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Abstract: The construction of two or few-weight codes from trace codes over the ring Fq + uFq, where u2 = 0,
was recently presented in [4]. For such construction, the defining sets for the trace codes are given in
terms of cyclotomic classes, and for some of these classes, it is shown that it is possible to obtain the
Lee weight distributions of the corresponding trace codes. Motivated by this construction, and by
the p-ary semiprimitive irreducible cyclic codes over a prime field Fp, the Lee weight distributions of
an infinite family of p-ary three-weight codes from trace codes over the ring Fp + uFp, was recentely
found in [11]. In this work, we prove that the Lee weight distribution problem for the trace codes
constructed in accordance with either [4] or [11], is equivalent to the weight distribution problem for
the irreducible cyclic codes. With this equivalence in mind, and by using the already known weight
distributions of an infinite family of irreducible cyclic codes (semiprimitive and not semiprimitive), we
follow the open problem suggested in the Conclusion of [11] to determine the Lee weight distribution
of an infinite family of trace codes over the ring Fq + uFq, that includes the infinite family found in
[11].
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1. Introduction

Consider the ring R = Fq + uFq, with u2 = 0, and, for any positive integer m, the ring extension
R = Fqm + uFqm . A trace code, CL, with defining set L = {d1, d2, · · · , dn} ⊆ R∗ is defined by

CL = {(Tr(xd1),Tr(xd2), · · · ,Tr(xdn)) | x ∈ R} , (1)

where R∗ is the group of units of R, and Tr is the trace function from R to R defined as
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Tr(a+ ub) =

m−1∑
j=0

(aq
j

+ ubq
j

) .

For any a, b ∈ Fqm . It is clear that

Tr(a+ ub) = TrFqm/Fq
(a) + uTrFqm/Fq

(b) ,

where “TrFqm/Fq
" denotes the standard trace mapping from Fqm to Fq. Note that CL is a linear code over

R of length n, that is CL is a particular kind of R-submodule of Rn.

In analogy to the ring Z4, the Gray map φ from R to F2
q is defined by

φ(a+ ub) = (b, a+ b) , for all a, b ∈ Fq .

This map is extended naturally into a map from Rn to F2n
q .

Remark 1.1. The Lee weight, wL, over Rn is defined in terms of the standard Hamming weight, wH ,
of the Gray image as follows

wL(a+ ub) = wH(b) + wH(a+ b) , for all a, b ∈ Fnq .

Similar to the Hamming distance, dH , the Lee distance, dL, over Rn is defined as dL(x, y) = wL(x−y)
for all x, y ∈ Rn. Moreover if x = a1 + ub1 and y = a2 + ub2, then dL(x, y) = wH(b1 − b2) + wH(a1 −
a2 + b1 − b2) = wH(b1 − b2, a1 − a2 + b1 − b2) = wH((b1, a1 + b1)− (b2, a2 + b2)) = dH(φ(x), φ(y)). Thus
φ is a distance-preserving map or isometry from (Rn, dL) to (F2n

q , dH).

We recall that the Hamming weight enumerator, HamC(z), of a linear code C of length n over a finite
field is defined as the polynomial HamC(z) =

∑n
j=0Ajz

j , where Aj (0 ≤ j ≤ n) denote the number of
codewords with Hamming weight j in the code C. The sequence (A0 = 1, A1, · · · , An) is called the weight
distribution of the code. In a similar way for a trace code CL, defined through (1), let Aj (0 ≤ j ≤ 2n) be
the number of codewords with Lee weight j in the linear code CL of length n over R, then the Lee weight
enumerator of CL, LeeCL

(z), is defined by LeeCL
(z) =

∑2n
j=0Ajz

j .

Through different choices of the defining set L, and particularly when Fq is either the binary field
(F2) or a prime field (Fp), several optimal or nearly optimal codes from trace codes of the form CL where
recently found ([4, 5, 8, 9, 11–16]). Particularly, the construction of two or few-weight codes from trace
codes over the ring Fq + uFq, was recently presented in [4]. For such construction, the defining sets for
the trace codes are given in terms of cyclotomic classes, and for some of these classes, it is shown that
it is possible to obtain the Lee weight distributions of the corresponding trace codes. Motivated by this
construction, and by the p-ary semiprimitive irreducible cyclic codes over a prime field Fp, the Lee weight
distributions of an infinite family of p-ary three-weight codes from trace codes over the ring Fp + uFp,
was recently constructed in [11].

