New results on vertex equitable labeling

Research Article

Pon Jeyanthi, Anthony Maheswari, Mani Vijayalakshmi

Abstract

The concept of vertex equitable labeling was introduced in [9]. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \cdots, q$. A graph G is said to be a vertex equitable if it admits a vertex equitable labeling. In this paper, we prove that the graphs, subdivision of double triangular snake $S\left(D\left(T_{n}\right)\right)$, subdivision of double quadrilateral snake $S\left(D\left(Q_{n}\right)\right)$, subdivision of double alternate triangular snake $S\left(D A\left(T_{n}\right)\right)$, subdivision of double alternate quadrilateral snake $S\left(D A\left(Q_{n}\right)\right), D A\left(Q_{m}\right) \odot n K_{1}$ and $D A\left(T_{m}\right) \odot n K_{1}$ admit vertex equitable labeling.

2010 MSC: 05C78, 05C38
Keywords: Vertex equitable labeling, Vertex equitable graph, Double triangular snake graph, Double alternate triangular snake graph, Double alternate quadrilateral snake graph

1. Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notation and terminology of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan [9]. Let G be a graph with p vertices and q edges and $A=\left\{0,1,2, \cdots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \cdots, q$, where $v_{f}(a)$ is the number of vertices v with $f(v)=a$ for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits a vertex equitable labeling. In [9] they proved that the graphs like paths, bistars $B(n, n)$, combs,

[^0]cycles C_{n} if $n \equiv 0$ or $3(\bmod 4), K_{2, n}, C_{3}^{(t)}$ for $t \geq 2$, quadrilateral snakes, $K_{2}+m K_{1}, K_{1, n} \cup K_{1, n+k}$ if and only if $1 \leq k \leq 3$, ladders, arbitrary super division of any path and cycle C_{n} with $n \equiv 0$ or 3 $(\bmod 4)$ are vertex equitable. Also they proved that the graphs $K_{1, n}$ if $n \geq 4$, any Eulerian graph with n edges where $n \equiv 1$ or $2(\bmod 4)$, the wheel W_{n}, the complete graph K_{n} if $n>3$ and triangular cactus with $q \equiv 0$ or 6 or $9(\bmod 12)$ are not vertex equitable. In addition, they proved that if G is a graph with p vertices and q edges, q is even and $p<\underline{\left\lceil\frac{q}{2}\right\rceil}+2$ then G is not vertex equitable. Motivated by these results, we [3]-[6] proved that T_{p}-trees, $T \odot \overline{K_{n}}$ where T is a T_{p}-trees with even number of vertices, $T \widehat{\circ} P_{n}, T \widehat{\circ} 2 P_{n}, T \widehat{\circ} C_{n}(n \equiv 0,3(\bmod 4)), T \widehat{\circ} C_{n}(n \equiv 0,3(\bmod 4))$, bistar $B(n, n+1)$, square graph of $B_{n, n}$ and splitting graph of $B_{n, n}$, the caterpillar $S\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $C_{n} \odot K_{1}, P_{n}^{2}$, tadpoles, $C_{m} \oplus C_{n}$, armed crowns, $\left[P_{m} ; C_{n}^{2}\right],\left\langle P_{m} \widehat{\circ} K_{1, n}\right\rangle, k C_{4}$-snakes for all $k \geq 1$, generalized $k C_{n}$-snakes if $n \equiv 0(\bmod 4)$, $n \geq 4$ and the graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle C_{n}, total graph of P_{n}, splitting graph of P_{n} and fusion of two edges of a cycle C_{n} are vertex equitable graphs.

In this paper, we prove that $S\left(D\left(T_{n}\right)\right), S\left(D\left(Q_{n}\right)\right), S\left(D A\left(T_{n}\right)\right), S\left(D A\left(Q_{n}\right)\right), D A\left(Q_{m}\right) \odot n K_{1}$ and $D A\left(T_{m}\right) \odot n K_{1}$ are vertex equitable graphs. We use the following definitions in the subsequent section.
Definition 1. The double triangular snake $D\left(T_{n}\right)$ is a graph obtained from a path P_{n} with vertices $v_{1}, v_{2}, \cdots, v_{n}$ by joining v_{i} and v_{i+1} to the new vertices w_{i} and u_{i} for $i=1,2, \cdots, n-1$.

