \mathcal{Q} a \circ b=b \circ a$ if and only if $a=b$, we have the best situation for directed graphs.

Now the set \mathbb{Z}_{k} with binary operation \circ where for $a, b \in \mathbb{Z}_{k}, a \circ b=(b-a) \bmod k$ is such a quasigroup.

In our investigations we make one further restriction: we will label our vertices with only a subset of \mathcal{Q}, not necessarily the whole set \mathcal{Q} :

Definition 2.4. Let \mathcal{Q} be a quasigroup with binary operation \circ and let \mathbb{Q} be a subset of \mathcal{Q}. Let $D=(V, A)$ be a directed graph with vertex set V and arc set A. Let $f: V \rightarrow \mathbb{Q}$ be a friendly \mathbb{Q}-labelling of V and let $g: A \rightarrow \mathcal{Q}$ be an induced arc labelling where for $\overrightarrow{u v} \in A, g(\overrightarrow{u v})=\hat{g}(f(u), f(v))$ for some $\hat{g}: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathcal{Q}$. The mapping g is said to be $(\mathbb{Q}, \mathcal{Q})$-cordial if g is also friendly, that is, given any $a, b \in \mathcal{Q},-1 \leq\left|g^{-1}(a)\right|-\left|g^{-1}(b)\right| \leq 1$. A directed graph, D, is called $(\mathbb{Q}, \mathcal{Q})$-cordial if there exists a induced $(\mathbb{Q}, \mathcal{Q})$-cordial labelling of the arc set of D.

We now shall restrict our attention to the smallest case of $(\mathbb{Q}, \mathcal{Q})$-cordiality that is appropriate for directed graphs, $\left(\mathbb{Z}_{2}, \mathbb{Z}_{3}^{-}\right)$-cordiality, that defined by Beasley in [1], (2, 3)-cordiality.

3. $(2,3)$-orientable digraphs

Let $D=(V, A)$ be a directed graph with vertex set V and arc set A. Let $f: V \rightarrow\{0,1\}$ be a friendly labelling of the vertices of D. As for undirected graphs, an induced labelling of the arc set is a mapping $g: A \rightarrow \mathcal{X}$ for some set \mathcal{X} where for an $\operatorname{arc}(u, v)=\overrightarrow{u v}, g(u, v)=\hat{g}(f(u), f(v))$ for some $\hat{g}:\{0,1\} \times\{0,1\} \rightarrow \mathcal{X}$. As we are dealing with directed graphs, it would be desirable for the induced labelling to distinguish between the label of the $\operatorname{arc}(u, v)$ and the label of the arc (v, u), otherwise, the labelling would be an induced labelling of the underlying undirected graph. If we let $\mathcal{X}=\{-1,0,1\}$ and $\hat{g}(f(u), f(v))=f(v)-f(u)$ using real arithmetic, or arithmetic in \mathbb{Z}_{3}, we have an asymmetric labelling. In this case, if about one third of the arcs are labelled 0 , about one third of the arcs are labelled 1 and about one third of the arcs are labelled -1 we say that the labelling is $(2,3)$-cordial. Formally:

Definition 3.1. Let $D \in \mathcal{T}_{n}, D=(V, A)$, be a digraph without isolated vertices. Let $f: V \rightarrow\{0,1\}$ be a friendly labelling of the vertex set V of D. Let $g: A \rightarrow\{1,0,-1\}$ be an induced labelling of the arcs of D such that for any $i, j \in\{1,0,-1\},-1 \leq\left|g^{-1}(i)\right|-\left|g^{-1}(j)\right| \leq 1$. Such a labelling is called a $\underline{(2,3) \text {-cordial }}$ labelling.

A digraph $D \in \mathcal{T}_{n}$ whose subgraph \hat{G} can possess a $(2,3)$-cordial labelling will be called a $(2,3)$-cordial digraph.

An undirected graph G is said to be (2,3)-orientable if there exists an orientation of G that is $(2,3)$ cordial.

In [1] the concept of $(2,3)$-cordial digraphs was introduced and paths and cycles were investigated. In [6] one can find further investigation of orientations of paths and trees as well as finding the maximum number of arcs possible in a $(2,3)$-cordial digraph. In this article we continue this investigation, showing
which tournaments, which orientations of the wheel graphs, and which orientations of the fan graphs are (2,3)-cordial.

