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Abstract: Let FG be the group algebra of a finite p-group G over a field F of characteristic p. Let ~ be
an involution of the group algebra FG which arises form the group basis G. The upper bound
for the number of non-isomorphic ~-unitary subgroups is the number of conjugacy classes of the
automorphism group G with all the elements of order two. The upper bound is not always reached in
the case when G is an abelian group, but for non-abelian case the question is open. In this paper we
present a non-abelian p-group G whose group algebra FG has sharply less number of non-isomorphic
~-unitary subgroups than the given upper bound.
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1. Introduction

Let FG be the group algebra of the groupG over a field F . Let~ be an involution of the group algebra
FG. We say that the algebra involution ~ arises from the group G when ~ is an antiautomorphism on
G. This antiautomorphism of G may also be called involution (for more details see in [19]). In this case
the algebra involution ~ is the linear extension of the group involution ~ defined on G. A group algebra
is always an algebra with involution, because the canonical ∗-involution of FG (the linear extension of
the involution on G which sends each element of G to its inverse) exists for every F and G. The canonical
involution ∗ on FG is a simple example of an algebra involution that arises from the group basis G.

Let V (FG) denote the normalized unit group of FG, that is, the subgroup of the unit group of FG
containing all units with augmentation 1. An element u ∈ V (FG) is called ~-unitary if u−1 = u~. The
set of all ~-unitary units of FG forms a subgroup of V (FG), which is called ~-unitary subgroup and is
denoted by V~(FG). Interest in the unitary subgroups arose in algebraic topology and unitary K-theory
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introduced by Novikov [20]. The ∗-unitary subgroup is an actively investigated subgroup and it plays an
important role of studying the structure of V (FG) for more details we refere the reader to Bovdi’s paper
[9]).

Let L be a finite Galois extension of F with Galois group G, where F is a finite field of characteristic
two. A relation between the self-dual normal basis of L over F and the ∗-unitary subgroup of FG was
discovered by Serre [21]. It was shown in [2] that the ∗-unitary subgroup of a group algebra determines
the group basis G when it is a finite abelian p-group and F is a finite field of characteristic p. The
structure of the unitary subgroups was studied in several papers (see [3], [4], [5], [12], [14], [15], [16], [17]
and [22]).

Let F be a field of characteristic p and G a nonabelian locally finite p-group. The groups G when
V∗(FG) is normal in V (FG) are listed in [12]. Bovdi and Szakács [10] described the structure of the
group V∗(FG) when G is a finite abelian p-group and F is a finite field of characteristic p. They also
constructed a basis for V∗(FG) in [11].

The order of the unitary subgroup V∗(FG) is determined for finite p-groups and finite fields of
characteristic p, if p is an odd prime (see in [13]). The order of V∗(FG) when p = 2 is an open question.
It was determined only for some group classes (see in [1], [8] and [13]). The structure of V∗(F2G), where
G is a 2-group of maximal class of order 8 or 16 and F2 is the field of two elements has been established
in [6]. Additionally, the structures of V∗(FQ8) and V∗(FD8) are established in [16] and [18] respectively,
where F is a finite field of characteristic 2, Q8 is the quaternion group of order 8 and D8 is the dihedral
group of order 8.

In the case when f is a homomorphism of G into the multiplicative group of the commutative ring
K all the groups G whose f -unitary subgroup coincides with the unit group of KG are established in [9].
In [8] the invariants of the ~-unitary subgroup of FG are presented, when G is a finite abelian p-group,
F is a field of p elements (p is an odd prime) and ~ is an involutory automorphism of G. In [3] an upper
bound for the non-isomorphic ~-unitary subgroups is given, when ~ arises from G. The upper bound
coincides the number of conjugacy classes of the automorphism group G with all the elements of order
two including the identity map. In the case, when G is an abelian p-group the upper bound is not always
sharp. A counterexample can be found in [4]. For non-abelian groups this question is open. In this
paper we gave an example for a non-abelian p-group whose group algebra FG has less non-isomorphic
~-unitary subgroups than the given upper bound.