Definition 2. The double quadrilateral snake $D\left(Q_{n}\right)$ is a graph obtained from a path P_{n} with vertices $u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} to the new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and then joining v_{i}, w_{i} and x_{i}, y_{i} for $i=1,2, \cdots, n-1$.
Definition 3. A double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to the two new vertices v_{i} and w_{i} for $i=1,2, \cdots, n-1$.

Definition 4. A double alternate quadrilateral snake $D A\left(Q_{n}\right)$ consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path $u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to the two new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and adding the edges $v_{i} w_{i}$ and $x_{i} y_{i}$ for $i=1,2, \cdots, n-1$.

Definition 5. Let G be a graph. The subdivision graph $S(G)$ is obtained from G by subdividing each edge of G with a vertex.
Definition 6. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

2. Main results

Theorem 2.1. Let $G_{1}\left(p_{1}, q_{1}\right), G_{2}\left(p_{2}, q_{2}\right), \cdots, G_{m}\left(p_{m}, q_{m}\right)$ be vertex equitable graphs with q_{i} even ($i=$ $1,2, \cdots, m)$ and u_{i}, v_{i} be the vertices of $G_{i}(1 \leq i \leq m)$ labeled by 0 and $\frac{q_{i}}{2}$. Then the graph G obtained by identifying v_{1} with u_{2} and v_{2} with u_{3} and v_{3} with u_{4} and so on until we identify v_{m-1} with u_{m} is also a vertex equitable graph.

Proof. First we assign the label $\frac{\sum_{j=1}^{i} q_{j}}{2}, 1 \leq i \leq m-1$ to the common vertices between the two graphs G_{i}, G_{i+1}. Then we add the number $\frac{\sum_{j=1}^{i} q_{j}}{2}$ to all the remaining vertex labels of the graph $G_{i+1}, 1 \leq i \leq m-1$. Hence the edge labels are $1,2, \cdots, q_{1} ; q_{1}+1, q_{1}+2, \cdots, q_{1}+q_{2}, q_{1}+q_{2}+1, q_{1}+q_{2}+2, \cdots, q_{1}+q_{2}+$ $q_{3} ; \cdots ; \sum_{j=1}^{m-1} q_{j}+1, \sum_{j=1}^{m-1} q_{j}+2, \cdots, \sum_{j=1}^{m} q_{j}$.

Theorem 2.2. The graph $S\left(D\left(T_{n}\right)\right)$ is a vertex equitable graph.

Figure 1.

Figure 2.

Proof. The vertex equitable labeling shown in Figure 1 together with Theorem 2.1 proves the result.
Theorem 2.3. The graph $S\left(D\left(Q_{n}\right)\right)$ is a vertex equitable graph.
Proof. The vertex equitable labeling shown in Figure 2 together with Theorem 2.1 proves the result.

Theorem 2.4. The graph $S\left(D A\left(T_{n}\right)\right)$ is a vertex equitable graph.
Proof. Let $G=S\left(D A\left(T_{n}\right)\right)$. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of path P_{n}.
Case i. The triangle starts from u_{1}.
We construct $D A\left(T_{n}\right)$ by joining $u_{2 i-1}$ and $u_{2 i}$ to the new vertices v_{i}, w_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$ and $E(G)=E\left(D A\left(T_{n}\right)\right) \cup$ $\left\{u_{i} u_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i}^{\prime} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{i} v_{i}, x_{i}^{\prime} w_{i}, v_{i} y_{i}, w_{i} y_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\} \cup\left\{u_{2 i-1} x_{i}, u_{2 i-1} x_{i}^{\prime}\right.$, $\left.y_{i} u_{2 i}, y_{i}^{\prime} u_{2 i} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$. We consider the following two sub cases:

Subcase i. n is even.
Here $|V(G)|=5 n-1$ and $|E(G)|=6 n-2$. Let $A=\{0,1,2, \cdots, 3 n-1\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=6(i-1), f\left(u_{2 i-1}^{\prime}\right)=6 i-5, f\left(u_{2 i}\right)=f\left(y_{i}\right)=6 i-1$, $f\left(x_{i}\right)=f\left(y_{i}^{\prime}\right)=6 i-3, f\left(w_{i}\right)=f\left(x_{i}^{\prime}\right)=6 i-4, f\left(v_{i}\right)=6 i-2$ and $f\left(u_{2 i}^{\prime}\right)=6 i$ if $1 \leq i \leq \frac{n-2}{2}$. It can be verified that the induced edge labels of $S\left(D A\left(T_{n}\right)\right)$ are $1,2, \cdots, 6 n-2$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(T_{n}\right)\right)$.

