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Abstract: Let ~Cm and ~Cn be directed cycles of length m and n, with m,n ≥ 3, and let P (~Cm � ~Cn) be the
digraph that is obtained from the Cartesian product ~Cm� ~Cn by choosing a vertex v, and reversing the
orientation of all four directed edges that are incident with v. (This operation is called “pushing” at
the vertex v.) By applying a special case of unpublished work of S.X.Wu, we find elementary number-
theoretic necessary and sufficient conditions for the existence of a hamiltonian cycle in P (~Cm � ~Cn).
A consequence is that if P (~Cm� ~Cn) is hamiltonian, then gcd(m,n) = 1, which implies that ~Cm� ~Cn

is not hamiltonian. This final conclusion verifies a conjecture of J. B.Klerlein and E.C.Carr.
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1. Preliminaries

Notation 1.1. For m,n, i, j ∈ Z (with m 6= 0 and n 6= 0), we define the integer am,n(i, j) by the following
conditions:

am,n(i, j) ≡ i (modm), am,n(i, j) ≡ j (modn), and 1 ≤ am,n(i, j) ≤ lcm(m,n).

The integer is unique, if it exists. By the Chinese Remainder Theorem, am,n(i, j) does exist whenever
gcd(m,n) = 1 (or, more generally, whenever i ≡ j (mod gcd(m,n))).

Notation 1.2. We use ~Cm to denote a directed cycle of length m.

Definition 1.3 ([6, p. 88]). If X is a digraph that is vertex-transitive, then the digraph P (X) is con-
structed from X by choosing a vertex v, and reversing the orientation of each directed edge that is
incident with v. (This operation is called “pushing” at the vertex v [6, 7].) Since X is vertex-transitive,
the isomorphism class of the resulting digraph is independent of the choice of v.
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Definition 1.4 ([4, pp. 35 and 421]). Recall that the Cartesian product X�Y of two digraphs X and Y
is the digraph whose vertex set is V (X)×V (Y ), with a directed edge from (x1, y1) to (x2, y2) if and only
if either

• x1 = x2, and there is a directed edge from y1 to y2 in Y , or

• y1 = y2, and there is a directed edge from x1 to x2 in X.

2. Statement of the main result

This note explains that a special case of unpublished work of S.X.Wu [11] (or slightly later published
work of S. J. Curran et al. [1]) provides the following elementary number-theoretic necessary and sufficient
conditions for P (~Cm � ~Cn) to be hamiltonian.

Proposition 2.1. Let ~Cm and ~Cn be directed cycles of length ≥ 3. The digraph P (~Cm � ~Cn) has a
hamiltonian cycle if and only if

(1) gcd(m,n) = 1,

(2) min{ am,n(0,−2), am,n(−2, 0) } < min
{
am,n(0,−1), am,n(−1, 0)

}
, and

(3) gcd

(
am,n(0,−4)

m
,
am,n(−4, 0)

n

)
= 1.

If gcd(m,n) = 1, then it is well known (and easy to see) that ~Cm � ~Cn is not hamiltonian [3,
Thm. 28.1, p. 510]. Therefore, the proposition has the following consequence, which was conjectured by
J. B.Klerlein and E.C.Carr [6, p. 94]:

Corollary 2.2. If ~Cm � ~Cn is hamiltonian (and m,n ≥ 3), then P (~Cm � ~Cn) is not hamiltonian.

Remarks 2.3.

(1) Proposition 2.1 requires m and n to be at least 3. The remaining case was settled by J. B.Klerlein
and E.C.Carr [6, Thm. 6]: P (~C2 � ~Cn) is hamiltonian if and only if n ∈ {2, 3}. (Since ~C2 � ~C2

and P (~C2 � ~C2) are hamiltonian, it is clear that corollary 2.2 would be false if it allowed the case
where m = n = 2.)

(2) J. B.Klerlein and E.C.Carr also determined whether P (Cm � Cn) is hamiltonian in certain other
special cases. In particular, they [6, Thm. 7] proved a much more concrete form of the case m = 3
of proposition 2.1: P (C3 � Cn) is hamiltonian if and only if n ≡ 2 (mod 3).