2. Involutions and unitary subgroups

Let F be a finite field and G is either the dihedral group of order 8 or the quaternion group of order
8. In this section we show that the number of non-isomorphic ~-unitary subgroups of FG with respect
to the involutions which arise from G is equals to the upper bound mentioned in the introduction.

Let Aut G{2} be the set of all automorphism of G with the identity map. The composition of
two antiautomorphisms ~ and ∗ of the group G is an automorphism of order two. Therefore, ~ can
be considered as a composition of an automorphism of order two and the canonical involution, that is,
~ = φ ◦ ∗, where φ ∈ Aut G{2}. We say that the involutions ~1 = φ1 ◦ ∗ and ~2 = φ2 ◦ ∗ are similar if
φ1 is conjugate to φ2 in Aut G. We need the following lemma.

Lemma 2.1. [3, Proposition 7] Let G be a group and F a field and let ~1 and ~2 be involutions of FG
which arise from G. If ~1 is similar to ~2, then

V~1
(FG) ∼= V~2

(FG).

Let G be a finite group and let Λ2 denote the number of all distinct conjugacy classes of Aut G{2}.
As a consequence of the previous lemma we have the following corollary.

Corollary 2.2. [3, Corollary 8] Let G be a finite group and F a field. The number of non-isomorphic
unitary subgroups of V (FG) with respect to the involutions which arise from G is at most Λ2.
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In this section we show that the upper bound Λ2 is sharp for all the non-abelian groups of order 8.
Moreover, we establish the structure of all non-isomorphic ~-unitary subgroups for these groups.

First, let us consider the dihedral group D8 of order 8. It is well known that D8
∼= Aut D8 and

Aut G{2} is the union of four distinct conjugacy classes, that is, Λ2 = 4. Throughout this section we will
use Lemma 2.4 in [1] free.

Lemma 2.3. The number of non-isomorphic unitary subgroups of FD8 with respect to the involutions
which arise from D8 is equals to Λ2, where |F | = 2n ≥ 2.

Proof. It was shown in [18] that V∗(FD8) ∼= C2
5n o C2

n.

According to Lemma 2.1 it is enough to establish the structure of V~(FD8) when the involution ~
links to different conjugacy classes in Aut G{2}. Then Cσ1 = {σ1}, Cσ2 , Cσ3 and Cσ4 are the distinct
conjugacy classes of Aut G{2}, where σ1 is the identity map and

σ2 :

{
a 7→ a3

b 7→ ab
σ3 :

{
a 7→ a3

b 7→ a2b
σ4 :

{
a 7→ a
b 7→ a2b

.

Case σ2. Let α =
∑3
i=0 a

i(αi + βib) ∈ FD8 where αi, βj ∈ F . Then α is ~-unitary if and only if
αα~ = 1. A straightforward computation shows that αα~ equals to

(α0 + α2)2+(β1 + β3)2a+ (α1 + α3)2a2+

(β0 + β2)2a3 + δ1(1 + a)b+ δ2(a2 + a3)b,

where δ1 = α0(β0 + β1) +α1(β1 + β2) +α2(β2 + β3) +α3(β0 + β3) and δ2 = α0(β2 + β3) +α1(β3 + β0) +
α2(β0 + β1) + α3(β1 + β2).

Clearly αα~ = 1 if and only if α0 + α2 = 1, β0 = β2, α1 = α3 and β1 = β3. Therefore δ1 = δ2 =
β0 + β1 = 0, that is, β0 = β1 and every ~-unitary element can be written as

α0 + α1a+ (1 + α0)a2 + α1a
3 + β0b+ β0ab+ β0a

2b+ β0a
3b.

Therefore V~(FD8) ∼= C2
3n.

