Journal of Algebra Combinatorics Discrete Structures and Applications

# New results on vertex equitable labeling

**Research Article** 

Pon Jeyanthi, Anthony Maheswari, Mani Vijayalakshmi

**Abstract:** The concept of vertex equitable labeling was introduced in [9]. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A,  $|v_f(a) - v_f(b)| \leq 1$  and the induced edge labels are  $1, 2, 3, \dots, q$ . A graph G is said to be a vertex equitable if it admits a vertex equitable labeling. In this paper, we prove that the graphs, subdivision of double triangular snake  $S(D(T_n))$ , subdivision of double quadrilateral snake  $S(D(Q_n))$ , subdivision of double alternate triangular snake  $S(DA(T_n))$ , subdivision of double alternate quadrilateral snake  $S(DA(T_n))$ ,  $DA(Q_m) \odot nK_1$  and  $DA(T_m) \odot nK_1$  admit vertex equitable labeling.

2010 MSC: 05C78, 05C38

Keywords: Vertex equitable labeling, Vertex equitable graph, Double triangular snake graph, Double alternate triangular snake graph, Double alternate quadrilateral snake graph

## 1. Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notation and terminology of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan [9]. Let G be a graph with p vertices and q edges and  $A = \{0, 1, 2, \dots, \lceil \frac{q}{2} \rceil\}$ . A graph G is said to be vertex equitable if there exists a vertex labeling  $f : V(G) \to A$  that induces an edge labeling  $f^*$  defined by  $f^*(uv) = f(u) + f(v)$  for all edges uv such that for all a and b in A,  $|v_f(a) - v_f(b)| \le 1$  and the induced edge labels are  $1, 2, 3, \dots, q$ , where  $v_f(a)$  is the number of vertices v with f(v) = a for  $a \in A$ . The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits a vertex equitable labeling. In [9] they proved that the graphs like paths, bistars B(n, n), combs,

http://dx.doi.org/10.13069/jacodesmath.59822

Pon Jeyanthi (Corresponding Author); Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamilnadu, India (email: jeyajeyanthi@rediffmail.com).

Anthony Maheswari; Department of Mathematics, Kamaraj College of Engg. and Technology, Virudhunagar, Tamilnadu, India (email: bala nithin@yahoo.co.in).

Mani Vijayalakshmi; Department of Mathematics, Department of Mathematics, Dr. G. U. Pope College of Engineering, Sawyerpuram, Thoothukudi District, Tamil Nadu, India (email: viji\_mac@rediffmail.com).

cycles  $C_n$  if  $n \equiv 0$  or 3 (mod 4),  $K_{2,n}$ ,  $C_3^{(t)}$  for  $t \geq 2$ , quadrilateral snakes,  $K_2 + mK_1$ ,  $K_{1,n} \cup K_{1,n+k}$ if and only if  $1 \leq k \leq 3$ , ladders, arbitrary super division of any path and cycle  $C_n$  with  $n \equiv 0$  or 3 (mod 4) are vertex equitable. Also they proved that the graphs  $K_{1,n}$  if  $n \geq 4$ , any Eulerian graph with n edges where  $n \equiv 1$  or 2 (mod 4), the wheel  $W_n$ , the complete graph  $K_n$  if n > 3 and triangular cactus with  $q \equiv 0$  or 6 or 9 (mod 12) are not vertex equitable. In addition, they proved that if G is a graph with p vertices and q edges, q is even and  $p < \left[\frac{q}{2}\right] + 2$  then G is not vertex equitable. Motivated by these results, we [3]-[6] proved that  $T_p$ -trees,  $T \odot K_n$  where T is a  $T_p$ -trees with even number of vertices,  $T \odot P_n$ ,  $T \odot 2P_n$ ,  $T \odot C_n$  ( $n \equiv 0$ , 3 (mod 4)),  $T \simeq C_n$  ( $n \equiv 0$ , 3 (mod 4)), bistar B(n, n + 1), square graph of  $B_{n,n}$  and splitting graph of  $B_{n,n}$ , the caterpillar  $S(x_1, x_2, \cdots, x_n)$  and  $C_n \odot K_1$ ,  $P_n^2$ , tadpoles,  $C_m \oplus C_n$ ,  $n \geq 4$  and the graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle  $C_n$ , total graph of  $P_n$ , splitting graph of  $P_n$  and fusion of two edges of a cycle  $C_n$  are vertex equitable graphs.

In this paper, we prove that  $S(D(T_n))$ ,  $S(D(Q_n))$ ,  $S(DA(T_n))$ ,  $S(DA(Q_n))$ ,  $DA(Q_m) \odot nK_1$  and  $DA(T_m) \odot nK_1$  are vertex equitable graphs. We use the following definitions in the subsequent section.