Definition 3.2. Let $D=(V, A)$ be a digraph with vertex labelling $f: V \rightarrow\{0,1\}$ and with induced arc labelling $g: A \rightarrow\{0,1,-1\}$. Define $\Lambda_{f, g}: \mathcal{D}_{n} \rightarrow \mathbb{N}^{3}$ by $\Lambda_{f, g}(D)=(\alpha, \beta, \gamma)$ where $\alpha=\left|g^{-1}(1)\right|, \beta=$ $\left|g^{-1}(-1)\right|$, and $\gamma=\left|g^{-1}(0)\right|$.

Let $D \in \mathcal{T}_{n}$ and let D^{R} be the digraph such that every arc of D is reversed, so that $\overrightarrow{u v}$ is an are in D^{R} if and only if $\overrightarrow{v u}$ is an arc in D. Let f be a (0,1)-labelling of the vertices of D and let $g(\overrightarrow{u v})=f(v)-f(u)$ so that g is a $(1,-1,0)$-labelling of the arcs of D. Let \bar{f} be the complementary $(0,1)$-labelling of the vertices of D, so that $\bar{f}(v)=0$ if and only if $f(v)=1$. Let \bar{g} be the corresponding induced arc labelling of $D, \bar{g}(\overrightarrow{u v})=\bar{f}(v)-\bar{f}(u)$.

Lemma 3.3. Let $D \in \mathcal{T}_{n}$ with vertex labelling f and induced arc labelling g. Let $\Lambda_{f, g}(D)=(\alpha, \beta, \gamma)$. Then

$$
\begin{aligned}
& \text { 1. } \Lambda_{f, g}\left(D^{R}\right)=(\beta, \alpha, \gamma) \text {. } \\
& \text { 2. } \Lambda_{\bar{f}, \bar{g}}(D)=(\beta, \alpha, \gamma) \text {, and } \\
& \text { 3. } \Lambda_{\bar{f}, \bar{g}}\left(D^{R}\right)=\Lambda_{f, g}(D) \text {. }
\end{aligned}
$$

Proof. If an arc is labelled $1,-1,0$ respectively then reversing the labelling of the incident vertices gives a labelling of $-1,1,0$ respectively. If an arc $\overrightarrow{u v}$ is labelled $1,-1,0$ respectively, then $\overrightarrow{v u}$ would be labelled $-1,1,0$ respectively.

Example 3.4. Now, consider a graph, \amalg_{n} in \mathcal{G}_{n} consisting of three parallel edges and n- 6 isolated vertices. Is $\amalg_{n}(2,3)$-orientable? If $n=6$, the answer is no, since any friendly labelling of the six vertices would have either no arcs labelled 0 or two arcs labelled 0. In either case, the orientation would never be $(2,3)$-cordial. That is \amalg_{6} is not (2,3)-orientable, however with additional vertices like \amalg_{7} the graph is $(2,3)$-orientable.

Thus, for our investigation here, we will use the convention that a graph, G, is (2,3)-orientable/ $(2,3)$ cordial if and only if the subgraph of G induced by its nonisolated vertices, \hat{G}, is (2,3)-orientable/(2,3)cordial.

3.1. (2,3)-orientations of a complete graph-tournaments

It is an easy exercise to show that every 3 -tournament is $(2,3)$-cordial and that two of the four non isomorphic 4 -tournaments are $(2,3)$-cordial. See Figures 2 and 3. Note that the 4 -tournaments that are not $(2,3)$-cordial may require more than a cursory glance to verify that they are not $(2,3)$-cordial.

Lemma 3.5. Ev̌ery 5 -tournament is $(2,3)$-cordial.
Proof. Let $T \in \mathcal{D}_{5}$ be a tournament. Then there are two vertices, without loss of generality, v_{1} and v_{2}, whose total out degree is four. (And hence the total in-degree of v_{1} and v_{2} is also four.) Let f be the vertex labelling and let $f\left(v_{1}\right)=f\left(v_{2}\right)=1$ and $f\left(v_{3}\right)=f\left(v_{4}\right)=f\left(v_{5}\right)=0$. Let g be the arc labelling $g\left(\overrightarrow{v_{i} v_{j}}\right)=f\left(v_{j}\right)-f\left(v_{i}\right)$. Then, the arc between v_{1} and v_{2} is labelled 0 , as are the three arcs between v_{3}, v_{4} and v_{5}. Thus there are four arcs labelled 0 . The three arcs from v_{1} or v_{2} to vertices v_{3}, v_{4} or v_{5} are labelled 1 and the three arcs from v_{3}, v_{4} or v_{5} to vertices v_{1} or v_{2} are labelled -1 . In Figure 1 is an example of the labelling described above. Thus $\Lambda_{f, g}(T)=(3,3,4)$. That is T is (2,3)-cordial.