Case σ3. Let α =
∑3
i=0 a

i(αi + βib) ∈ FD8, where αi, βj ∈ F . Then

α~α = (α0 + α2 + β1 + β3)2 + (α1 + α3 + β0 + β2)2a2 + δ(1 + a2)b,

where δ = (α0 +α2)(β0 +β2) + (α1 +α3)(β1 +β3). Clearly α~α = 1 if and only if α0 +α2 +β1 +β3 = 1,
β0 = β2 and α1 = α3. Therefore every element of V~(FD8) is central or it can be written in the form
either ab+ x1 or a3b+ x2, where x1, x2 ∈ ζ(V (FD8)). Since the exponent of ζ(V (FD8)) is two we have
proved that V~(FD8) ∼= C2

5n.

Case σ4. Let α =
∑3
i=0 a

i(αi + βib) ∈ FD8, where αi, βj ∈ F . Then

αα~ = (α0 + α1 + α2 + α3)2 + (δ0 + δ1)(a+ a3) + (β0 + β1 + β2 + β3)2a2

+ (δ2 + δ3)(1 + a2)b+ (δ4 + δ5)(1 + a2)ab,

where

δ0 = (α0 + α2)(α1 + α3), δ1 = (β0 + β2)(β1 + β3),

δ2 = (α0 + α2)(β0 + β2), δ3 = (α1 + α3)(β1 + β3),

δ4 = (α0 + α2)(β1 + β3), δ5 = (α1 + α3)(β0 + β2).

Therefore, α0 + α1 + α2 + α3 = 1, β0 + β1 + β2 + β3 = 0, δ0 + δ1 = 0, δ2 + δ3 = 0 and δ4 + δ5 = 0.
Since β1 + β3 = β0 + β2 we conclude that δ4 = δ2 and δ5 = δ3. Moreover, 0 = δ2 + δ3 = (α0 + α1 + α2 +
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α3)(β0 + β2) = β0 + β2 and we have that β0 = β2, β1 = β3, δ1 = 0 and δ0 = 0. Thus, every ~-unitary
element can be written as either

a3 + α0Ĉ + α1Ĉa+ β0Ĉb+ β1Ĉab, if α2 = α0,

or

a2 + α0Ĉ + α1Ĉa+ β0Ĉb+ β1Ĉab, if α2 = 1 + α0.

Let us denote byN the central elementary abelian subgroup 〈 1+α0Ĉ+α1Ĉa+β0Ĉb+β1Ĉab | αi, βi ∈
F 〉. Evidently, a2 ∈ N . Since a, a3 belong to the ~-unitary subgroup we have proved that V~(FD8) ∼=
C4 × C2

4n−1.

It is well-known that Aut Q8
∼= S4, where S4 is the symmetric group of order 24. It follows that

Λ2 = 3.

Lemma 2.4. The number of non-isomorphic unitary subgroups of FQ8 with respect to the involutions
which arise from D8 equals Λ2, where |F | = 2n ≥ 2.

Proof. Let σ1 be the identity automorphism of Q8. A straightforward computation shows that
Aut G{2} = Cσ1

∪ Cσ2
∪ Cσ3

, where

σ2 :

{
a 7→ b
b 7→ a

σ3 :

{
a 7→ a3

b 7→ b
.

It was shown in [16] that V~(FQ8) ∼= Q8 × C4n−1
2 . Let us consider the following two cases.

Case i = 2. Let α =
∑3
i=0 a

i(αi + βib) ∈ FQ8, where αi, βj ∈ F . Then

α~α = (α0 + α2)2 + δ1a+ (β0 + β2)2a2 + δ2a
3 + (β1 + β3)2b+ δ1ab+

(α1 + α3)2a2b+ δ2a
3b,

where

δ1 = α0(α1 + β1) + α2(α3 + β3) + β0(α1 + β3) + β2(α3 + β1),

δ2 = α0(α3 + β3) + α2(α1 + β1) + β0(α3 + β1) + β2(α1 + β3).