One of the purposes of this work is to show that there exists a direct identity between Lee weight
enumerators of the trace codes constructed by [4], [8], [9] and [11], and the Hamming weight enumerators
of the irreducible cyclic codes. In other words, we are going to prove that the Lee weight distribution
problem for the trace codes constructed following [4], [8], [9] or [11], is equivalent to the standard Hamming
weight distribution problem for the irreducible cyclic codes. With this equivalence in mind, we then follow
the open problem suggested in the Conclusion of [11], and determine the Lee weight distribution of trace
codes of the form CL in terms of other class of irreducible cyclic codes, with known or well-understood
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weight distribution. For this purpose, we use the already known weight distributions of an infinite
family irreducible cyclic codes (semiprimitive and not semiprimitive, [17]), to determine the Lee weight
distribution of a new infinite family of trace codes of the form CL, that includes the infinite family
constructed in [11].

This work is organized as follows: In Section 2, we set up some new notations and recall some
definitions, particularly those related with the irreducible cyclic codes. Section 3 will show the relationship
between the Lee weight distribution problem for some trace codes and the Hamming weight distribution
problem for the irreducible cyclic codes. In Section 4, it is shown that all the Lee weight distributions
reported in [4], [8], [9], and [11] can be obtained easily as particular instances of such relationship, which
gives us a simplified view for all these Lee weight distributions. In Section 5 we use the already known
weight distributions of an infinite family irreducible cyclic codes to determine the Lee weight distribution
of a new infinite family of trace codes. Finally, Section 6 is devoted to conclusions.

2. Background material

Let Fq be a finite field of order q, where q = pt for some prime p and for some positive integer t.
A subset C of vectors or codewords in Fnq is called an [n, l] linear code over Fq if C is an l-dimensional
subspace of Fnq : n is called the length and l is called the dimension of C.

An M -weight code (either over a finite field or over a ring) is a code such that the cardinality of the
set of nonzero weights is M .

A linear code C over a finite field Fq of length n, is cyclic if (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, c1,
. . . , cn−2) ∈ C. Cyclic codes have wide applications in storage and communication systems because, unlike
encoding and decoding algorithms for linear codes, encoding/decoding algorithms for cyclic codes can be
implemented easily and efficiently by employing shift registers with feedback connections ([6, p. 209]).

By identifying the vector (c0, c1, . . . , cn−1) ∈ Fnq with the polynomial c0+c1x+. . .+cn−1xn−1 ∈ Fq[x],
it follows that any linear code C of length n over Fq corresponds to a subset of the residue class ring
Fq[x]/〈xn−1〉. Moreover, it is well known that the linear code C is cyclic if and only if the corresponding
subset is an ideal of Fq[x]/〈xn − 1〉 (see for example [3, Theorem 9.36]).

Now, note that every ideal of Fq[x]/〈xn − 1〉 is principal. In consequence, if C is a cyclic code of
length n over Fq, then C = 〈g(x)〉, where g(x) is a monic polynomial, such that g(x) | (xn − 1). This
polynomial is unique, and it is called the generator polynomial of C ([6, Theorem 1, p. 190]). On the
other hand, the polynomial h(x) = (xn − 1)/g(x) is referred to as the parity check polynomial of C.

As usual in cyclic codes, we always assume that the length n of any cyclic code is relatively prime
to q. Thus, xn − 1 has no repeated factors ([6, p. 196]).

A cyclic code over Fq is called irreducible (reducible) if its parity check polynomial is irreducible
(reducible) over Fq.