Lemma 3.6. If $n \geq 6$ and $T \in \mathcal{D}_{n}$ is a tournament on n vertices then T is not (2,3)-cordial.

Figure 1. A (2,3)-cordial labelling of a 5-tournament

Proof. We divide the proof into two cases:
Case 1. n is even. Let $n=2 k$. We shall show that there must be more arcs labelled 0 than is allowed in any $(2,3)$-cordial digraph with $\frac{n(n-1)}{2}$ arcs. For any vertex labelled 0 , there are $k-1$ other vertices also labelled 0 so that there are $k-1$ arcs labelled 0 that either begin or terminate at that vertex. Also there are k such vertices so there are $k(k-1) / 2$ arcs between pairs of vertices each labelled 0 . (Note, since each arc is adjacent to two vertices we have divided the total number by 2 to get the number of distinct arcs labelled 0 .) There are also $k(k-1) / 2$ arcs between pairs of vertices each labelled 1 . Thus we must have $k(k-1)$ arcs labelled 0 .

Now, there must be at most one third the number of arcs labelled 0 , so we must have $3 k(k-1) \leq$ $\frac{n(n-1)}{2}+2=\frac{4 k^{2}-2 k+4}{2}$. That is, we must have $k^{2}-2 k-2 \leq 0$. But that only happens if $k \leq 2$. So if $k \geq 3$ or $n \geq 6, T$ is not (2,3)-cordial.
Case 2. n is odd. Let $n=2 k+1$. Without loss of generality, we may assume that there are k vertices labelled 0 and $k+1$ vertices labelled 1 . Thus there are $\frac{1}{2} k(k-1)$ arcs labelled 0 that connect two vertices labelled 0 and $\frac{1}{2}(k+1) k$ arcs labelled 0 that connect two vertices labelled 1 . Thus there are at least k^{2} arcs labelled 0 . To be $(2,3)$-cordial we must have that $3 k^{2} \leq \frac{n(n-1)}{2}+2$, or $k^{2}-k-2 \leq 0$. That happens only if $k \leq 2$. But, since n is odd, $n \geq 7$ so $k \geq 3$. Thus, T is not (2,3)-cordial.

Lemma 3.7. The tournaments $T_{4,3}$ and $T_{4,4}$ of Figure 3 are not (2,3)-cordial.
Proof. Since $T_{4,4}$ is the reversal of $T_{4,3}$, by Lemma 3.3 we only need show that $T_{4,3}$ is not (2,3)-cordial. Further, by Lemma 3.3 we may assume that the upper left vertex of $T_{4,3}$ in Figure 3 is labelled 0 . Since any permutation of the other three vertices results in an isomorphic graph we may assume that the upper

and

Figure 2. (2,3)-cordial labellings of 3- tournaments

$$
T_{4,1}:(2,2,1,1)
$$

$T_{4,2}:(3,2,1,0)$

$T_{4,4}:(3,1,1,1)$
Not (2,3)-cordial

Figure 3. (2, 3)-cordial labellings of two 4-tournaments and two non (2,3) cordial 4-tournaments with their out-degree sequences.
right vertex is labelled 0 and the bottom two are labelled 1 . This results in one arc labelled 1 , three arcs labelled -1 and two arcs labelled 0 . Thus $T_{4,3}$ is not $(2,3)$-cordial.

Theorem 3.8. Let T be an n-tournament. Then T is (2,3)-cordial if and only if $n \leq 5$ and T is not isomorphic to $T_{4,3}$ or $T_{4,4}$.

Proof. Lemmas 3.7, 3.5 and 3.6 together with Figures 2 and 3 establish the theorem.

We end this section with a couple of observations we label as corollaries:
Corollary 3.9. The property of being (or not being) $(2,3)$-cordial is not closed under vertex deletion.
Proof. Every tournament on k vertices is a vertex deletion of a tournament on $k+1$ vertices. Thus, $T_{4,3}$, which is not $(2,3)$-cordial, is a vertex deletion of a tournament on 5 vertices, which is $(2,3)$-cordial, and this tournament is a vertex deletion of a tournament on 6 vertices, which is not $(2,3)$-cordial.

Corollary 3.10. The property of being (or not being) (2,3)-cordial is not closed under arc contraction.
Proof. As in the above corollary, every tournament on k vertices is an arc contraction of a tournament on $k+1$ vertices. Thus, $T_{4,3}$, which is not $(2,3)$-cordial, is an arc contraction of a tournament on 5 vertices, which is (2,3)-cordial, and this tournament is an arc contraction of a tournament on 6 vertices, which is not $(2,3)$-cordial.