Evidently, α~α = 1 if and only if α0 + α2 = 1, β0 = β2, α1 = α3 and β1 = β3. They imply that
δ1 = δ2 = α1 + β1 = 0, and so α1 = β1.

Therefore every ~-unitary element can be written as

a2 + α0Ĉa
2 + α1Ĉa+ β0Ĉb+ α1Ĉab.

Thus V~(FQ8) ∼= C2
3n.

Case i = 3. Let α =
∑3
i=0 a

i(αi + βib) ∈ FQ8, where αi, βj ∈ F . Then

αα~ = (α0 + α2 + β0 + β2)2 + (α1 + α3 + β1 + β3)2a2 + δ(1 + a2)b,

where δ = (α0 + α2)(β0 + β2) + (α1 + α3)(β1 + β3). Let S~ = {αα~ |α ∈ V (FQ8)}. Clearly, S~ is
a subgroup of ζ(V (FQ8)), therefore ψ : V (FQ8) → S~ (given by x 7→ xx~) is a homomorphism with
kernel V~(FQ8). Thus

|V~(FQ8)| = |V (FQ8)|
|S~|

=
27n

22n
= 25n.
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Let n = 1 and G~ = {g ∈ G | g~ = g−1}. It is easy to see that G~ = 〈 b 〉 and V~(FQ8) is a subgroup
of G~ ·N , where N is an elementary abelian group. Since G~

∼= C4, we get that V~(FQ8) ∼= C4 × C3
2 .

Suppose that n > 1 and let ω1 and ω2 be elements of the unit group of F satisfying that ω1 6= 1 and
ω1 + ω2 = 1. It is easy to see that b and ω1 + a + ω2b + ab are elements of V~(FQ8), but they are not
commute. Therefore V~(FQ8) is not an abelian group.

According to Theorem 2 in [7], the exponent of V (FQ8) is 4. Since b is a ~-unitary element with
exponent 4 it follows that the exponent of V~(FQ8) is 4. Since |ζ(V (FQ8))| = 24n and x2 ∈ ζ(V (FQ8))
for all x ∈ V (FQ8) we have proved that

V~(FQ8)/ζ(V (FQ8)) ∼= Cn2 .

Therefore V~(FQ8) is a central extension of Cn2 by C2
4n.

3. Isomorphic unitary subgroups of noncommutative group alge-
bra with non similar involutions

In this section we present a non-abelian group whose group algebra has sharply less number of
non-isomorphic ~-unitary subgroups than the given upper bound given in Corollary 2.2.

Let H16 = 〈 a, c | a4 = b2 = c2 = 1, (a, b) = 1, (a, c) = b, (b, c) = 1 〉 be and let F be a finite field
with |F | = 2n. The automorphism group of H16 is isomorphic to the following group

〈 σ1, σ2, σ3 | σ2
1 = σ2

2 = σ2
3 = σ2

4 = σ2
5 = 1, (σ1, σ2) = σ4, (σ1, σ3) = 1,

(σ2, σ3) = σ5 〉,

where

σ1 =:

 a 7→ a
b 7→ a2b
c 7→ c

σ2 :

 a 7→ a
b 7→ bc
c 7→ c

σ3 :

 a 7→ ab
b 7→ b
c 7→ c.

Let us consider the following two automorphisms of order two in Aut H16

τ1 = σ1σ2σ5 :

 a 7→ ac
b 7→ a2bc
c 7→ c

and τ2 = (σ1, σ2) :

 a 7→ a3c
b 7→ bc
c 7→ c.

The conjugacy class of τ1 is Cτ1 = {σ1σ2σ5, σ1σ2σ4} and τ2 is a central element of the automorphism
group.

Theorem 3.1. Let ~1 = τ1 ◦ ∗ and ~2 = τ2 ◦ ∗ be involutions of H16 and let F be a finite field with
|F | = 2n (n ≥ 1). Then ~1 is not similar to ~2 and V~1

(FH16) ∼= V~2
(FH16).