Let v and w be integers, such that gcd(v, w) = 1. Then, the smallest positive integer i, such that
wi ≡ 1 (mod v), is called the multiplicative order of w modulo v, and is denoted by ordv(w). From now
on, m will denote a positive integer, and by using γ we will denote a fixed primitive element of Fqm . For
any integer a, the polynomial ha(x) ∈ Fq[x] will denote the minimal polynomial of γ−a ([3, Definition
1.81]). In addition, C(a) will denote the irreducible cyclic code whose parity check polynomial is ha(x).
Note that C(a) is an [n, l] linear code, where n = qm−1

gcd(qm−1,a) , and l = deg(ha(x)) = ordn(q) is a divisor

of m. For any positive divisor e of qm − 1 and for any 0 ≤ i ≤ e− 1, we define D
(e,qm)
i := γi〈γe〉, where

〈γe〉 denotes the subgroup of F∗qm generated by γe. The cosets D(e,qm)
i are called the cyclotomic classes

of order e in Fqm .

An alternative definition for an irreducible cyclic code is as follows:

Definition 2.1. [7, Definition 2.2] Let n be a positive divisor of qm− 1, write e = (qm− 1)/n, and let ω
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be a primitive n-th root of unity in Fqm . Then, an irreducible cyclic code of length n over Fq, is the set

{(TrFqm/Fq
(yωi))n−1i=0 | y ∈ Fqm} .

Remark 2.2. Note that, thanks to Delsarte’s Theorem (see for example [1]), the parity-check polynomial
of the irreducible cyclic code under the previous definition is h−e(x), if ω = γe.

Let v and w be integers, such that gcd(v, w) = 1. We say that w is semiprimitive modulo v, if there
exists a positive integer j, such that wj ≡ −1 (mod v).

According to Definition 3 in [17], an irreducible cyclic code C(a) of dimension m over Fq is called
semiprimitive if µ ≥ 2 and p is semiprimitive modulo µ, where µ = gcd( q

m−1
q−1 , a) (recall q = pt).

3. A relationship between the Hamming and the Lee weight enu-
merators

Let n be a positive divisor of qm − 1, and write e = (qm − 1)/n. For each β ∈ Fqm define c(n, e, β)
as the vector of length n over Fq, given by

c(n, e, β) = (TrFqm/Fq
(βγei))n−1i=0 . (2)

Now, since the elements γei (0 ≤ i < n) are the n roots of the unity in Fqm , we have, in accordance with
Definition 2.1, that the irreducible cyclic code C(e) can be described as

C(e) = {c(n, e, β) | β ∈ Fqm} .

Remark 3.1. C(e) is an irreducible cyclic code of length n, whose dimension will be m iff ordn(q) = m.

We will now focus our attention on the trace codes of the form CL, and for this purpose we are
going to fix the defining set in terms of the cyclotomic class D

(e,qm)
0 , where e is any divisor of qm − 1.

Therefore, from now on CLe will denote the trace code defined through (1), where the defining set
Le = D

(e,qm)
0 + uFqm . Since, |D(e,qm)

0 | = qm−1
e , the length of trace code CLe is q2m−qm

e . For a ∈ R (recall
R = Fqm + uFqm) define the evaluation map Ev(a) as

Ev(a) = (Tr(ax))x∈Le
.

Thus CLe
= {Ev(a) | a ∈ R}. Next, we will show that there exists a direct relationship between the Lee

weight of some codewords in CLe
and the Hamming weight of the codewords in the irreducible cyclic code

C(e).

Theorem 3.2. Let n be a positive divisor of qm − 1, and write e = (qm − 1)/n. Consider CLe
and C(e)

as before. Let a ∈ R, then

(i) If a = 0, then wL(Ev(a)) = 0.

(ii) If β ∈ F∗qm and a = uβ, then wL(Ev(a)) = 2qmwH(c(n, e, β)), where c(n, e, β) is the codeword in
C(e) given by (2).
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(iii) If α ∈ F∗qm , β ∈ Fqm , and a = α+ uβ, then wL(Ev(a)) = 2 q−1eq (q2m − qm).