(3) The conditions in proposition 2.1 are so efficient that they can be checked by a computer in seconds,
even if m and n have 100,000 digits. This can be verified by using the sample code in Fig. 1.

3. Proof of the main result

We assume that the vertices of ~Cm � ~Cn are identified in the natural way with the elements of the
abelian group Zm × Zn.

Notation 3.1 (cf. [11, p. 2]).

(1) For a, b ∈ Z+, the rectangle Ra,b is the subset {0, 1, . . . , a− 1} × {0, 1, . . . , b− 1} of V (~Cm � ~Cn).
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def is_PCmxCn_hamiltonian(m, n):
r"""Return ‘True‘ if ‘P(C_m x C_n)‘ has a hamiltonian cycle
(otherwise return ‘False‘)."""
m = Integer(m)
n = Integer(n)
if min(m, n) < 3:

raise NotImplementedError("m and n must be at least 3")
if gcd(m, n) != 1:

return False
def a(i, j):

return crt(i, j, m, n)
if min( a(0, -2), a(-2, 0) ) > min( a(0, -1), a(-1, 0) ):

return False
return gcd( a(0, -4) // m, a(-4, 0) // n ) == 1

Figure 1. A sagemath program that implements proposition 2.1. (This program can be run online
at https://cocalc.com.) For example, is_PCmxCn_hamiltonian(3,5) returns True because
the digraph P (~C3 � ~C5) is hamiltonian (see Remarks 2.3(2)).

(2) We use (~Cm � ~Cn)r Ra,b to denote the digraph that is obtained from ~Cm � ~Cn by deleting all of
the vertices in Ra,b (and also deleting all of the directed edges that are incident with this set).

The following simple observation is crucial:

Lemma 3.2. For m,n ≥ 3, the digraph P (~Cm � ~Cn) is hamiltonian if and only if (~Cm � ~Cn)r R2,2 is
hamiltonian.

Proof. (⇒) Figure 2(a) shows a part of P (~Cm � ~Cn) with the pushed vertex v at its centre. (All nine
vertices in the figure are distinct, because m,n ≥ 3.) Note that the vertices v+ (1, 0) and v+ (0, 1) have
only one in-edge, and the vertices v − (1, 0) and v − (0, 1) have only one out-edge. This implies that the
hamiltonian cycle must traverse these four directed edges (which are dark in the figure).

The out-edges of v go to v − (1, 0) and v − (0, 1). By symmetry (i.e., by interchanging m and n if
necessary), we may assume without loss of generality that the hamiltonian cycle uses the (white) directed
edge from v to v − (1, 0). Then the hamiltonian cycle cannot use the edge from v + (0, 1) to v (because
that would create a 4-cycle), so it must use the other in-edge of v, which is the (grey) directed edge
from v+ (1, 0) to v. Also, the hamiltonian cycle cannot use the (striped) directed edge from v− (1, 1) to
v − (1, 0) (because it already uses a different in-edge of v − (1, 0)), so it must use the other out-edge of
v − (1, 1), which goes to v − (0, 1) (and is grey in the figure).

Now, assuming without loss of generality that R2,2 consists of the four white vertices in the bottom
right of the picture, we can construct a hamiltonian cycle in (~Cm � ~Cn)r R2,2 by deleting the edges in
the walk

v − (1, 1), v − (0, 1), v + (1,−1), v + (1, 0), v, v − (1, 0),

and inserting the (striped) directed edge from v − (1, 1) to v − (1, 0).

(⇐) Figure 2(b) shows the same portion of P (~Cm � ~Cn), centred at the pushed vertex v, with the
(white) vertices of the rectangle R2,2 in the bottom right corner again. Note that

P (~Cm � ~Cn)rR2,2 = (~Cm � ~Cn)rR2,2,

so, by assumption, there is a hamiltonian cycle in P (~Cm � ~Cn) r R2,2. It must use all of the directed
edges that are dark or striped in this picture, because v − (1, 1) and v − (1, 0) have only one out-edge
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v

(a)

v

(b)

Figure 2. Two drawings centred at the pushed vertex v.

that has not been deleted, and the vertices v + (0, 1) and v + (1, 1) have only one in-edge that has not
been deleted. Then we can construct a hamiltonian cycle in P (~Cm � ~Cn) by reversing the process in the
previous part of the proof: delete the (striped) edge from v − (1, 1) to v − (1, 0), and replace it with the
walk

v − (1, 1), v − (0, 1), v + (1,−1), v + (1, 0), v, v − (1, 0),

whose edges are grey in the picture.