3.2. $(2,3)$-orientations of wheel graphs

A wheel graph on n vertices consists of an $(n-1)$-star together with edges joining the non central vertices in a cycle. A 6 -wheel is shown in Figure 4 . Since we are not concerned with digraphs that contain digons, we shall assume that $n \geq 4$ in this section.

An orientation of the wheel graph with the central vertex being a source/sink is called an out/inwheel. If the outer cycle of the wheel is oriented in a directed cycle the wheel is called a cycle-wheel. If the n-wheel is oriented such that it is both an out-wheel and a cycle-wheel it is called an n-cycle-out-wheel. See Figure 5.

Figure 4. A 6-wheel graph.

Definition 3.11. Let $W_{n}=(V, A)$ be an n-wheel digraph with central vertex v_{n} and with vertex labelling $f: V \rightarrow\{0,1\}$. Let g be the induced arc labelling $g: A \rightarrow\{0,1,-1\}$ where $g(\overrightarrow{u v})=f(v)-f(u)$. Let

S be the set of arcs incident with the central vertex and let T be the set of arcs not incident with the central vertex. Define $\Lambda_{f, g}^{S}$ to be the real triple $\Lambda_{f, g}^{S}(D)=\left(\alpha_{S}, \beta_{S}, \gamma_{S}\right)$ where $\alpha_{S}=\left|g^{-1}(1) \cap S\right|, \beta_{S}=$ $\left|g^{-1}(-1) \cap S\right|$, and $\gamma_{S}=\left|g^{-1}(0) \bigwedge S\right|$ and $\Lambda_{f, g}^{T}$ to be the real triple $\Lambda_{f, g}^{T}(D)=\left(\alpha_{T}, \beta_{T}, \gamma_{T}\right)$ where $\alpha_{T}=$ $\left|g^{-1}(1) \cap T\right|, \beta_{T}=\left|g^{-1}(-1) \cap T\right|$, and $\gamma_{T}=\left|g^{-1}(0) \cap T\right|$. Since $S \cup T=A$, the set of all arcs of D, $\alpha_{S}+\alpha_{T}=\alpha, \beta_{S}+\beta_{T}=\beta$, and $\gamma_{S}+\gamma_{T}=\gamma$, where $\Lambda_{f, g}(D)=(\alpha, \beta, \gamma)$.
Theorem 3.12. Let $\overrightarrow{W_{n}}$ be an n-cycle-out-wheel graph with central vertex v_{n}. Then $\overrightarrow{W_{n}}$ is not $(2,3)$ cordial.

Proof. We proceed with two eases, the case that n is even then the case that n is odd. Let $\overrightarrow{W_{n}}=(V, A)$ and let $f: V \rightarrow\{0,1\}$ be a vertex labelling and $g: A \rightarrow\{0,1,-1\}$ be the induced arc labelling, $g(\overrightarrow{u v}=f(v)-f(u)$. Suppose that f and g is a $(2,3)$-cordial labelling.

Case 1: $n=2 k$. Without loss of generality, we may assume that $f\left(v_{n}\right)=0$. Thus, $\alpha_{S}=k, \beta_{S}=0$ and $\gamma_{S}=k-1$. Further, since the orientation is cyclic, $\alpha_{T}=\beta_{T}$. Since $\alpha-1 \leq \beta \leq \alpha+1$ we have $\alpha_{T}+k-1=\alpha_{T}+\alpha_{S}-1=\alpha-1 \leq \beta=\beta_{T}+\beta_{S}=\beta_{T}=\alpha_{T}$. Thus $k-1 \leq 0$ or $k \leq 1$, a contradiction since $n \geq 4$.

