Matrix rings over a principal ideal domain in which elements are nil-clean

Research Article

Somayeh Hadjirezaei, Somayeh Karimzadeh

Abstract

An element of a ring R is called nil-clean if it is the sum of an idempotent and a nilpotent element. A ring is called nil-clean if each of its elements is nil-clean. S. Breaz et al. in [1] proved their main result that the matrix ring $\mathbb{M}_{n}(F)$ over a field F is nil-clean if and only if $F \cong \mathbb{F}_{2}$, where \mathbb{F}_{2} is the field of two elements. M. T. Koşan et al. generalized this result to a division ring. In this paper, we show that the $n \times n$ matrix ring over a principal ideal domain R is a nil-clean ring if and only if R is isomorphic to \mathbb{F}_{2}. Also, we show that the same result is true for the 2×2 matrix ring over an integral domain R. As a consequence, we show that for a commutative ring R, if $\mathbb{M}_{2}(R)$ is a nil-clean ring, then $\operatorname{dim} R=0$ and $\operatorname{char} R / J(R)=2$.

2010 MSC: 15A23, 15B33, 16S50

Keywords: Nil-clean matrix, Idempotent matrix, Nilpotent matrix, Principal ideal domain

1. Introduction

Throughout this paper, all rings are associative with identity. An element in a ring R is said to be (strongly) clean if it is the sum of an idempotent and a unit element(and these commute). A (strongly) clean ring is one in which every element is (strongly) clean. Local rings are obviously strongly clean. Strongly clean rings were introduced by Nicholson [8]. An element in a ring R is said to be (strongly) nil-clean if it is the sum of an idempotent and a nilpotent element(and these commute). A (strongly) nil-clean ring is one in which every element is (strongly) nil-clean. It is easy to see that every strongly nil-clean element is strongly clean and that every nil-clean ring is clean ([3, Proposition 3.1.3]). Nil-clean rings were extensively investigated by Diesl in [3] and [4]. S. Breaz et al. in [1] proved their main result that the matrix ring $\mathbb{M}_{n}(F)$ over a field F is nil-clean if and only if $F \cong \mathbb{F}_{2}$, where \mathbb{F}_{2} is the field of two elements. M. T. Koşan et al. in [6], generalized this result to a division ring. That is, the matrix ring $\mathbb{M}_{n}(D)$ over a division ring D is nil-clean if and only if $D \cong \mathbb{F}_{2}$. We show that this is true for a principal ideal domain (PID).

[^0]Throughout this paper an integral domain is a commutative ring without zero divisors and the Jacobson radical of a ring is denoted by $J(R)$. We write $\mathbb{M}_{n}(R)$ for the $n \times n$ matrix ring over R, I_{n} for the $n \times n$ identity matrix.

2. Main results

First, we recall from [5, Proposition VII.2.11], the following Proposition.
Proposition 2.1. If A is an $n \times m$ matrix of rank $r>0$ over a principal ideal domain R, then A is equivalent to a matrix of the form $\left(\begin{array}{rr}L_{r} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O}\end{array}\right)$, where L_{r} is an $r \times r$ diagonal matrix with nonzero diagonal entries d_{1}, \ldots, d_{r} such that $d_{1}|\ldots| d_{r}$. The ideals $\left(d_{1}\right), \ldots,\left(d_{r}\right)$ in R are uniquely determined by the equivalence class of A.

Further, we use the following lemmas.
Lemma 2.2. (See [4, Proposition 3.14]) Let R be a nil-clean ring. Then the element 2 is (central) nilpotent and, as such, is always contained in $J(R)$.

Lemma 2.3. (See [9, Corollary 5]) Let A be an $n \times n$ idempotent matrix over a ring R. If A is equivalent to a diagonal matrix, then A is similar to a diagonal matrix.

Next Lemmas are the main results of [1] and [6].
Lemma 2.4. (See [1, Theorem 3]) Let F be a field and let $n \geq 1$. Then $\mathbb{M}_{n}(F)$ is a nil-clean ring if and only if $F \cong \mathbb{F}_{2}$.

Lemma 2.5. (See [6, Theorem 3]) Let D be a division ring and let $n \geq 1$. Then $\mathbb{M}_{n}(D)$ is a nil-clean ring if and only if $D \cong \mathbb{F}_{2}$.
Theorem 2.6. Let R be a principal ideal domain and let $n \geq 1$. Then $\mathbb{M}_{n}(R)$ is a nil-clean ring if and only if $R \cong \mathbb{F}_{2}$.