Hence, the existence of a hamiltonian cycle in P (~Cm � ~Cn) is characterized by the case a = b = 2 of
the following result:

Theorem 3.3 (S.X.Wu [11, Cor. 11]). The digraph (~Cm � ~Cn) r Ra,b is hamiltonian if and only if
either the following conditions are satisfied, or they are satisfied after interchanging m and n, and also
interchanging a and b:

am,n(−a, 0) exists,

am,n(−a, 0) = min

{
am,n(−a,−b), am,n(−a,−b+ 1), am,n(−a,−b+ 2), . . . , am,n(−a, 0),
am,n(−a,−b), am,n(−a+ 1,−b), am,n(−a+ 2,−b), . . . , am,n(0,−b)

}
(where any terms in the minimum that do not exist are simply ignored), and

gcd

(
n− b− b

⌊
am,n(−a, 0)

m

⌋
, b

am,n(−a, 0)
n

)
= 1.

Remarks 3.4.

(1) S.X.Wu showed that if (~Cm � ~Cn)rRa,b has a hamiltonian cycle, then it is unique (see lemma 5.4
below). It follows that if P (~Cm � ~Cn) is hamiltonian (and m,n ≥ 3), then P (~Cm � ~Cn) has exactly
two hamiltonian cycles. One hamiltonian cycle will be constructed in the proof of lemma 3.2, and
the other is constructed by interchanging ~Cm and ~Cn in this proof (or, in other words, by reflecting
Fig. 2(b) across the line y = x).

(2) A very different formulation of the conditions in the statement of Theorem 3.3 was proved by
S. J. Curran et al. [1, Thm. 4.3], as a special case of a more general version [1, Thm. 4.2] that
applies to all 2-generated Cayley digraphs on finite abelian groups, not only Cartesian products of
directed cycles.

We need only the special case where a = b = 2, which can be restated as follows (see Section 4 or
Section 5):
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Corollary 3.5. For m,n ≥ 3, the digraph (~Cm � ~Cn)rR2,2 is hamiltonian if and only if:

(1) gcd(m,n) = 1,

(2) min{ am,n(0,−2), am,n(−2, 0) } < min
{
am,n(0,−1), am,n(−1, 0)

}
, and

(3) gcd

(
am,n(0,−4)

m
,
am,n(−4, 0)

n

)
= 1.

Proof of proposition 2.1. Combine lemma 3.2 and corollary 3.5.

4. Proof of the corollary 3.5 from the theorem 3.3

We now explain how to derive corollary 3.5 from Theorem 3.3. (Alternatively, the corollary could
also be derived from the work of S. J. Curran et al. [1, Thm. 4.3], or see Section 5 for a direct proof
that does not assume familiarity with [1] or [11].) Actually, we prove only (⇒) in this section, but the
argument is reversible.

The conclusions of the corollary are symmetric under interchanging m and n, so we may assume
that the conditions in the statement of Theorem 3.3 hold. For a = b = 2, this means:

am,n(−2, 0) = min

{
am,n(−2,−2), am,n(−2,−1), am,n(−2, 0),
am,n(−2,−2), am,n(−1,−2), am,n(0,−2)

}
(1)

and

gcd

(
n− 2− 2

⌊
am,n(−2, 0)

m

⌋
, 2

am,n(−2, 0)
n

)
= 1. (2)

(1) Note that n must be odd. (Otherwise, both terms in the gcd of (2) are even, which contradicts
the fact that the gcd is 1.) Also, since am,n(−2, 0) exists, we know that gcd(m,n) ∈ {1, 2}. From the
fact that n is odd, we conclude that gcd(m,n) = 1.