Subcase ii. n is odd.

Figure 3.

Here $|V(G)|=5 n-4$ and $|E(G)|=6 n-6$. Let $A=\{0,1,2, \cdots, 3 n-3\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: We label the vertices $u_{2 i-1}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}, u_{2 i-1}^{\prime}, u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}$ $\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in sub case (i). It can be verified that the induced edge labels of $S\left(D A\left(T_{n}\right)\right)$ are $1,2, \cdots, 6 n-6$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(T_{n}\right)\right)$.
Case ii. The triangle starts from u_{2}.
We construct $D A\left(T_{n}\right)$ by joining $u_{2 i}$ and $u_{2 i+1}$ to the new vertices v_{i}, w_{i} for $1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$. Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right.\right\}$ and $E(G)=E\left(D A\left(T_{n}\right)\right) \cup$ $\left\{u_{i} u_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i}^{\prime} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{i} v_{i}, x_{i}^{\prime} w_{i}, v_{i} y_{i}, w_{i} y_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right.\right\} \cup\left\{u_{2 i} x_{i}, u_{2 i} x_{i}^{\prime}, u_{2 i+1} y_{i}\right.$, $\left.u_{2 i+1} y_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right.\right\}$. We consider the following two sub cases:

Subcase i. n is odd.
Here $|V(G)|=5 n-4$ and $|E(G)|=6 n-6$. Let $A=\{0,1,2, \cdots, 3 n-3\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: $f\left(u_{2 i-1}\right)=6(i-1)$ if $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, f\left(u_{2 i}\right)=f\left(u_{2 i-1}^{\prime}\right)=6 i-5$, $f\left(u_{2 i}^{\prime}\right)=6 i-4, f\left(w_{i}\right)=f\left(x_{i}^{\prime}\right)=6 i-3, f\left(x_{i}\right)=f\left(y_{i}^{\prime}\right)=6 i-2, f\left(y_{i}\right)=6 i, f\left(v_{i}\right)=6 i-1$. It can be verified that the induced edge labels of $S\left(D A\left(T_{n}\right)\right)$ are $1,2, \cdots, 6 n-6$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(T_{n}\right)\right)$.

Subcase ii. n is even.
Here $|V(G)|=5 n-7$ and $|E(G)|=6 n-10$. Let $A=\{0,1,2, \cdots, 3 n-5\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: We label the vertices $u_{2 i-1}, u_{2 i-1}^{\prime}, u_{2 i}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime}, u_{2 i}^{\prime}\left(1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right)$ as in sub case (i). It can be verified that the induced edge labels of $S\left(D A\left(T_{n}\right)\right)$ are $1,2, \cdots, 6 n-10$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(T_{n}\right)\right)$.

An example for the vertex equitable labeling of $S\left(D A\left(T_{6}\right)\right)$ where the two triangles start from u_{1} is shown in Figure 3.

Theorem 2.5. The graph $S\left(D A\left(Q_{n}\right)\right)$ is a vertex equitable graph.
Proof. Let $G=S\left(D A\left(Q_{n}\right)\right)$. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of path P_{n}.
Case i. The quadrilateral starts from u_{1}.
We construct $D A\left(Q_{n}\right)$ by joining $u_{2 i-1}$ and $u_{2 i}$ to the new vertices v_{i}, w_{i} and x_{i}, y_{i} respectively and then joining v_{i}, x_{i} and w_{i}, y_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let $V(G)=V\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i}^{\prime} \mid 1 \leq i \leq n-1\right\} \cup$ $\left\{v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}, z_{i}, z_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$ and $E(G)=E\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i}^{\prime} u_{i+1} \mid 1 \leq i \leq n-\right.$
$1\} \cup\left\{v_{i} v_{i}^{\prime}, v_{i} x_{i}^{\prime}, x_{i} z_{i}, w_{i}^{\prime} w_{i}, w_{i} y_{i}^{\prime}, y_{i}^{\prime} y_{i}, y_{i} z_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\} \cup\left\{u_{2 i-1} v_{i}^{\prime}, u_{2 i-1} w_{i}^{\prime}, u_{2 i} z_{i}, u_{2 i} z_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$. We consider the following two sub cases:

Subcase i. n is even.
Here $|V(G)|=7 n-1$ and $|E(G)|=8 n-2$. Let $A=\{0,1,2, \cdots, 4 n-1\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=8(i-1), f\left(u_{2 i}\right)=f\left(u_{2 i-1}^{\prime}\right)=8 i-1$, $f\left(x_{i}\right)=f\left(z_{i}\right)=8 i-2, f\left(x_{i}^{\prime}\right)=8 i-3, f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=8 i-7, f\left(y_{i}\right)=f\left(z_{i}^{\prime}\right)=8 i-5, f\left(y_{i}^{\prime}\right)=8 i-6$ and $f\left(u_{2 i}^{\prime}\right)=8 i$ if $1 \leq i \leq \frac{n-2}{2}$. It can be verified that the induced edge labels of $S\left(D A\left(Q_{n}\right)\right)$ are $1,2, \cdots, 8 n-2$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(Q_{n}\right)\right)$.