Proof. Part (i) is direct. Suppose that a = uβ, for some β ∈ F∗qm . Let x = w + uw′ ∈ Le, where
w ∈ D

(e,qm)
0 and w′ ∈ Fqm . Therefore ax = uβw and Tr(ax) = uTrFqm/Fq

(βw). Taking Gray map yields

φ(Ev(a)) = φ((uTrFqm/Fq
(βw))w,w′)

= (TrFqm/Fq
(βw),TrFqm/Fq

(βw))w,w′ ,

where (uTrFqm/Fq
(βw))w,w′ is the vector of length q2m−qm

e whose elements are all possible evalu-
ations of uTrFqm/Fq

(βw) by taking w′ ∈ Fqm and w ∈ D
(e,qm)
0 = 〈γe〉 (in a similar way for

(TrFqm/Fq
(βw),TrFqm/Fq

(βw))w,w′) . Now, by considering Remark 1.1, we have

wL(Ev(a)) = 2wH((TrFqm/Fq
(βw))w,w′)

= 2qmwH((TrFqm/Fq
(βw))w)

= 2qmwH((TrFqm/Fq
(βγei))n−1i=0 )

= 2qmwH(c(n, e, β)) ,

where the last equality comes from (2). Lastly, suppose a = α + uβ ∈ R∗, with α ∈ F∗qm and β ∈ Fqm .
Let x = w + uw′ ∈ Le, where w ∈ D

(e,qm)
0 and w′ ∈ Fqm . Therefore, ax = αw + u(αw′ + βw) and

Tr(ax) = TrFqm/Fq
(αw) + uTrFqm/Fq

(αw′ + βw). Taking Gray map yields

φ(Ev(a)) = φ((TrFqm/Fq
(αw) + uTrFqm/Fq

(αw′ + βw))w,w′)

= (TrFqm/Fq
(αw′ + βw),TrFqm/Fq

(αw′ + βw + αw))w,w′ .

By considering Remark 1.1 again,

wL(Ev(a)) = wH((TrFqm/Fq
(αw′ + βw),TrFqm/Fq

(αw′ + βw + αw))w,w′) .

Thus the Lee weight of the codeword Ev(a) ∈ CLe
is equal to 2 q

2m−qm
e − Z(a), where

Z(a) = ]{(w,w′) ∈ D
(e,qm)
0 × Fqm | TrFqm/Fq

(αw′ + βw) = 0}+

]{(w,w′) ∈ D
(e,qm)
0 × Fqm | TrFqm/Fq

(αw′ + βw + αw) = 0} .

If χ′ and χ are, respectively, the canonical additive characters of Fq and Fqm (see for example [3, Chapter
5]), then χ′ and χ are related by χ′(TrFqm/Fq

(ε)) = χ(ε) for all ε ∈ Fqm . Therefore
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Z(a) =
1

q

∑
w∈D(e,qm)

0

∑
w′∈Fqm

∑
s∈Fq

χ′(TrFqm/Fq
(s(αw′ + βw))) +

1

q

∑
w∈D(e,qm)

0

∑
w′∈Fqm

∑
s∈Fq

χ′(TrFqm/Fq
(s(αw′ + βw + αw)))

= 2
q2m − qm

eq
+

1

q

∑
w∈D(e,qm)

0

∑
s∈F∗q

χ(sβw)
∑

w′∈Fqm

χ(sαw′) +

1

q

∑
w∈D(e,qm)

0

∑
s∈F∗q

χ(s(βw + αw))
∑

w′∈Fqm

χ(sαw′)

= 2
q2m − qm

eq
,

because
∑
w′∈Fqm

χ(sαw′) = 0. Thus wL(Ev(a)) = 2 q−1eq (q2m − qm).

The previous theorem strongly suggests the existence of a relationship between Hamming and the
Lee weight enumerators. We establish this result by means of the following:

Corollary 3.3. With our current notation, let n be a positive divisor of qm − 1 such that ordn(q) = m.
Fix e = (qm − 1)/n. Let HamC(e)

(z) and LeeCLe
(z) be, respectively, the Hamming and the Lee weight

enumerators of C(e) and CLe
. Then the Gray image of CLe

is a code over Fq of length 2 q
2m−qm
e and size

q2m. Furthermore, the Lee weight enumerator of CLe
(and therefore the Hamming weight enumerator of

its Gray image) is

LeeCLe
(z) = HamC(e)

(z2q
m

) + (q2m − qm)z2
q−1
eq (q2m−qm) . (3)

Proof. This is a direct consequence of Theorem 3.2 and Remark 3.1.