(2) Since

am,n(i− 1, j − 1) = am,n(i, j)− 1 (unless i ≡ j ≡ 0 (mod lcm(m,n))), (3)

we have

am,n(−2,−1) = am,n(−1, 0)− 1 and am,n(−1,−2) = am,n(0,−1)− 1. (4)

Therefore, we see from (1) that (2) holds.

(For reversing the argument, note that am,n(−2,−2) = mn−2, so it is always true that am,n(−2, 0) <
am,n(−2,−2), and also note that the inequality am,n(−2, 0) < am,n(0,−2) can be achieved by interchang-
ing m and n if it does not already hold.)

(3) Note that

am,n(−2, 0) + am,n(0,−2) = mn− 2,

because the left-hand side is congruent to −2 modulo both m and n (and we know from (1) that m and n
are relatively prime). Since (by (1)) we have am,n(−2, 0) < am,n(0,−2), this implies that

am,n(−2, 0) <
mn

2
− 1,
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so am,n(−4, 0) = 2 am,n(−2, 0). Therefore, we have

2
am,n(−2, 0)

n
=

am,n(−4, 0)
n

.

Hence, in order to establish that (2) is the same as conclusion (3) of the corollary, all that remains
is to show

n− 2− 2

⌊
am,n(−2, 0)

m

⌋
=

am,n(0,−4)
m

.

Since am,n(−2, 0) + 2 is a multiple of m, we see that the left-hand side is

n− 2− 2

(
am,n(−2, 0) + 2

m
− 1

)
= n− 2

am,n(−2, 0) + 2

m

=
mn− 2 am,n(−2, 0)− 4

m
.

Also note that

mn− 2 am,n(−2, 0)− 4 > mn− 2
(mn

2
− 1

)
− 4 = −2.

It is therefore easy to see that

mn− 2 am,n(−2, 0)− 4 = am,n(0,−4)

(because the two sides are congruent modulo both m and n), which completes the proof.

5. Direct proof of the corollary 3.5

For completeness (since [11] was never published), and because some readers may find it instructive,
we sketch a direct proof of corollary 3.5 that is based on S.X.Wu’s proof [11, §4] of Theorem 3.3. (The
same ideas apply to the general case of Theorem 3.3, but the details are more complicated.) We begin
with two definitions and some lemmas.

Definition 5.1 ([9]). A spanning subdigraph H of a digraph X is a vertex-disjoint cycle cover if H is a
vertex-disjoint union of directed cycles. (Equivalently, the invalence and outvalence of every vertex of H
is 1.)

Definition 5.2 (cf. [5, p. 82]). Assume H is a vertex-disjoint cycle cover of (~Cm � ~Cn)rR2,2. Let v be
a vertex of H, and let s ∈ {(1, 0), (0, 1)}. We say that v travels by s if the out-edge of v is the directed
edge from v to v + s.

The arguments in this section utilize basic properties of the “arc-forcing subgroup” 〈(1,−1)〉 [10,
§2.3] that were discovered by R.A.Rankin [8, Lem. 1] and D.Housman [5, pp. 82–83]. The specific facts
that we need are recorded in the following lemma.

Lemma 5.3 (cf. [11, p. 2] or [1, Rem. 2.2]). Let H be a vertex-disjoint cycle cover of (~Cm � ~Cn)rR2,2.
For every vertex v of H:

(1) If v travels by (1, 0), and v + (1,−1) /∈ R2,2, then v + (1,−1) also travels by (1, 0).

(2) If v travels by (1, 0), and neither v − (1,−1) nor v + (0, 1) is in R2,2, then v − (1,−1) also travels
by (1, 0).
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(3) If v travels by (0, 1), and v − (1,−1) /∈ R2,2, then v − (1,−1) also travels by (0, 1).

(4) If v travels by (0, 1), and neither v + (1,−1) nor v + (1, 0) is in R2,2, then v + (1,−1) also travels
by (0, 1).