Proof. If $R \cong \mathbb{F}_{2}$, then by Lemma 2.4, $\mathbb{M}_{n}(R)$ is a nil-clean ring.
Now, assume that $\mathbb{M}_{n}(R)$ is a nil-clean ring. By Lemma $2.2,2 I_{n}$ is a nilpotent element. Thus $2=0$ in R, because R is an integral domain. Proof in the case $n=1$ is obvious, so assume that $n>1$. Take $a \in R \backslash\{0,1\}$ and put

$$
A=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=E+N
$$

where E is an idempotent element and N is a nilpotent element of $\mathbb{M}_{n}(R)$. By Proposition 2.1, E is equivalent to a diagonal matrix. Thus by Lemma 2.3, E is similar to a diagonal matrix where it's entries are 0 and 1. Hence $U^{-1} E U=\left(\begin{array}{cc}I_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right)$, for some invertible matrix $U=\left(u_{i j}\right) \in \mathbb{M}_{n}(R)$. Therefore

$$
U^{-1} A U=\left(\begin{array}{cc}
I_{k} & \mathbf{0} \tag{1}\\
\mathbf{0} & \mathbf{0}
\end{array}\right)+N^{\prime}
$$

where $N^{\prime}=U^{-1} N U$ is a nilpotent element. Since a is not nilpotent, hence $U^{-1} A U$ is not nilpotent, so $k \geq 1$. If $k=n$, then $A=I_{n}+N$ is invertible, a contradiction because $\operatorname{det} A=0$. Thus $1 \leq k<n$. Since $I_{n}+N^{\prime}$ is invertible, $U\left(I_{n}+N^{\prime}\right)$ is invertible. We have

$$
U\left(I_{n}+N^{\prime}\right)=U\left(\begin{array}{cc}
I_{k} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+U N^{\prime}+U\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & I_{n-k}
\end{array}\right)=A U+U\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & I_{n-k}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
a u_{11} & \ldots & a u_{1 n} \\
0 & \ldots & 0 \\
\vdots & \vdots & \vdots \\
0 & \ldots & 0
\end{array}\right)+\left(\begin{array}{cccccc}
0 & \ldots & 0 & u_{1(k+1)} & \ldots & u_{1 n} \\
0 & \ldots & 0 & u_{2(k+1)} & \ldots & u_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
0 & \ldots & 0 & u_{n(k+1)} & \ldots & u_{n n}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
a u_{11} & \ldots & a u_{1 k} & (1+a) u_{1(k+1)} & \ldots & (1+a) u_{1 n} \\
0 & \ldots & 0 & u_{2(k+1)} & \ldots & u_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & u_{n(k+1)} & \ldots & u_{n n}
\end{array}\right)
\end{aligned}
$$

We imply that $k=1$ and $u_{11} \neq 0$. Thus

$$
U\left(I_{n}+N^{\prime}\right)=\left(\begin{array}{cccc}
a u_{11} & (1+a) u_{12} & \ldots & (1+a) u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & u_{n 2} & \ldots & u_{n n}
\end{array}\right)
$$

Put

$$
U_{1}:=\left(\begin{array}{ccc}
u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \vdots \\
u_{n 2} & \ldots & u_{n n}
\end{array}\right)
$$

Since $\operatorname{det}\left(U\left(I_{n}+N^{\prime}\right)\right)=a u_{11} \operatorname{det} U_{1}, U_{1}$ is invertible in $\mathbb{M}_{n-1}(R)$ and u_{11} is invertible in R, hence (1) implies that

$$
\left(\begin{array}{ll}
a & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) U=U\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+U N^{\prime} .
$$