**Definition 1.** The double triangular snake  $D(T_n)$  is a graph obtained from a path  $P_n$  with vertices  $v_1, v_2, \dots, v_n$  by joining  $v_i$  and  $v_{i+1}$  to the new vertices  $w_i$  and  $u_i$  for  $i = 1, 2, \dots, n-1$ .

**Definition 2.** The double quadrilateral snake  $D(Q_n)$  is a graph obtained from a path  $P_n$  with vertices  $u_1, u_2, \dots, u_n$  by joining  $u_i$  and  $u_{i+1}$  to the new vertices  $v_i$ ,  $x_i$  and  $w_i$ ,  $y_i$  respectively and then joining  $v_i$ ,  $w_i$  and  $x_i$ ,  $y_i$  for  $i = 1, 2, \dots, n-1$ .

**Definition 3.** A double alternate triangular snake  $DA(T_n)$  consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path  $u_1, u_2, \dots, u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to the two new vertices  $v_i$  and  $w_i$  for  $i = 1, 2, \dots, n-1$ .

**Definition 4.** A double alternate quadrilateral snake  $DA(Q_n)$  consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path  $u_1, u_2, \dots, u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to the two new vertices  $v_i$ ,  $x_i$  and  $w_i$ ,  $y_i$  respectively and adding the edges  $v_i w_i$  and  $x_i y_i$  for  $i = 1, 2, \dots, n-1$ .

**Definition 5.** Let G be a graph. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

**Definition 6.** The corona  $G_1 \odot G_2$  of the graphs  $G_1$  and  $G_2$  is defined as the graph obtained by taking one copy of  $G_1$  (with p vertices) and p copies of  $G_2$  and then joining the *i*<sup>th</sup> vertex of  $G_1$  to every vertex of the *i*<sup>th</sup> copy of  $G_2$ .

### 2. Main results

**Theorem 2.1.** Let  $G_1(p_1, q_1), G_2(p_2, q_2), \dots, G_m(p_m, q_m)$  be vertex equitable graphs with  $q_i$  even  $(i = 1, 2, \dots, m)$  and  $u_i, v_i$  be the vertices of  $G_i$   $(1 \le i \le m)$  labeled by 0 and  $\frac{q_i}{2}$ . Then the graph G obtained by identifying  $v_1$  with  $u_2$  and  $v_2$  with  $u_3$  and  $v_3$  with  $u_4$  and so on until we identify  $v_{m-1}$  with  $u_m$  is also a vertex equitable graph.

**Proof.** First we assign the label  $\frac{\sum_{j=1}^{i} q_j}{2}$ ,  $1 \le i \le m-1$  to the common vertices between the two graphs  $G_i$ ,  $G_{i+1}$ . Then we add the number  $\frac{\sum_{j=1}^{i} q_j}{2}$  to all the remaining vertex labels of the graph  $G_{i+1}$ ,  $1 \le i \le m-1$ . Hence the edge labels are  $1, 2, \cdots, q_1$ ;  $q_1 + 1, q_1 + 2, \cdots, q_1 + q_2, q_1 + q_2 + 1, q_1 + q_2 + 2, \cdots, q_1 + q_2 + q_3; \cdots; \sum_{j=1}^{m-1} q_j + 1, \sum_{j=1}^{m-1} q_j + 2, \cdots, \sum_{j=1}^{m} q_j$ .

**Theorem 2.2.** The graph  $S(D(T_n))$  is a vertex equitable graph.



Figure 1.

#### Figure 2.

**Proof.** The vertex equitable labeling shown in Figure 1 together with Theorem 2.1 proves the result.  $\Box$ 

**Theorem 2.3.** The graph  $S(D(Q_n))$  is a vertex equitable graph.

**Proof.** The vertex equitable labeling shown in Figure 2 together with Theorem 2.1 proves the result.  $\Box$ 

**Theorem 2.4.** The graph  $S(DA(T_n))$  is a vertex equitable graph.

**Proof.** Let  $G = S(DA(T_n))$ . Let  $u_1, u_2, \dots, u_n$  be the vertices of path  $P_n$ .

**Case i.** The triangle starts from  $u_1$ .

We construct  $DA(T_n)$  by joining  $u_{2i-1}$  and  $u_{2i}$  to the new vertices  $v_i$ ,  $w_i$  for  $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$ . Let  $V(G) = V(DA(T_n)) \cup \{u'_i | 1 \leq i \leq n-1\} \cup \{x_i, y_i, x'_i, y'_i | 1 \leq i \leq \lfloor \frac{n}{2} \rfloor\}$  and  $E(G) = E(DA(T_n)) \cup \{u_i u'_i | 1 \leq i \leq n\} \cup \{u'_i u_{i+1} | 1 \leq i \leq n-1\} \cup \{x_i v_i, x'_i w_i, v_i y_i, w_i y'_i | 1 \leq i \leq \lfloor \frac{n}{2} \rfloor\} \cup \{u_{2i-1} x_i, u_{2i-1} x'_i, y_i u_{2i}, y'_i u_{2i} | 1 \leq i \leq \lfloor \frac{n}{2} \rfloor\}$ . We consider the following two sub cases:

Subcase i. n is even.