Proof. (1, 3) By symmetry, it suffices to prove (1). For convenience, let w = v + (1, 0). Since H is a
vertex-disjoint cycle cover, we know that H cannot have both a directed edge from v to w and a directed
edge from v + (1,−1) to w (because the invalence of w cannot be greater than 1). Hence, v + (1,−1)
cannot travel by (0, 1). However, v+(1,−1) is a vertex of H (because, by assumption, it is not in R2,2), so
it must have some out-edge. We conclude that it travels by (1, 0), since that is the only other possibility.

(2, 4) By symmetry, it suffices to prove (2). For convenience, let w = v + (0, 1). Since v travels by
(1, 0), it does not travel by (0, 1), so H does not contain the directed edge from v to w. Since w must
have an in-edge, this implies that H has the directed edge from v − (1,−1) to w (since that is the only
other possibility). This means that v − (1,−1) travels by (1, 0).

Lemma 5.4 (Wu [11, Lem. 1] or [1, Lem. 2.3]). For m,n ≥ 2, the digraph (~Cm� ~Cn)rR2,2 has no more
than one vertex-disjoint cycle cover.

Proof. Let H be a vertex-disjoint cycle cover.

We claim that every coset of the subgroup 〈(1,−1)〉 contains at least one element of R2,2. Suppose
not, so we may let v + 〈(1,−1)〉 be a coset that does not intersect the set R2,2. By symmetry, we may
assume, without loss of generality, that v travels by (1, 0). Then, by repeated application of lemma 5.3(1),
we conclude that every element of this coset travels by (1, 0). Since the terminal endpoint of every directed
edge of H must be a vertex of H, this implies that every element of the coset v + (1, 0) + 〈(1,−1)〉 is a
vertex of H. In other words, this coset does not intersect the set R2,2. By repeating this argument, we
conclude, for every k ∈ Z+, that the coset v + (k, 0) + 〈(1,−1)〉 does not intersect R2,2. However, the
union of these cosets is all of ~Cm � ~Cn. We conclude that R2,2 has no elements, which is a contradiction.

The claim implies that every vertex of H is contained in set of the form

Iv,k = {v, v + (1,−1), v + 2(1,−1), . . . , v + k(1,−1)},

such that

(a) either v − (1,−1) ∈ R2,2 or v + (0, 1) ∈ R2,2,

(b) either v + (k + 1) (1,−1) ∈ R2,2 or v + (k + 1) + (1, 0) ∈ R2,2,

but

(c) no element of Iv,k is in R2,2, and

(d) for 1 ≤ j < k, neither v + j(1,−1) + (1, 0) nor v + j(1,−1) + (1, 0) is in R2,2.

From (c) and (d) (combined with lemma 5.3) and induction, we see that either every element of Iv,k
travels by (1, 0), or every element of Iv,k travels by (0, 1).

To complete the proof, we will show that there is no choice about whether these vertices travel by
(1, 0) or by (1, 0): it is uniquely determined for each v. First of all, if v + (0, 1) ∈ R2,2, then v cannot
travel by (0, 1), so it must travel by (1, 0); hence, every vertex in Iv,k must travel by (0, 1). On the other
hand, if v + (0, 1) /∈ R2,2, then (by (a)) we must have v − (1,−1) ∈ R2,2, so the vertex v − (1,−1) is not
in H, and therefore cannot travel by (1, 0). Since v + (0, 1) must have an in-edge, we conclude that v
travels by (0, 1); hence, every vertex in Iv,k must travel by (0, 1).
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Lemma 5.5 (cf. [11, Thm. 10]). For m,n ≥ 3, the digraph (~Cm � ~Cn)rR2,2 has a vertex-disjoint cycle
cover if and only if am,n(−2, 0) and am,n(0,−2) exist, and

min
{
am,n(−2, 0), am,n(0,−2)

}
< min

{
am,n(0,−1), am,n(−1, 0)

}
.

Furthermore, if the digraph does have a vertex-disjoint cycle cover, then the number of vertices that travel
by (1, 0) in this subdigraph is exactly twice the left-hand side of the above inequality.

Proof. (⇒) If a vertex u travels by (1, 0), and we let

r(u) = min{ k ∈ Z+ | u+ k(1,−1) ∈ R2,2 }, (5)

then it follows from lemma 5.3(1) (and induction on k) that u+k(1,−1) travels by (1, 0) for 0 ≤ k < r(u).
This implies

u+ k(1,−1) + (1, 0) /∈ R2,2 for 0 ≤ k < r(u).