This implies that

$$
\begin{aligned}
& \left(\begin{array}{cc}
u_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & U_{1}^{-1}
\end{array}\right)\left(\begin{array}{ll}
a & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
u_{11} & \mathbf{0} \\
\mathbf{0} & U_{1}
\end{array}\right)\left(\begin{array}{cc}
u_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & U_{1}^{-1}
\end{array}\right) U \\
& =\left(\begin{array}{cc}
u_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & U_{1}^{-1}
\end{array}\right) U\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
u_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & U_{1}^{-1}
\end{array}\right) U N^{\prime},
\end{aligned}
$$

i.e.,

$$
\left(\begin{array}{ll}
a & \mathbf{0} \tag{2}\\
\mathbf{0} & \mathbf{0}
\end{array}\right) V=V\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+V N^{\prime}
$$

where $V=\left(\begin{array}{cc}u_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & U_{1}^{-1}\end{array}\right) U=\left(\begin{array}{cc}1 & X \\ Y & I_{n-1}\end{array}\right)$. Let $V^{-1}=\left(\begin{array}{cc}c & X^{\prime} \\ Y^{\prime} & C_{1}\end{array}\right)$. From $V V^{-1}=V^{-1} V=I_{n}$, it follows that

$$
\begin{gathered}
1=c+X Y^{\prime}=c+X^{\prime} Y \\
I_{n-1}=Y X^{\prime}+C_{1}=Y^{\prime} X+C_{1} \\
0=X^{\prime}+X C_{1}=c X+X^{\prime}
\end{gathered}
$$

$$
0=c Y+Y^{\prime}=Y^{\prime}+C_{1} Y
$$

Since $2=0$ in R (by Lemma 2.2, and since R is an integral domain) hence, we have $1=-1$ in R, so $c=-c$. Therefore $X^{\prime}=-c X=c X, Y^{\prime}=c Y$ and $C_{1}=I_{n-1}+Y X^{\prime}=I_{n-1}+c Y X$. Also, $1=c+X Y^{\prime}=c+c X Y=c(1+X Y)$, so c is a unit element of R and

$$
\begin{equation*}
X Y=1+c^{-1} \tag{3}
\end{equation*}
$$

Hence $V^{-1}=\left(\begin{array}{cc}c & c X \\ c Y & I_{n-1}+c Y X\end{array}\right)$. If $X Y=0$, then $c=1$ and $V^{-1}=\left(\begin{array}{cc}1 & X \\ Y & I_{n-1}+Y X\end{array}\right)$. Then by (2),

$$
N^{\prime \prime}:=V N V^{-1}=\left(\begin{array}{ll}
a & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+V\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) V^{-1}=\left(\begin{array}{cc}
1+a & X \\
Y & Y X
\end{array}\right)
$$

and, for $k \geq 1$,
$N^{\prime \prime k+1}=\left(\begin{array}{cc}(1+a)^{k+1} & (1+a)^{k+1} X \\ (1+a)^{k+1} Y & (1+a)^{k+1} Y X\end{array}\right) \neq 0($ as $(1+a) \neq 0)$. This is a contradiction because $N^{\prime \prime}$ is a nilpotent matrix. Therefore $X Y \neq 0$. From (2) it follows that

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right)\left(\begin{array}{ll}
a & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right) V \\
& =\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right) V\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right) V N^{\prime},
\end{aligned}
$$

i.e.,

$$
\left(\begin{array}{cc}
a & X \tag{4}\\
\mathbf{0} & \mathbf{0}
\end{array}\right) P=P\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+P N^{\prime}
$$

where

$$
\begin{gathered}
P=\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right) V=\left(\begin{array}{cc}
1 & X \\
\mathbf{0} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
1 & X \\
Y & I_{n-1}
\end{array}\right) \\
=\left(\begin{array}{cc}
1+X Y & X+X \\
Y & I_{n-1}
\end{array}\right)
\end{gathered}
$$

Since $2=0$ in R, hence $X+X=2 X=0$. Also by (3), we have $X Y-1=X Y+1=c^{-1}$. Hence $P=\left(\begin{array}{cc}c^{-1} & \mathbf{0} \\ Y & I_{n-1}\end{array}\right)$ and $P^{-1}=\left(\begin{array}{cc}c & \mathbf{0} \\ c Y & I_{n-1}\end{array}\right)$. It follows from (4) that

$$
\triangle:=P N P^{-1}=\left(\begin{array}{cc}
a & a X \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+P\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) P^{-1}=\left(\begin{array}{cc}
1+a & a X \\
c Y & \mathbf{0}
\end{array}\right) .
$$