Here |V(G)| = 5n - 1 and |E(G)| = 6n - 2. Let  $A = \{0, 1, 2, \cdots, 3n - 1\}$ . Define a vertex labeling  $f: V(G) \to A$  as follows: For  $1 \le i \le \frac{n}{2}$ ,  $f(u_{2i-1}) = 6(i-1)$ ,  $f(u'_{2i-1}) = 6i - 5$ ,  $f(u_{2i}) = f(y_i) = 6i - 1$ ,  $f(x_i) = f(y'_i) = 6i - 3$ ,  $f(w_i) = f(x'_i) = 6i - 4$ ,  $f(v_i) = 6i - 2$  and  $f(u'_{2i}) = 6i$  if  $1 \le i \le \frac{n-2}{2}$ . It can be verified that the induced edge labels of  $S(DA(T_n))$  are  $1, 2, \cdots, 6n - 2$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(T_n))$ .

Subcase ii. *n* is odd.



#### Figure 3.

Here |V(G)| = 5n - 4 and |E(G)| = 6n - 6. Let  $A = \{0, 1, 2, \dots, 3n - 3\}$ . Define a vertex labeling  $f : V(G) \to A$  as follows: We label the vertices  $u_{2i-1}$   $(1 \le i \le \lfloor \frac{n}{2} \rfloor)$  and  $u_{2i}, u'_{2i-1}, u'_{2i}, v_i, v'_i, w_i, w'_i$   $(1 \le i \le \frac{n-1}{2})$  as in sub case (i). It can be verified that the induced edge labels of  $S(DA(T_n))$  are  $1, 2, \dots, 6n - 6$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(T_n))$ .

**Case ii.** The triangle starts from  $u_2$ .

We construct  $DA(T_n)$  by joining  $u_{2i}$  and  $u_{2i+1}$  to the new vertices  $v_i$ ,  $w_i$  for  $1 \le i \le \lfloor \frac{n-2}{2} \rfloor$ . Let  $V(G) = V(DA(T_n)) \cup \{u'_i | 1 \le i \le n-1\} \cup \{x_i, y_i, x'_i, y'_i | 1 \le i \le \lfloor \frac{n-2}{2} \rfloor\}$  and  $E(G) = E(DA(T_n)) \cup \{u_i u'_i | 1 \le i \le n\} \cup \{u'_i u_{i+1} | 1 \le i \le n-1\} \cup \{x_i v_i, x'_i w_i, v_i y_i, w_i y'_i | 1 \le i \le \lfloor \frac{n-2}{2} \rfloor\} \cup \{u_{2i} x_i, u_{2i} x'_i, u_{2i+1} y_i, u_{2i+1} y'_i | 1 \le i \le \lfloor \frac{n-2}{2} \rfloor\}$ . We consider the following two sub cases:

Subcase i. *n* is odd.

Here |V(G)| = 5n - 4 and |E(G)| = 6n - 6. Let  $A = \{0, 1, 2, \dots, 3n - 3\}$ . Define a vertex labeling  $f: V(G) \to A$  as follows:  $f(u_{2i-1}) = 6(i-1)$  if  $1 \le i \le \lfloor \frac{n}{2} \rfloor$ , for  $1 \le i \le \lfloor \frac{n}{2} \rfloor$ ,  $f(u_{2i}) = f(u'_{2i-1}) = 6i - 5$ ,  $f(u'_{2i}) = 6i - 4$ ,  $f(w_i) = f(x'_i) = 6i - 3$ ,  $f(x_i) = f(y'_i) = 6i - 2$ ,  $f(y_i) = 6i$ ,  $f(v_i) = 6i - 1$ . It can be verified that the induced edge labels of  $S(DA(T_n))$  are  $1, 2, \dots, 6n - 6$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(T_n))$ .

Subcase ii. *n* is even.

Here |V(G)| = 5n - 7 and |E(G)| = 6n - 10. Let  $A = \{0, 1, 2, \dots, 3n - 5\}$ . Define a vertex labeling  $f : V(G) \to A$  as follows: We label the vertices  $u_{2i-1}, u'_{2i-1}, u_{2i}$   $(1 \le i \le \lceil \frac{n}{2} \rceil)$  and  $v_i, v'_i, w_i, w'_i, x_i, x'_i, y_i, y'_i, u'_{2i}$   $(1 \le i \le \lceil \frac{n-2}{2} \rceil)$  as in sub case (i). It can be verified that the induced edge labels of  $S(DA(T_n))$  are  $1, 2, \dots, 6n - 10$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(T_n))$ .