Subcase ii. n is odd.
Here $|V(G)|=7 n-6$ and $|E(G)|=8 n-8$. Let $A=\{0,1,2, \cdots, 4 n-4\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: We label the vertices $u_{2 i-1}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}, u_{2 i-1}^{\prime}, u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}, x_{i}$, $x_{i}^{\prime}, y_{i}, y_{i}^{\prime}, z_{i}, z_{i}^{\prime}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in sub case (i). It can be verified that the induced edge labels of $S\left(D A\left(Q_{n}\right)\right)$ are $1,2, \cdots, 8 n-8$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(Q_{n}\right)\right)$.
Case ii. The quadrilateral starts from u_{2}.
We construct $D A\left(Q_{n}\right)$ by joining $u_{2 i}$ and $u_{2 i+1}$ to the new vertices v_{i}, w_{i} and x_{i}, y_{i} respectively and then joining v_{i}, x_{i} and w_{i}, y_{i} for $1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$. Let $V(G)=V\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i}^{\prime} \mid 1 \leq i \leq n-1\right\} \cup$ $\left\{v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}, z_{i}, z_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right.\right\}$ and $E(G)=E\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime} \mid 1 \leq i \leq n-1\right\} \cup\left\{u_{i}^{\prime} u_{i+1} \mid 1 \leq\right.$ $i \leq n-1\} \cup\left\{v_{i} v_{i}^{\prime}, v_{i} x_{i}^{\prime}, x_{i} z_{i}, w_{i}^{\prime} w_{i}, w_{i} y_{i}^{\prime}, x_{i} x_{i}^{\prime}, y_{i}^{\prime} y_{i}, y_{i} z_{i}^{\prime} \left\lvert\, 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right.\right\} \cup\left\{u_{2 i} v_{i}^{\prime}, u_{2 i} w_{i}^{\prime}, u_{2 i+1} z_{i}, u_{2 i+1} z_{i}^{\prime} \mid\right.$ $\left.1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$. We consider the following two sub cases:

Subcase i. n is odd.

Here $|V(G)|=7 n-6$ and $|E(G)|=8 n-8$. Let $A=\{0,1,2, \cdots, 4 n-4\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows:
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, f\left(u_{2 i-1}\right)=8(i-1), f\left(u_{2 i-1}^{\prime}\right)=8 i-7$.
For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, f\left(u_{2 i}\right)=8 i-7, f\left(u_{2 i}^{\prime}\right)=8 i, f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=8 i-3, f\left(x_{i}\right)=f\left(z_{i}\right)=8 i-1$, $f\left(x_{i}^{\prime}\right)=8 i-2, f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=8 i-6, f\left(y_{i}\right)=f\left(z_{i}^{\prime}\right)=8 i-4, f\left(y_{i}^{\prime}\right)=8 i-5$. It can be verified that the induced edge labels of $S\left(D A\left(Q_{n}\right)\right)$ are $1,2, \cdots, 8 n-8$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(Q_{n}\right)\right)$.

Subcase ii. n is even.
Let $|V(G)|=7 n-11$ and $|E(G)|=8 n-14$. Let $A=\{0,1,2, \cdots, 4 n-7\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: We label the vertices $u_{2 i-1}, u_{2 i}, u_{2 i-1}^{\prime}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime},\left(1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right)$ as in sub case (i). It can be verified that the induced edge labels of $S\left(D A\left(Q_{n}\right)\right)$ are $1,2, \cdots, 8 n-14$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $S\left(D A\left(Q_{n}\right)\right)$.