Case 2: $n=2 k+1$. Without loss of generality we may assume that $f\left(v_{n}\right)=0$. Since either k or $k+1$ of the non central vertices must be labelled 0 , we have two possibilities: $\alpha_{S}=k$ or $\alpha_{S}=k+1$.
Subcase 1. $\alpha_{S}=k$ Here we have $\gamma_{S}=k$ and $\beta_{S}=0$. Further, $\alpha_{T}=\beta_{T}$ since \vec{W} is cyclic. Since the labelling is (2,3)-cordial, $\alpha-1 \leq \beta \leq \alpha+1$. Thus $k+\alpha_{T}-1=\alpha_{S}=\alpha_{T}-1=\alpha-1 \leq \beta=\beta_{S}+\beta_{T}=\alpha_{T}$. That is $k-1 \leq 0$ or $k \leq 1$, a contradiction since $n \geq 4$.
Subcase 2. $\alpha_{S}=k+1$ Here we have $\gamma_{S}=k-1$ and $\beta_{S}=0$. Further, $\alpha_{T}=\beta_{T}$ since \vec{W} is cyclic. Since the labelling is (2,3)-cordial, $\alpha-1 \leq \beta \leq \alpha+1$. Thus $k+\alpha_{T}=k+1+\alpha_{T}-1=\alpha_{S}+\alpha_{T}-1=\alpha-1 \leq$ $\beta=\beta_{S}+\beta_{T}=\alpha_{T}$. That is $k \leq 0$, a contradiction since $n \geq 4$.

In all cases we have arrived at a contradiction thus we must have that \vec{W} is not (2,3)-cordial.
Lemma 3.13. Let C be an undirected cycle with a $(0,1)$-vertex labelling. Then, there is an even number of edges in C whose incident vertices are labelled differently.

Proof. We may assume that the vertex v_{1} is labelled 0 . Going around the cycle, the labelling goes from 0 to 1 then back again to zero. This two step change must happen a fixed number of times then return to vertex v_{1}. Thus there are an equal number of changes in labelling from 0 to 1 and from 1 to 0 . That is, the total number of changes is an even number.

Theorem 3.14. Let W_{n} be the undirected wheel graph on n vertices. Then, W_{n} is not (2,3)-orientable if and only if $n=2 k$ for some integer k, 4 does not divide n, and $2 n-2=3 z$ for some integer z.

Proof. Let $\overrightarrow{W_{n}}$ be an orientation of the wheel graph on n vertices with central vertex v_{n} Let A_{H} be the set of arcs incident with v_{n}, and let A_{R} be the arcs not incident with v_{n}. Then $A=A_{H} \cup A_{R}$. Let f be a friendly vertex labelling and g the induced arc labelling of $\overrightarrow{W_{n}}$. Define, $\left.\chi_{f, H}(x)\right)=\left|g^{-1}(x) \cap A_{H}\right|$, and $\lambda_{f, R}(x)=\left|g^{-1}(x) \cap A_{R}\right|$, Define $\lambda_{f}(x)=\lambda_{f, H}(x)+\lambda_{f, R}(x)$, that is $\lambda_{f}(x)=\left|g^{-1}(x)\right|$.

We begin by showing for $n=2 k$ for some integer $k, k=2 \ell+1$ for some integer ℓ, and $2 n-2=3 z$ for some integer z that W_{n} is not $(2,3)$-orientable. In this case, We may assume that $f\left(v_{n}\right)=0$ and $\lambda_{f, H}(1)+\lambda_{f, H}(-1)=k$, an odd integer. By Lemma 3.13 the number of arcs that are not incident with v_{n} and labelled either 1 or -1 is even. Thus $\lambda_{f}(1)+\lambda_{f}(-1)=\left(\lambda_{f, H}(1)+\lambda_{f, H}(-1)\right)+\left(\lambda_{f, R}(1)+\lambda_{f, R}(-1)\right)$ is the sum of an even integer and an odd integer, so that $\lambda_{f}(1)+\lambda_{f}(-1)$ is an odd integer. But since the total number of arcs is $2 n-2=3 z$, if $\overrightarrow{W_{n}}$ is $(2,3)$-cordial, we must have $\lambda_{f}(1)+\lambda_{f}(-1)=2 z$, an even integer, a contradiction. Thus, in this case W_{n} is not (2,3)-orientable.

We now show that for all other cases W_{n} is $(2,3)$-orientable. We divide the proof into three cases, those being whether the total number of edges in W_{n} is a multiple of three, one more than a multiple of three, or two more than a multiple of three.

Case 1. $2 n-2=3 z$ for some integer z.
Subcase 1.1. $n=2 k$ and $k=2 \ell$. In this case, let f be the labelling such that the labelling of the cycle has $2\left(z-\frac{k}{2}\right)$ edges incident with vertices labelled differently. Orient all arcs not incident with v_{n} clockwise around the cycle. Orient half the arcs incident with v_{n} that are labelled 1 away from v_{n}, and half toward v_{n}. In this case, $\lambda_{f, H}(0)=k-1$, and $\lambda_{f, H}(1)=\lambda_{f, H}(-1)=\frac{k}{2}=\ell$. Further, $\lambda_{f, R}(1)=\lambda_{f, R}(-1)=z-\frac{k}{2}$. Thus, $\lambda_{f}(1)=\lambda_{f}(-1)=\lambda_{f, H}(1)+\lambda_{f, R}(1)=\ell+z-\frac{k}{2}=z$. Thus, we must also have $\lambda_{f}(0)=z$, and that W_{n} is $(2,3)$-orientable.