What (3) is saying is that if C(e) is an M -weight code, then the trace code CLe
(or alternatively its

Gray image) is an (M + 1)-weight code. As elaborated below, this property and particularly (3), is in
complete accordance with the Lee weight enumerators recently reported in [4], [8], [9] and [11].

4. In perspective with some already reported Lee weight distri-
butions

Let q and n be as before, and suppose that gcd(q, n) = 1. Just by looking at the length n it is
possible to determine the existence or nonexistence of either a one-weight or a semiprimitive two-weight
irreducible cyclic code of dimension ordn(q) over any finite field Fq. We recall such characterization by
means of the following:

Theorem 4.1. [17, Theorem 4] Let n and m be positive integers, such that gcd(n, q) = 1 and m =

ordn(q). Fix e = (qm − 1)/n and µ = gcd( q
m−1
q−1 , e). Then, either there exists a one-weight, or a

semiprimitive two-weight irreducible cyclic code C(e) of length n, and dimension m iff µ = 1, or p is
semiprimitive modulo µ. If such code exists then its Hamming weight enumerator is

1 +
(qm − 1)

µ
((µ− 1)z

(q−1)qm/2

eq (qm/2−(−1)s) + z
(q−1)qm/2

eq (qm/2+(−1)s(µ−1))) ,
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where s = (mt)/ordµ(p) (recall that q = pt).

From previous theorem note that if µ = 1, then e | (q− 1), and C(e) is a one-weight irreducible cyclic
code of length n and dimensionm, whose Hamming weight enumerator is HamC(e)

(z) = 1+(qm−1)z
q−1
eq qm .

But if e | (q − 1) then it is easy to see that gcd(m, e) = gcd( q
m−1
q−1 , e) = µ = 1, and the condition in [4,

Theorem 3.3] is fulfilled. This, of course, is right because Corollary 3.3 tells us that CLe
is a two-weight

trace code of length q2m−qm
e over R, whose Lee weight enumerator is

LeeCLe
(z) = HamC(e)

(z2q
m

) + (q2m − qm)z2
q−1
eq (q2m−qm)

= 1 + (qm − 1)z2
q−1
eq q2m + (q2m − qm)z2

q−1
eq (q2m−qm) ,

which is the same Lee weight enumerator reported in [4, Theorem 3.3].

If µ = 2 in Theorem 4.1, then q and p are an odd integers. Therefore, clearly, p is semiprimitive
modulo µ. Thus, C(e) is a two-weight irreducible cyclic code of length n and dimensionm, whose Hamming
weight enumerator is

HamC(e)
(z) = 1 +

(qm − 1)

2
(z

(q−1)(qm−qm/2)
eq + z

(q−1)(qm+qm/2)
eq ) ,

and by Corollary 3.3, CLe
is a three-weight trace code of length q2m−qm

e over R, whose Lee weight
enumerator is

LeeCLe
(z) = 1 +

(qm − 1)

2
(z

2(q−1)(q2m−q3m/2)
eq + z

2(q−1)(q2m+q3m/2)
eq ) +

(q2m − qm)z2
q−1
eq (q2m−qm) ,

which is the same Lee weight enumerator reported in [4, Theorem 3.7]. In fact, in the particular case
when e = 2, µ = gcd( q

m−1
q−1 , e) = 2. That is, in this case, we have (µ = e = 2)|(p − 1) and D

(2,qm)
0 = Q,

where Q is the set of all square elements of F∗qm . Therefore, as is correctly pointed out in [4, Remark
3.8], [9, Theorem 1] is a special case of [4, Theorem 3.7].