Proof. First, we establish the structure of V~1(FH16). Since every element of FH16 can be written as

x =α0 + α1a+ α2a
2 + α3a

3 + α4b+ α5ab+ α6a
2b+ α7a

3b+

(α8 + α9a+ α10a
2 + α11a

3 + α12b+ α13ab+ α14a
2b+ α15a

3b)c
(1)

we have

xx~ =(α0 + α2 + α8 + α10)2 + (α5 + α7 + α13 + α15)2a2 + δ1(a+ a3c)+

δ2(a3 + ac) + δ3(b+ a2bc) + δ4(ab+ abc) + δ5(a2b+ bc) + δ6(a3b+ a3bc)+

(α1 + α3 + α9 + α11)2c+ (α4 + α6 + α12 + α14)2a2c,
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where

δ1 = (α0 + α10)(α1 + α11) + (α2 + α8)(α3 + α9) + (α4 + α14)(α5 + α15) + (α6 + α12)(α7 + α13)

δ2 = (α0 + α10)(α3 + α9) + (α2 + α8)(α1 + α11) + (α4 + α14)(α7 + α13) + (α6 + α12)(α5 + α15)

δ3 = (α0 + α10)(α4 + α14) + (α1 + α11)(α5 + α15) + (α2 + α8)(α6 + α12) + (α3 + α9)(α7 + α13)

δ4 = (α0 + α8)(α5 + α13) + (α2 + α10)(α7 + α15) + (α4 + α12)(α3 + α11) + (α6 + α14)(α1 + α9)

δ5 = (α0 + α10)(α6 + α12) + (α1 + α11)(α7 + α13) + (α3 + α9)(α5 + α15) + (α4 + α14)(α2 + α8)

δ6 = (α0 + α8)(α7 + α15) + (α2 + α10)(α5 + α13) + (α1 + α9)(α4 + α12) + (α3 + α11)(α6 + α14).

Evidently, x belongs to V~1(FH16) if and only if xx~1 = 1. Therefore α0 +α2 +α8 +α10 = 1, α5 +α7 +
α13 + α15 = 0, α1 + α3 + α9 + α11 = 0, α4 + α6 + α12 + α14 = 0 and δ1 = δ2 = δ3 = δ4 = δ5 = δ6 = 0.

Since α2 + α8 = 1 + α0 + α10 and α4 + α14 = α6 + α12 we have that

δ1 = (α3 + α9) + (α0 + α10)(α1 + α11 + α3 + α9) + (α4 + α14)(α5 + α15 + α7 + α13) = α3 + α9,

δ2 = (α1 + α11) + (α0 + α10)(α3 + α9 + α1 + α11) + (α4 + α14)(α7 + α13 + α5 + α15) = α1 + α11,

δ3 = (α6 + α12) + (α0 + α10)(α4 + α14 + α6 + α12) + (α1 + α11)(α5 + α15 + α7 + α13) = α6 + α12,

δ4 = (α7 + α15) + (α0 + α8)(α5 + α13 + α7 + α15) + (α4 + α12)(α3 + α11 + α1 + α9) = α7 + α15,

δ5 = (α4 + α14) + α0 + α10)(α6 + α12 + α4 + α14) + (α1 + α11)(α7 + α13 + α5 + α15) = α4 + α14,

δ6 = (α5 + α13) + (α0 + α8)(α7 + α15 + α5 + α13) + (α1 + α9)(α4 + α12 + α6 + α14) = α5 + α13.

Therefore

x = α0 + α2a
2 + α8c+ α10a

2c+ α1Ĉa+ α4Ĉb+ α5Ĉab,

where Ĉ = 1 + a2 + c+ a2c. As a consequence V~1
(FH16) is a central subgroup of V (FH16).