Subcase 1.2. $n=2 k+1$. In this case proceed as in Subcase 1.1, labelling the vertices not incident with v_{n} with an even number of 1 's (either k or $k+1$). Let ℓ be half of this even number. Then, we produce a (2,3)-cordial orientation of W_{n} the same as in Subcase 1.1.

Case 2. $2 n-2=3 z+1$ for some integer z.
Subcase 2.1. $n=2 k, k=2 \ell$. In this case, let f be the labelling such that the labelling of the cycle has $2\left(z-\frac{k}{2}\right)$ edges incident with vertices labelled differently. Orient all arcs not incident with v_{n} clockwise around the cycle. Orient half the arcs incident with v_{n} that are labelled 1 away from v_{n}, and half toward v_{n}. In this case, $\lambda_{f, H}(0)=k-1, \lambda_{f, H}(1)=\lambda_{f, H}(-1)=\frac{k}{2}=\ell$. Further, $\lambda_{f, R}(1)=\lambda_{f, R}(-1)=z-\frac{k}{2}$. Thus, $\lambda_{f}(1)=\lambda_{f}(-1)=\lambda_{f, H}(1)+\lambda_{f, R}(1)=\ell+z-\frac{k}{2}=z$. Thus, we must also have $\lambda_{f}(0)=z+1$, and that W_{n} is (2,3)-orientable.

Subcase 2.2. $n=2 k, k=2 \ell+1$ In this case, let f be the labelling such that the labelling of the cycle has $2\left(z-\frac{k-1}{2}\right)$ edges incident with vertices labelled differently. Orient ℓ of the arcs incident with v_{n} that are labelled 1 away from v_{n}, and $\ell+1$ of those arcs toward v_{n}. In this case, $\lambda_{f, H}(0)=k-1, \lambda_{f, H}(1)=\ell$ and $\lambda_{f, H}(-1)=\ell+1$. Further, $\lambda_{f, R}(1)=\lambda_{f, R}(-1)=z-\frac{k}{2}=z=\ell$. Thus, $\lambda_{f}(1)=\lambda_{f, H}(1)+\lambda_{f, R}(1)=$ $\ell+z-\ell=z$, and $\lambda_{f}(-1)=\lambda_{f, H}(-1)+\lambda_{f, R}(-1)=\ell+1+z-\ell=z+1$. Thus, we must also have $\lambda_{f}(0)=2 n-2-(z)-(z+1)=z$, and thus W_{n} is (2,3)-orientable.

Subcase 2.3. $n=2 k+1$. In this case proceed as in Subcase 2.1 labelling the vertices not incident with v_{n} with an even number of 1 's (either k or $k+1$ depending upon whether k is even or odd). Let ℓ be half of this even number. Then, we produce a $(2,3)$-cordial orientation of W_{n} the same as in Subcase 2.1.

Case 3. $2 n-2=3 z+2$ for some integer z.
Subcase 3.1. $n=2 k, k=2 \ell$. In this case, let f be the labelling such that the labelling of the cycle has $2\left(z-\frac{k}{2}\right)$ edges incident with vertices labelled differently. Orient all arcs not incident with v_{n} elockwise around the cycle. Orient half the arcs incident with v_{n} that are labelled 1 away from v_{n}, and half toward v_{n}. In this case, $\lambda_{f, H}(0)=k-1, \lambda_{f, H}(1)=\lambda_{f, H}(-1)=\frac{k}{2}=\ell$. Further, $\lambda_{f, R}(1)=\lambda_{f, B}(-1)=z-\frac{k}{2}$. Thus, $\lambda_{f}(1)=\lambda_{f}(-1)=\lambda_{f, H}(1)+\lambda_{f, R}(1)=\ell+z-\frac{k}{2}=z$. Thus, we must also have $\lambda_{f}(0)=z+1$, and that W_{n} is $(2,3)$-orientable.