If Q is an $n \times n$ matrix, then we will write Q in block form $Q=\left(\begin{array}{ll}Q_{11} & Q_{12} \\ Q_{21} & Q_{22}\end{array}\right)$, where $Q_{11}, Q_{12}, Q_{21}, Q_{22}$ have size $1 \times 1,1 \times(n-1),(n-1) \times 1$ and $(n-1) \times(n-1)$, respectively. For $k \geq 1$ we have $\triangle^{k+1}=\triangle^{k} \triangle=\left(\begin{array}{cc}\left(\triangle^{k}\right)_{11} & (\triangle)_{12}^{k} \\ \left(\triangle^{k}\right)_{21} & \left(\triangle^{k}\right)_{22}\end{array}\right)\left(\begin{array}{cc}1+a & a X \\ c Y & \mathbf{0}\end{array}\right)$

$$
=\left(\begin{array}{cc}
\left(\triangle^{k}\right)_{11}(1+a)+(\triangle)_{12}^{k} c Y & a\left(\triangle^{k}\right)_{11} X \tag{5}\\
\left(\triangle^{k}\right)_{21}(1+a)+\left(\triangle^{k}\right)_{22} c Y & a\left(\triangle^{k}\right)_{21} X
\end{array}\right)
$$

An easy induction shows that there exist $a_{k}, b_{k}, c_{k} \in R$ such that for $k \geq 1$ we have

$$
\begin{equation*}
\left(\triangle^{k}\right)_{12}=b_{k} X,\left(\triangle^{k}\right)_{21}=c_{k} Y,\left(\triangle^{k}\right)_{22}=a_{k} Y X \tag{6}
\end{equation*}
$$

Since \triangle is a nilpotent matrix and $\triangle_{21}=c Y \neq 0$, there exists a positive integer s such that $\left(\triangle^{s+1}\right)_{21}=0$ but $\left(\triangle^{s}\right)_{21} \neq 0$. Then by (5) and (6),

$$
\triangle^{s+1}=\left(\begin{array}{cc}
\left(\triangle^{s+1}\right)_{11} & \left(\triangle^{s+1}\right)_{12} \\
0 & c_{s} a Y X
\end{array}\right)
$$

where $c_{s} a \neq 0$. For $r \in R$, it is easily seen that $r Y X=0$ if and only if $r=0$. We have $\left(\triangle^{s+1}\right)_{22}^{k}=$ $\left(c_{s} a\right)^{k}(X Y)^{k-1} Y X$. Since $c_{s} a \neq 0$ and $X Y \neq 0$, hence $\left(\triangle^{s+1}\right)_{22}^{k} \neq 0$, for $k \geq 2$. It is a contradiction because \triangle is nilpotent.

Theorem 2.7. Let R be an integral domain. If $M_{n}(R)$ is a nil-clean ring, then R is a field.
Proof. Let Q be the field of fractions of R and $0 \neq a \in R$. We know that $a I_{n}$ is nil-clean. So, $a I_{n}=E+N$ with E idempotent and N nilpotent. We have $I_{n}=a^{-1} E+a^{-1} N$, in $M_{n}(Q)$. Thus $a^{-1} E$ (and consequently E) is invertible in $M_{n}(Q)$. Since E is idempotent, so $E=I_{n}$. Therefore $a I_{n}$ is invertible, hence R is a field.

Lemma 2.8. Let R be an integral domain and $0, I_{2} \neq A \in \mathbb{M}_{2}(R)$. Then A is idempotent if and only if $\operatorname{rank}(A)=1$ and $\operatorname{tr}(A)=1$.

Proof. By [2, Lemma 1.5].
Lemma 2.9. Let R be an integral domain. If $A \in \mathbb{M}_{n}(R)$ be a nilpotent matrix, then $\operatorname{det}(A)=0$.
Proof. Let A be a nonzero nilpotent matrix. Thus there exists some $k \in \mathbb{N}$ such that $A^{k}=0$. Thus $\operatorname{adj}(A) A^{k}=0$. Hence $\operatorname{det}(A) A^{k-1}=0$. So $\operatorname{det}(A) \operatorname{adj}(A) A^{k-1}=0$. Therefore $(\operatorname{det}(A))^{2} A^{k-2}=0$. Continuing this process we have $(\operatorname{det}(A))^{k-1} A=0$. Since R is an integral domain and $A \neq 0$, hence $\operatorname{det}(A)=0$