In particular, we can apply this with u = (1,−1), since this vertex travels by (1, 0) because u+(0, 1) =
(1, 0) ∈ R2,2. We have

R2,2 =

{
(0, 1), (1, 1),
(0, 0), (1, 0)

}
=

{
(1,−1) + (−1, 2), (1,−1) + (0, 2),
(1,−1) + (−1, 1), (1,−1) + (0, 1)

}
(6)

=

{
u+ am,n(−1,−2) · (1,−1), u+ am,n(0,−2) · (1,−1),
u+ am,n(−1,−1) · (1,−1), u+ am,n(0,−1) · (1,−1)

}
,

so

r(u) = min{ am,n(−1,−2), am,n(0,−2), am,n(−1,−1), am,n(0,−1)}. (7)

Also, since

u+ am,n(−2,−1) · (1,−1) + (1, 0) = (1,−1) + (−2, 1) + (1, 0) = (0, 0) ∈ R2,2

and

u+ am,n(−2,−2) · (1,−1) + (1, 0) = (1,−1) + (−2, 2) + (1, 0) = (0, 1) ∈ R2,2,

we know that u+ am,n(−2,−1) · (1,−1) and u+ am,n(−2,−2) · (1,−1) do not travel by (1, 0), so

r(u) ≤ min
{
am,n(−2,−1), am,n(−2,−2) }. (8)

Since am,n(−2,−2) = lcm(m,n)− 2 is very large, it is almost entirely irrelevant in (8), but it does imply
that am,n(−1,−1) = lcm(m,n) − 1 is not the only term that exists in the right-hand side of (7). This
implies that gcd(m,n) ∈ {1, 2}, so am,n(−2, 0) and am,n(0,−2) exist.

We may now assume that am,n(0,−1) and (equivalently) am,n(−1, 0) exist, for otherwise the inequal-
ity in the statement of the lemma is vacuously true. We may also assume (by interchanging m and n if
necessary) that

min
{
am,n(0,−1), am,n(−1, 0)

}
= am,n(−1, 0).

Thus, we see from (4) that (8) is equivalent to the condition that am,n(0,−2) < am,n(−1, 0). This
establishes the inequality in the statement of the lemma.

(⇐) Let u = (1,−1) and assume, without loss of generality, that

am,n(−1, 0) < am,n(0,−1).
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Since

am,n(−1, 0) + am,n(0,−1) = am,n(−1,−1) = lcm(m,n)− 1,

this implies that am,n(−1, 0) < lcm(m,n)/2, so am,n(−2, 0) = 2 am,n(−1, 0) > am,n(−1, 0). So we see
from the assumption of this direction of the proof that

am,n(0,−2) < am,n(−1, 0) = min
{
am,n(−1, 0), am,n(0,−1), am,n(−2, 0)

}
. (9)

We then conclude from (6) (and the definition of r(u) in (5)) that

r(u) = am,n(0,−2) (10)

and (using (3)) that

u+ k(1,−1) + (1, 0) /∈ R2,2 for 0 ≤ k < r(u).

Let u′ = u− (1, 0) = (0,−1). We claim that

r(u′) = r(u). (11)

To see this, first note that

u′ + r(u) · (1,−1) = (0,−1) + am,n(0,−2) · (1,−1) = (0,−1) + (0, 2) = (0, 1) ∈ R2,2,

so r(u′) ≤ r(u). On the other hand, we have

R2,2 =

{
(0, 1), (1, 1),
(0, 0), (1, 0)

}
=

{
(0,−1) + (0, 2), (0,−1) + (1, 2),
(0,−1) + (0, 1), (0,−1) + (1, 1)

}
=

{
u′ + am,n(0,−2) · (1,−1), u′ + am,n(1,−2) · (1,−1),
u′ + am,n(0,−1) · (1,−1), u′ + am,n(1,−1) · (1,−1)

}
,

so

r(u′) = min
{
am,n(0,−2), am,n(1,−2), am,n(0,−1), am,n(1,−1)

}
= min

{
am,n(0,−2), am,n(0,−3) + 1, am,n(0,−1), am,n(0,−2) + 1

}
From (9), we know that the only value in this minimum that could possibly be smaller than r(u) =
am,n(0,−2) is am,n(0,−3) + 1. However, we have

am,n(0,−2) + am,n(0,−1) < am,n(−1, 0) + am,n(0,−1) = lcm(m,n)− 1 < lcm(m,n),

so

am,n(0,−3) = am,n(0,−2) + am,n(0,−1) > am,n(0,−2) = r(u).