Let N = 〈 1 + β1Ĉa, 1 + β2Ĉb, 1 + β3Ĉab | βi ∈ F 〉 be. Evidently, N ∼= C3n
2 . Since a2Ĉ =

cĈ = a2cĈ = Ĉ we conclude that N ∼= a2N ∼= cN ∼= a2cN . Since a2N · cN = a2cN and the pairwise
intersections of N, a2N, a2cN are {1} we have proved that V~(FG) ∼= N × a2N × cN . Thus V~1(FG) ∼=
C9n

2 .

Now, we establish the structure of V~2
(FH16). Let x ∈ FH16 be. Using formula (1) we can compute

the product

xx~ = (α0 + α2 + α8 + α10)2 + (α5 + α7 + α13 + α15)2a2 + δ1(a+ ac)+

δ2(a3 + a3c) + δ3(b+ bc) + δ4(ab+ abc) + δ5(a2b+ a2bc) + δ6(a3b+ a3bc)+

(α4 + α6 + α12 + α14)2c+ (α1 + α3 + α9 + α11)2a2c,

where

δ1 = (α0 + α8)(α9 + α1) + (α2 + α10)(α11 + α3) + (α4 + α12)(α5 + α13) + (α6 + α14)(α7 + α15),

δ2 = (α0 + α8)(α11 + α3) + (α2 + α10)(α9 + α1) + (α4 + α12)(α7 + α15) + (α6 + α12)(α5 + α15),

δ3 = (α0 + α8)(α12 + α4) + (α2 + α10)(α14 + α6) + (α1 + α9)(α15 + α7) + (α3 + α11)(α13 + α5),

δ4 = (α0 + α8)(α13 + α5) + (α2 + α10)(α15 + α7) + (α4 + α12)(α1 + α9) + (α6 + α14)(α3 + α11),

δ5 = (α0 + α8)(α14 + α6) + (α1 + α9)(α13 + α5) + (α2 + α10)(α12 + α4) + (α3 + α11)(α15 + α7),

δ6 = (α0 + α8)(α15 + α7) + (α2 + α10)(α13 + α5) + (α1 + α9)(α14 + α6) + (α3 + α11)(α12 + α4).

Keeping in mind that x belongs to V~2
(FH16), it follows that xx~2 = 1. Therefore α0 + α2 +

α8 + α10 = 1, α5 + α7 + α13 + α15 = 0, α1 + α3 + α9 + α11 = 0, α4 + α6 + α12 + α14 = 0 and
δ1 = δ2 = δ3 = δ4 = δ5 = δ6 = 0.

Since α0 + α8 = 1 + α2 + α10 and α4 + α12 = α6 + α14 we have that δ1 = α3 + α11, δ2 = α1 + α9,
δ3 = α6 + α14, δ4 = α7 + α15, δ5 = α4 + α12 and δ6 = α5 + α13. Therefore α1 = α3 = α9 = α11,
α6 = α4 = α12 = α14 and α5 = α7 = α13 = α15.
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According to the above calculations we get that every x ∈ V~2
(FH16) can be written as

x = α0 + α2a
2 + α8c+ α10a

2c+ α1Ĉa+ α4Ĉb+ α5Ĉab,

where Ĉ = 1 + a2 + c+ a2c, so V~2(FH16) is a central subgroup of V (FH16).

LetN = 〈 1+β1Ĉa, 1+β2Ĉb, 1+β3Ĉab | βi ∈ F 〉 be. Clearly, N ∼= C3n
2 andN ∼= a2N ∼= cN ∼= a2cN

because a2Ĉ = cĈ = a2cĈ = Ĉ. Since a2N · cN = a2cN and the pairwise intersections of N, a2N, a2cN
are {1} we have proved that V~(FG) ∼= N × a2N × cN . Therefore we have V~1

(FG) ∼= V~2
(FG) ∼= C9n

2

and the proof is completed.

Corollary 3.2. The number of non-isomorphic unitary subgroups of FH16 with respect to the involutions
which arise from H16 is less than Λ2 = 11, where |F | = 2n ≥ 2.
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