Theorem 2.10. Let R be an integral domain. Then $\mathbb{M}_{2}(R)$ is a nil-clean ring if and only if $R \cong \mathbb{F}_{2}$.
Proof. $\Longleftarrow)$ This is by Theorem 2.6.
$\Longrightarrow)$ Assume that R is not isomorphic to \mathbb{F}_{2}. So, there exists $a \in R \backslash\{0,1\}$. Put $A=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=E+N$, where E is idempotent and N is a nilpotent matrix. If $E=I_{2}$, then A is invertible, a contradiction. If $E=0$, then A is nilpotent. Hence $a=0$, a contradiction. So by Lemma 2.8, $E=\left(\begin{array}{cc}e & b \\ c & 1-e\end{array}\right)$, where $e, b, c \in R$ and $e(1-e)=b c$. Hence $N=\left(\begin{array}{cc}n & -b \\ -c & -(1-e)\end{array}\right)$, for some $n \in R$. By Lemma 2.9, $-n(1-e)=b c$. Therefore $e(1-e)=-n(1-e)$. If $e \neq 1$, then $e=-n$. So $N=-E$, a contradiction. Thus $e=1$ and $b c=0$. Hence $b=0$ or $c=0$. We consider two cases.
Case 1) Let $b=0$. So $N=\left(\begin{array}{cc}n & 0 \\ 0 & 0\end{array}\right)$. Since N is nilpotent, hence there exists a positive integer k such that $n^{k}=0$. So $n=0$. Therefore $a=1$.
Case 2) Let $c=0$. Thus $N=\left(\begin{array}{cc}n & -b \\ 0 & 0\end{array}\right)$. Since N is nilpotent, hence there exists a positive integer k such that $n^{k}=0$. So $n=0$. Therefore $a=1$.

Let R be a commutative ring with identity. By a chain of prime ideals of R we mean a finite strictly increasing sequence of prime ideals of R of the type $P_{o} \varsubsetneqq P_{1} \varsubsetneqq P_{2} \varsubsetneqq \ldots \varsubsetneqq P_{n}$. The integer n is called the length of the chain.

Definition 2.11. The Krull dimension of R is the supremum of all lengths of chains of prime ideals of R. Krull dimension of R is denoted by $\operatorname{dim} R$.

Corollary 2.12. Let R be a commutative ring. If $\mathbb{M}_{2}(R)$ is a nil-clean ring, then dim $R=0$ and $\operatorname{char} R / J(R)=2$.

Proof. Let P be a prime ideal of R. We have $\mathbb{M}_{2}(R / P)=\mathbb{M}_{2}(R) / \mathbb{M}_{2}(P)$ is nil-clean. Hence by Theorem 2.10, $R / P \cong \mathbb{F}_{2}$. So P is a maximal ideal of R and $2 \in J(R)$. Therefore char $R / J(R)=2$.

Remark 2.13. Note that all of these results can also be obtained as some consequences of [7, Theorem 6.1].

Acknowledgment: The authors are grateful to the referees' invaluable comments, which helped to improve our study.

References

[1] S. Breaz, G. Călugăreanu, P. Danchev, T. Micu, Nil-clean matrix rings, Linear Algebra Appl. 439(10) (2013) 3115-3119.
[2] J. Chen, X. Yang, Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra. 34(10) (2006) 3659-3674.
[3] A. J. Diesl, Classes of strongly clean rings, Ph. D. thesis, University of California, Berkeley, 2006.
[4] A. J. Diesl, Nil clean rings, J. Algebra. 383 (2013) 197-211.
[5] T. W. Hungerford, Algebra, Springer-Verlag, 1980.
[6] M.T. Koşan, T. K. Lee, Y. Zhou, When is every matrix over a division ring a sum of an idempotent and a nilpotent?, Linear Algebra Appl. 450 (2014) 7-12.
[7] T. Koşan, Z. Wang, Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra. 220(2) (2016) 633-646.
[8] W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra. 27(8) (1999) 3583-3592.
[9] G. Song, X. Guo, Diagonability of idempotent matrices over noncommutative rings, Linear Algebra Appl. 297(1-3) (1999) 1-7.

[^0]: Somayeh Hadjirezaei (Corresponding Author), Somayeh Karimzadeh; Vali-e-Asr University of Rafsanjan (email: s.hajirezaei@vru.ac.ir, karimzadeh@vru.ac.ir).