Now, suppose that q = p and that e > 2 is an integer such that e | pr + 1 | pm − 1, for some integer
r, and let l be the smallest integer such that e | pl + 1. But, under these conditions, it is easy to see
that 2l | m, and therefore µ = gcd(p

m−1
p−1 , e) = e, and ordµ(p) = 2l. Thus, Theorem 4.1 tell us that C(e)

is a two-weight irreducible cyclic code over the prime field Fp, of length pm−1
e and dimension m, whose

Hamming weight enumerator, HamC(e)
(z), is

1 +
(pm − 1)

e
((e− 1)z

(p−1)pm/2

ep (pm/2−(−1)
m
2l ) + z

(p−1)pm/2

ep (pm/2+(−1)
m
2l (e−1))) ,

and by Corollary 3.3, CLe
is a three-weight trace code of length p2m−pm

e over the prime ring R = Fp+uFp,
whose Lee weight enumerator is

LeeCLe
(z) = 1 +

(pm − 1)

e
[(e− 1)z

2(p−1)p3m/2

ep (pm/2−(−1)
m
2l ) +

z
2(p−1)p3m/2

ep (pm/2+(−1)
m
2l (e−1))] +

(p2m − pm)z2
p−1
ep (p2m−pm) ,
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which is the same Lee weight enumerator reported in [11, Table 1] (in such table N = e).

Note that the conditions e | (q − 1) or µ = e are quite restrictive, but fortunately Theorem 4.1 tells
us that we can get rid of it, and we show this by means of the following:

Example 4.2. Let q = p = 5 and n = 3. Then m = ord3(5) = 2, e = (p2 − 1)/3 = 8, and µ =

gcd(p
2−1
p−1 , e) = 2. By Theorem 4.1, C(8) is a two-weight irreducible cyclic code over F5, of length 3 and

dimension 2, whose Hamming weight enumerator is HamC(8)
(z) = 1 + 12z2 + 12z3. Now, by Corollary

3.3, the Gray image of CL8 is a three-weight code over the prime field F5, of length 2p
2m−pm
e = 150, and

size p2m = 625, whose Hamming weight enumerator is LeeCL8
(z) = 1 + 12z100 + 12z150 + 600z120.

In this example, in addition that e - (q−1) and e 6= µ, also note that (e = 8) - 5r+1, for any positive
integer r. Therefore the three-weight trace code in Example 4.2 is new in the context of [4], [9] and [11],
but not the binary case of [8].

Up to now we used Theorem 4.1 to construct two or three-weight trace codes of the form CLe
. In

fact, since Theorem 4.1 is a characterization, there are no others two or three-weight trace codes of the
form CLe

. However, as is outlined below, it possible to construct M -weight trace codes of the form CLe
,

with M > 3.

Let e be a divisor of qm−1. Suppose that µ = gcd(m, e) = gcd( q
m−1
q−1 , e) = 3, and that p ≡ 1 (mod 3)

(that is p is not semiprimitive modulo µ). Under these conditions, and with the help of [2, Theorem 18],
C(e) is a three-weight irreducible cyclic code over Fq, of length qm−1

e and dimension m, whose Hamming
weight enumerator is

1 +
qm − 1

3
(z

(q−1)(qm−c1q
m
3 )

eq + z
(q−1)(qm− 1

2
(c1−9d1)q

m
3 )

eq + z
(q−1)(qm− 1

2
(c1+9d1)q

m
3 )

eq ) ,

where c1 and d1 are uniquely given by 4qm/3 = c21 + 27d21, c1 ≡ 1 (mod 3) and gcd(c1, p) = 1. Through
a direct application of Corollary 3.3, over the earlier Hamming weight enumerator, it is easy to see that
CLe

is a four-weight trace code, whose Lee weight enumerator is precisely the Lee weight distribution
reported in the first part of [4, Table II]. In a quite similar way, it is easy to see that the Lee weight
distribution reported in the first part of [4, Table III], is just the result of direct application of Corollary
3.3 over the Hamming weight enumerator reported in [2, Theorem 20].

Lastly, note that the families of codes in the second parts of [4, Table II and Table III] are three-
weight trace codes that come, as we already explained above, from two-weight semiprimitive irreducible
cyclic codes.

5. The Lee weight distribution of an extended family of trace
codes over Fq + uFq

We are now going to follow the open problem suggested in the Conclusion of [11], and determine the
Lee weight distribution of trace codes of the form CLe

in terms of other class of irreducible cyclic codes,
with known or well-understood weight distribution. For this purpose, we recall the following result.