This completes the proof of the claim.

Note that, for 0 ≤ k < r(u), we have

u′ + k(1,−1) + (1, 0) = u+ k(1,−1) /∈ R2,2.

Also note that u and u′ are the only vertices in (~Cm� ~Cn)rR2,2 that cannot travel by (0, 1). Therefore,
we can construct a spanning subdigraph H in which a vertex travels by (1, 0) if it is in the set{

v + k(1,−1)
∣∣∣∣ v ∈ {u, u′},
0 ≤ k < r(u)

}
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and travels by (0, 1) otherwise. By construction (and (11)), if a vertex v travels by (1, 0), and v+(1,−1) /∈
R2,2, then v + (1,−1) also travels by (1, 0). Hence, no vertex has invalence 2, so the in-degree (and out-
degree) of every vertex of H is 1, which means that H is the desired vertex-disjoint cycle cover.

Furthermore, we know from the construction of H (together with (9) and (10)) that the number of
vertices that travel by (1, 0) is as specified in the final sentence of the statement of the lemma. Since H
is the only vertex-disjoint cycle cover (see lemma 5.4), this completes the proof.

Direct proof of corollary 3.5. Lemma 5.5 provides necessary conditions for the existence of a hamil-
tonian cycle (in particular, 2.1(2) must hold), but they is not sufficient, because we need an additional
condition that determines whether the cycle cover is a single cycle, rather than a union of several cycles.
This condition is provided by the “knot class,” which is a topological concept that was introduced into
the study of Cartesian products of directed cycles by S. J. Curran [2, §4].

Namely, let H be the vertex-disjoint cycle cover, and suppose the number of vertices of H that travel
by (1, 0) is x, and the number that travel by (0, 1) is y. Then x/m and y/n are integers, and the knot
class of H is defined to be the ordered pair (x/m, y/n) [2, Rem. 4.5]. The theory [2, Prop. 4.12(a)] tells
us that

H consists of a single cycle if and only if gcd(x/m, y/n) = 1. (12)

We now use (12) to show that 2.1(1) is a necessary condition for H to be a hamiltonian cycle. The
key is to notice that if gcd(m,n) 6= 1, then since lemma 5.5 tells us that am,n(−2, 0) exists, we must have
gcd(m,n) = 2, so

m and n are even.

However, if we assume, without loss of generality, that am,n(0,−2) < am,n(−2, 0), then the last sentence
of lemma 5.5 tells us that

x = 2 am,n(0,−2).

Since the number of vertices of H is mn− 4, this implies

y = mn− 4− x = mn− 4− 2 am,n(0,−2) = mn− 2 am,n(2, 0).

Since m is even, it is now obvious that

x

m
= 2

am,n(0,−2)
m

and
y

n
= m− 2

am,n(2, 0)

n

are even. Hence, gcd(x/m, y/n) 6= 1, so we see from (12) H is not a hamiltonian cycle.

To complete the proof, we now consider the situation where 2.1(1) holds, which means that
gcd(m,n) = 1. Since x/m and y/n are integers, we know that

x ≡ 0 (modm) and y ≡ 0 (modn).

Also, since the number of vertices of H is mn− 4, we know that

x+ y = mn− 4 ≡ −4 (modmn).

Combining these congruences tells us that

x ≡ −4 (modn) and y ≡ −4 (modm).

So x = am,n(0,−4) and y = am,n(−4, 0). We conclude from (12) that H consists of a single cycle (and is
therefore a hamiltonian cycle) if and only if the condition in 2.1(3) holds.
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