An example for the vertex equitable labeling of $S\left(D A\left(Q_{7}\right)\right)$ where the two quadrilaterals start from u_{1} is shown in Figure 4.
Theorem 2.6. Let $\left.G_{1}\left(p_{1}, q\right), G_{2}\left(p_{2}, q\right), \cdots, G_{m}\left(p_{m}, q\right)\right)$ be vertex equitable graphs with q odd u_{i}, v_{i} be vertices of $G_{i}(1 \leq i \leq m)$ labeled by 0 and $\left\lceil\frac{q}{2}\right\rceil$. Then the graph G obtained by joining v_{1} with u_{2} and v_{2} with u_{3} and v_{3} with u_{4} and so on until joining v_{m-1} with u_{m} by an edge is also a vertex equitable graph.

Proof. The graph G has $p_{1}+p_{2}+\cdots+p_{m}$ vertices and $m q+(m-1)$ edges. Let f_{i} be the vertex equitable labeling of $G_{i}(1 \leq i \leq m)$ and let $A=\left\{0,1,2, \cdots,\left\lceil\frac{m q+m-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as $f(x)=f_{i}(x)+\frac{(i-1)(q+1)}{2}$ if $x \in G_{i}$ for $1 \leq i \leq m$. The edge labels of G_{i} are increased by $(i-1)(q+1)$ for $i=1,2, \cdots, m$ under the new labeling f. The bridge between the two graphs G_{i}, G_{i+1} will get the label $i(q+1), 1 \leq i \leq m-1$. Hence the edge labels of G are distinct and is $\{1,2, \cdots, m q+m-1\}$. Also $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Then the graph G is a vertex equitable graph.

Figure 4.

Figure 5.

Remark 2.7. [7] The graph $D A\left(Q_{m}\right) \odot n K_{1}$ and $D A\left(T_{m}\right) \odot n K_{1}$ are vertex equitable graphs if $m, n=1,2$.
Theorem 2.8. The graph $D A\left(Q_{2}\right) \odot n K_{1}$ is a vertex equitable graph for $n \geq 3$
Proof. Let $G=D A\left(Q_{2}\right) \odot n K_{1}$. Let $V(G)=\left\{u_{1}, u_{2}, v, w, x, y\right\} \cup\left\{u_{i j} \mid 1 \leq i \leq 2,1 \leq j \leq n\right\} \cup$ $\left\{v_{i}, w_{i}, x_{i}, y_{i} \mid 1 \leq i \leq n\right\}$ and $E(G)=\left\{u_{1} u_{2}, u_{1} v, v w, w u_{2}, u_{1} x, x y, y u_{2}\right\} \cup\left\{u_{i} u_{i j} \mid 1 \leq i \leq 2,1 \leq j \leq n\right\} \cup$ $\left\{v v_{i}, w w_{i}, x x_{i}, y y_{i} \mid 1 \leq i \leq n\right\}$. Here $|V(G)|=6(n+1)$ and $|E(G)|=6 n+7$. Let $A=\left\{0,1,2, \cdots,\left\lceil\frac{6 n+7}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq n, f\left(u_{1 i}\right)=i, f\left(v_{i}\right)=i+1, f\left(y_{i}\right)=n+2+i$, $f\left(u_{i}\right)=0, f\left(u_{2}\right)=3 n+4, f(v)=n+1, f(w)=2(n+1), f(x)=n+2, f(y)=2(n+2), f\left(u_{2 i}\right)=3 n+4-i$ if $1 \leq i \leq n-1, f\left(u_{2 n}\right)=2 n+3, f\left(w_{1}\right)=1, f\left(w_{i}\right)=3 n+5-i$ if $2 \leq i \leq n, f\left(x_{i}\right)=n+i+1$ if $1 \leq i \leq n-1, f\left(x_{n}\right)=2 n+3$. It can be verified that the induced edge labels of $D A\left(Q_{2}\right) \odot n K_{1}$ are $1,2, \cdots, 6 n+7$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{2}\right) \odot n K_{1}$.

An example for the vertex equitable labeling of $D A\left(Q_{2}\right) \odot 4 K_{1}$ is shown in Figure 5 .
Theorem 2.9. The graph $D A\left(Q_{m}\right) \odot n K_{1}$ is a vertex equitable graph for $m, n \geq 3$.
Proof. By Theorem 2.8, $D A\left(Q_{2}\right) \odot n K_{1}$ is a vertex equitable graph. Let $G_{i}=D A\left(Q_{2}\right) \odot n K_{1}$ for $1 \leq i \leq m-1$. Since each G_{i} has $6 n+7$ edges, by Theorem 2.6, $D A\left(Q_{m}\right) \odot n K_{1}$ admits vertex equitable labeling.