Theorem 5.1. [17, Theorem 10] Let n, m and r be three positive integers, such that gcd(n, q) = 1,
m = ordn(q), and r ≥ 1. If r ≥ 2, suppose that the prime factors of r divide n but not (qm − 1)/n, and
that qm ≡ 1 (mod 4), if 4 | r. Fix µ = gcd( q

m−1
q−1 ,

qm−1
n ). Assume also that µ = 1 or p is semiprimitive

modulo µ. Then, the weight enumerator polynomial of any [nr,mr] irreducible cyclic code is

(1 +
(qm − 1)

µ
((µ− 1)z

(q−1)qm/2

eq (qm/2−(−1)s) + z
(q−1)qm/2

eq (qm/2+(−1)s(µ−1))))r ,
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where s = (mt)/ordµ(p).

Combining previous theorem with Corollary 3.3 we get:

Theorem 5.2. Let n, m and r be three positive integers, such that gcd(n, q) = 1, m = ordn(q), and
r ≥ 1. If r ≥ 2, suppose that the prime factors of r divide n but not (qm − 1)/n, and that qm ≡ 1

(mod 4), if 4 | r. Fix µ = gcd( q
m−1
q−1 ,

qm−1
n ), e = qm−1

n , and e′ = qmr−1
nr . Assume also that µ = 1 or p

is semiprimitive modulo µ. Then the Gray image of CLe′ is a code over Fq of length 2 q
2mr−qmr

e′ and size
q2mr. Furthermore, the Lee weight enumerator of CLe′ is

(1 +
(qm − 1)

µ
((µ− 1)zf(q)(q

m/2−(−1)s) + zf(q)(q
m/2+(−1)s(µ−1))))r +

(q2mr − qmr)z2
q−1
e′q (q2mr−qmr)

,

where s = (mt)/ordµ(p), and f(q) =
2qmr(q−1)qm/2

eq .

Proof. This is a direct consequence of Theorem 5.1 and Corollary 3.3.

Example 5.3. Let q = p = 5, n = 8, and r = 2. Then m = ord8(5) = 2, µ = gcd( q
m−1
q−1 ,

qm−1
n ) = 3,

e = qm−1
n = 3, e′ = qmr−1

nr = 39, s = 1, and clearly p is semiprimitive modulo µ, and r divide n
but not (qm − 1)/n. Thus, the Gray image of CL39 is a five-weight code over the prime field F5, of
length 2 q

2mr−qmr

e′ = 20000, and size q2mr = 58, whose Hamming weight enumerator is LeeCL39
(z) =

(1 + 8z5000 + 16z10000)2 + 390000z16000 = 1+ 16z5000 + 96z10000 + 256z15000 + 390000z16000 + 256z20000.

Finally, note that Theorem 5.1 includes all the semiprimitive irreducible cyclic codes, when r = 1.
Therefore, the new infinite family of trace codes of the form CLe , described in Theorem 5.2, includes the
infinite family found in [11].

6. Conclusion

In this work, we showed that there exists an identity between Lee weight enumerators of the trace
codes of the form CLe

, and the Hamming weight enumerators of the irreducible cyclic codes of the form
C(e). In other words, we proved that the Lee weight distribution problem for the trace codes constructed
following [4], [8], [9] or [11], is equivalent to the standard Hamming weight distribution problem for the
irreducible cyclic codes. In fact, this identity allowed us to present a simplified view for all the Lee
weight distributions reported in these works. Finally, we used the already known weight distributions of
an infinite family irreducible cyclic codes (semiprimitive and not semiprimitive), to determine the Lee
weight distribution of a new infinite family of trace codes of the form CLe

, that includes the infinite family
found in [11].

As a future work, it could be interesting to explore the possible existence of an identity, like that in
Corollary 3.3, for trace codes of the form CLe

when they are defined over a different ring (for example, a
semi-local ring similar to that in [10]).

Acknowledgment: The author want to express his gratitude to the anonymous referee for his
valuable suggestions.
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