Subcase 3.2. $n=2 k, k=2 \ell+1$ In this case, let f be the labelling such that the labelling of the cycle has $2\left(z-\frac{k-1}{2}\right)$ edges incident with vertices labelled differently. Orient ℓ of the arcs incident with v_{n} that are labelled 1 away from v_{n}, and $\ell+1$ toward v_{n}. In this case, $\lambda_{f, H}(0)=k-1, \lambda_{f, H}(1)=\ell$ and $\lambda_{f, H}(-1)=\ell+1$. Further, $\lambda_{f, R}(1)=\lambda_{f, R}(-1)=z-\frac{k}{2}=z=\ell$. Thus, $\lambda_{f}(1)=\lambda_{f, H}(1)+\lambda_{f, R}(1)=$ $\ell+z-\ell=z$, and $\lambda_{f}(-1)=\lambda_{f, H}(-1)+\lambda_{f, R}(-1)=\ell+1+z-\ell=z+1$. Thus, we must also have $\lambda_{f}(0)=z$, and that W_{n} is $(2,3)$-orientable.

Subcase 3.3. $n=2 k+1$. In this case proceed as in Subcase 3.1 labelling the vertices not incident with v_{n} with an even number of 1's (either k or $k+1$ depending upon whether k is even or odd. Let ℓ be half of this even number. Then, we produce a $(2,3)$-cordial orientation of W_{n} the same as in Subcase 3.1.

We have now established the theorem.

3.3. $(2,3)$-orientations of fan graphs

A fan graph is isomorphic to a wheel graph with one edge of the cycle deleted. Thus, by deleting one properly chosen arc from the cycle of a $(2,3)$-oriented n-wheel graph we obtain an orientation of the n-fan graph that is $(2,3)$-cordial. Note that if there are at least as many arcs labelled $x(x=1,-1$ or 0$)$ as any other labelling, the properly chosen arc would be in the set of arcs labelled x. Thus there is only one case to consider, the case where $2 n-2=3 z, n=2 k$ and $k=2 \ell+1$ for some z, k, and ℓ.
Theorem 3.15. Let $n \geq 5$ and let F_{n} be the n-fan graph with central vertex v_{1}, that is the edges not on the cycle are all incident to v_{1}. Let \vec{F} be a cyclic-out orientation of F_{n}. Then \vec{F} is not $(2,3)$-cordial.

Proof. As for wheel graphs, the number of arcs labelled 1 on the cycle is equal to the number of arcs labelled -1 and there are at least two arcs labelled 1 on the interior of the cycle. Thus, the number of arcs labelled 1 in \vec{F} is at least two more that the arcs labelled -1 in \vec{F}. That is \vec{F} is not (2,3)-cordial.■

Theorem 3.16. Let F_{n} be the fan graph on n vertices, $2 n-3=3 z+2, n=2 k$ and $k=2 \ell+1$ for some integers k, ℓ, and z. Then there is an orientation of F_{n} that is $(2,3)$-cordial.

Proof. Let $\alpha=z-\ell+1$, and define $f: V \rightarrow\{0,1\}$ by $f\left(v_{2 i-1}\right)=0, i=1, \ldots, \alpha, f\left(v_{2 i}\right)=1, i=1, \ldots, \alpha$, $f\left(v_{2 \alpha+}\right)=1, i=1, \ldots, k-\alpha$, and $f\left(v_{k+\alpha+i}\right)=0, i=1, \ldots, k-\alpha$, Note that $(k-\alpha)+(k+\alpha)=2 k=n$, so all vertices are labelled. Orient the cycle clockwise, so that the oriented cycle is $\overrightarrow{v_{1} v_{2}}, \overrightarrow{v_{2} v_{3}}, \ldots, \overrightarrow{v_{n-1} v_{n}}$, $\overrightarrow{v_{n} v_{1}}$. See Figure 6 where the vertex labellings are outside the cycle.

Now, orient ℓ of the inner arcs from v_{1} to arcs labelled 1 (except for v_{2} which is not an inner arc) away from v_{1} and the remaining ℓ such arcs inward so that we get $\overrightarrow{F_{n}}=(V, A)$. Let $g: A \rightarrow\{0,1,-1\}$ be the induced labelling, $g(\overrightarrow{u v})=f(v)-f(u)$. Then there are α arcs labelled 1 on the cycle, α arcs labelled -1 on the cycle, ℓ of the inner arcs are labelled -1 and ℓ of the inner arcs are labelled 1 . Thus, in all of $\overrightarrow{F_{n}}$ there are $\alpha+\ell=z+1 \operatorname{arcs}$ labelled $-1, \alpha+\ell=z+1 \operatorname{arcs}$ labelled 1 and (hence) z arcs labelled 0 . That is, this orientation of F_{n} is $(2,3)$-cordial.