An example for the vertex equitable labeling of $D A\left(Q_{6}\right) \odot 4 K_{1}$ is shown in Figure 6 .

Figure 6.

Figure 7.

Theorem 2.10. The graph $D A\left(T_{2}\right) \odot n K_{1}$ is a vertex equitable graph for $n \geq 3$.
Proof. Let $G=D A\left(T_{2}\right) \odot n K_{1}$. Let $V(G)=\left\{u_{1}, u_{2}, u, w\right\} \cup\left\{u_{i j} \mid 1 \leq i \leq 2,1 \leq j \leq n\right\} \cup\left\{v_{i}, w_{i} \mid 1 \leq\right.$ $i \leq n\}$ and $E(G)=\left\{u_{1} u_{2}, u_{1} v, v u_{2}, u_{1} w, w u_{2}\right\} \cup\left\{u_{i} u_{i j} \mid 1 \leq i \leq 2,1 \leq j \leq n\right\} \cup\left\{v v_{i}, w w_{i} \mid 1 \leq i \leq n\right\}$. Here $|V(G)|=4(n+1)$ and $|E(G)|=4 n+5$. Let $A=\left\{0,1,2, \cdots,\left\lceil\frac{4 n+5}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. For $1 \leq i \leq n, f\left(u_{1 i}\right)=i, f\left(u_{2 i}\right)=2 n+3-i, f\left(v_{i}\right)=i+1, f\left(w_{i}\right)=n+1+i$, $f\left(u_{1}\right)=0, f\left(u_{2}\right)=2 n+3, f(v)=n+1, f(w)=n+2$. It can be verified that the induced edge labels of $D A\left(T_{2}\right) \odot n K_{1}$ are $1,2, \cdots, 4 n+5$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{2}\right) \odot n K_{1}$.

An example for the vertex equitable labeling of $D A\left(T_{2}\right) \odot 3 K_{1}$ is shown in Figure 7 .

Theorem 2.11. The graph $D A\left(T_{m}\right) \odot n K_{1}$ is a vertex equitable graph for $m, n \geq 3$.
Proof. By Theorem 2.10, $D A\left(T_{2}\right) \odot n K_{1}$ is a vertex equitable graph. Let $G_{i}=D A\left(T_{2}\right) \odot n K_{1}$,

Figure 8.

$1 \leq i \leq m-1$. Since each G_{i} has $4 n+5$ edges, by Theorem 2.6, $D A\left(T_{m}\right) \odot n K_{1}$ admits a vertex equitable labeling.

An example for the vertex equitable labeling of $D A\left(T_{m}\right) \odot 4 K_{1}$ is shown in Figure 8 .
Acknowledgment: The authors would like to thank the referees for their valuable suggestions to improve the paper.

References

[1] J. A. Gallian, Graph labeling, Electron. J. Combin. (2015) (Dynamic Survey \#DS6).
[2] F. Harary, Graph theory, Addison-Wesley, Reading Mass, 1972.
[3] P. Jeyanthi, A. Maheswari, Some results on vertex equitable labeling, Open J. Discrete Math. 2(2) (2012) 51-57.
[4] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of transformed trees, J. Algorithms Comput. 44(1) (2013) 9-20.
[5] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, J. Sci. Res. 6(1) (2014) 79-85.
[6] P. Jeyanthi, A. Maheswari, M. Vijayalaksmi, Vertex equitable labeling of cycle and star related graphs, J. Sci. Res. 7(3) (2015) 33-42.
[7] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of cycle and path related graphs, Util. Math. 98 (2015) 215-226.
[8] P. Jeyanthi, A. Maheswari, M. Vijayalakshmi, Vertex equitable labeling of double alternate snake graphs, J. Algorithms Comput. 46 (2015) 27-34.
[9] M. Seenivasan, A. Lourdusamy, Vertex equitable labeling of graphs, J. Discrete Math. Sci. Cryptogr. 11(6) (2008) 727-735.

[^0]: Pon Jeyanthi (Corresponding Author); Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamilnadu, India (email: jeyajeyanthi@rediffmail.com).
 Anthony Maheswari; Department of Mathematics, Kamaraj College of Engg. and Technology, Virudhunagar, Tamilnadu, India (email: bala_nithin@yahoo.co.in).
 Mani Vijayalakshmi; Department of Mathematics, Department of Mathematics, Dr. G. U. Pope College of Engineering, Sawyerpuram, Thoothukudi District, Tamil Nadu, India (email: viji_mac@rediffmail.com).