3.4. Extremes of $(2,3)$-cordiality

As seen in section 3, complete graphs are not $(2,3)$-orientable if $n \geq 6$. So the question arises: How large can a (2,3)-orientable graph be (how/many edges)? Or: How large can a (2,3)-cordial digraph be? That question was fully answered by M. A. Santana in [6] For completeness we shall include the proofs of his results.
Theorem 3.17. [6, Theorem 3.1] Every simple directed graph is $(2,3)$-cordial if and only if there exists a friendly vertex labelling such that about $\frac{1}{3}$ of the edges are connected by vertices of the same label.

Proof. Let G be a graph such that there exists a friendly labelling on G such that about $\frac{1}{3}$ of the edges are conneeted by vertices of the same label. This would mean about $\frac{2}{3}$ of the edges are connected by vertices of different labels, and therefore arcs may be assigned such that G is cordial. Now let H be a graph such that there does not exist a friendly labelling on H such that about $\frac{1}{3}$ of the edges are connected by yertices of the same label then there will be no way H can be cordial since only then could about one third of the edges be labelled 0 .

Santana's application of Theorem 3.17 is
Theorem 3.18. [6, Theorem 4.2] Given a directed graph $G=(V, E)$ with vertex set V and $n=|V|$ with $n \geq 6$, and edge set E, the maximum size of E such that G is cordial for any given n is

$$
\begin{equation*}
|E|_{\max }=\binom{n}{2}-Z+\left\lceil\frac{1}{2}\left(\binom{n}{2}-Z\right)\right\rceil Z=\binom{\left\lceil\frac{n}{2}\right\rceil}{ 2}+\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2} . \tag{1}
\end{equation*}
$$

Figure 7. A complete graph. Dashed lines represent edges labelled zero regardless of arc orientation

From section 3 we have that for any tournament with $n \leq 5$ there exists a cordial labelling, save for the case when $n=4$ thus we begin with a complete graph with $n \geq 6$. Recall that the number of edges on a complete graph is $\binom{n}{2}$. Due to our cordial labelling the number of edges with an induced labelling of 0 will be our Z. This is because it will be the number of edges connected by two vertices of the same label, as shown in Figure 7. If n is even that will mean that $Z=2\binom{\frac{n}{2}}{2}$, i.e., it will be the number of edges on two complete graphs each on $\frac{n}{2}$ vertices represented by the labellings of ones and zeros. The floor and ceiling function in (1) simply account for the odd case.
For every tournament with $n \geq 6$ vertices, $Z>\frac{1}{3}\binom{n}{2}$. Therefore some of the arcs labelled zero will need to be removed to get a cordial graph. How many arcs need to be removed is going to be equal to how much greater Z is than the number of half the number of arcs not labelled zero. By the definition of a directed cordial graph we know that Z can be larger than α or β and we can still have a cordial graph, hence the ceiling function.

As mentioned in the introduction, the smallest non $(2,3)$-cordial digraph is an orientation of \amalg_{n}, three parallel arcs. A question may be asked: What is the minimum number of arcs in a non $(2,3)$-cordial digraph that has no isolated vertices?

4. Conclusions,

In this article, we have shown that the only tournaments that are $(2,3)$-cordial are when $n \leq 5$ and then not for two 4 -tournaments. Except for one case when n is even, the n-wheel graph has an orientation that is $(2,3)$-cordial and that at least one orientation of any wheel graph is not $(2,3)$-cordial. Further, we show that every fan graph has a (2,3)-cordial orientation, and there is always an orientation of the n-fan that is not $(2,3)$-cordial.

References

[^1][2] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Comb. 23 (1987) 201-207.
[3] M. Hovey, A-cordial graphs, Discrete Math. 93(2-3) (1991) 183-194.
[4] O. Pechenik, J. Wise, Generalized graph cordiality, Discuss. Math. Graph Theory 32(3) (2012) 557567.
[5] E. Salehi, PC-labelling of a graph and its PC-set, Bull. Ins.t Comb. Appl. 58 (2010) 112-121.
[6] M. A. Santana, J. M. Mousley, D. E. Brown, L. B. Beasley, (2,3) cordial trees and paths, arXiv:2012.10591.

[^0]: LeRoy B. Beasley (Corresponding Author), Manuel A. Santana, Jonathan Mousley, David E. Brown; Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900, U.S.A (email: leroy_beas@aol.com, manuelarturosantana@gmail.com, jonathanmousley@gmail.com, david.e.brown@usu.edu).

[^1]: [1] L. B. Beasley, Cordial digraphs, arXiv:2212.05142.