An example for the vertex equitable labeling of  $S(DA(T_6))$  where the two triangles start from  $u_1$  is shown in Figure 3.

**Theorem 2.5.** The graph  $S(DA(Q_n))$  is a vertex equitable graph.

**Proof.** Let  $G = S(DA(Q_n))$ . Let  $u_1, u_2, \dots, u_n$  be the vertices of path  $P_n$ .

**Case i.** The quadrilateral starts from  $u_1$ .

We construct  $DA(Q_n)$  by joining  $u_{2i-1}$  and  $u_{2i}$  to the new vertices  $v_i, w_i$  and  $x_i, y_i$  respectively and then joining  $v_i, x_i$  and  $w_i, y_i$  for  $1 \le i \le \lfloor \frac{n}{2} \rfloor$ . Let  $V(G) = V(DA(Q_n)) \cup \{u'_i | 1 \le i \le n-1\} \cup \{v'_i, w'_i, x'_i, y'_i, z_i, z'_i | 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$  and  $E(G) = E(DA(Q_n)) \cup \{u_i u'_i | 1 \le i \le n\} \cup \{u'_i u_{i+1} | 1 \le i \le n - 1\}$   $1\} \cup \{v_i v'_i, v_i x'_i, x_i z_i, w'_i w_i, w_i y'_i, y'_i y_i, y_i z'_i | 1 \le i \le \lfloor \frac{n}{2} \rfloor\} \cup \{u_{2i-1} v'_i, u_{2i-1} w'_i, u_{2i} z_i, u_{2i} z'_i | 1 \le i \le \lfloor \frac{n}{2} \rfloor\}.$  We consider the following two sub cases:

#### Subcase i. n is even.

Here |V(G)| = 7n - 1 and |E(G)| = 8n - 2. Let  $A = \{0, 1, 2, \dots, 4n - 1\}$ . Define a vertex labeling  $f: V(G) \to A$  as follows: For  $1 \le i \le \frac{n}{2}$ ,  $f(u_{2i-1}) = 8(i-1)$ ,  $f(u_{2i}) = f(u'_{2i-1}) = 8i - 1$ ,  $f(x_i) = f(z_i) = 8i - 2$ ,  $f(x'_i) = 8i - 3$ ,  $f(w_i) = f(w'_i) = 8i - 7$ ,  $f(y_i) = f(z'_i) = 8i - 5$ ,  $f(y'_i) = 8i - 6$  and  $f(u'_{2i}) = 8i$  if  $1 \le i \le \frac{n-2}{2}$ . It can be verified that the induced edge labels of  $S(DA(Q_n))$  are  $1, 2, \dots, 8n-2$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(Q_n))$ .

Subcase ii. n is odd.

Here |V(G)| = 7n - 6 and |E(G)| = 8n - 8. Let  $A = \{0, 1, 2, \dots, 4n - 4\}$ . Define a vertex labeling  $f: V(G) \to A$  as follows: We label the vertices  $u_{2i-1}$   $(1 \le i \le \lceil \frac{n}{2} \rceil)$  and  $u_{2i}, u'_{2i-1}, u'_{2i}, v_i, v'_i, w_i, w'_i, x_i, x'_i, y_i, y'_i, z_i, z'_i$   $(1 \le i \le \frac{n-1}{2})$  as in sub case (i). It can be verified that the induced edge labels of  $S(DA(Q_n))$  are  $1, 2, \dots, 8n - 8$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(Q_n))$ .

**Case ii.** The quadrilateral starts from  $u_2$ .

We construct  $DA(Q_n)$  by joining  $u_{2i}$  and  $u_{2i+1}$  to the new vertices  $v_i$ ,  $w_i$  and  $x_i, y_i$  respectively and then joining  $v_i, x_i$  and  $w_i, y_i$  for  $1 \le i \le \lceil \frac{n-2}{2} \rceil$ . Let  $V(G) = V(DA(Q_n)) \cup \{u'_i | 1 \le i \le n-1\} \cup \{v'_i, w'_i, x'_i, y'_i, z_i, z'_i | 1 \le i \le \lceil \frac{n-2}{2} \rceil\}$  and  $E(G) = E(DA(Q_n)) \cup \{u_i u'_i | 1 \le i \le n-1\} \cup \{u'_i u_{i+1} | 1 \le i \le n-1\} \cup \{v_i v'_i, v_i x'_i, x_i z_i, w'_i w_i, w_i y'_i, x_i x'_i, y'_i y_i, y_i z'_i | 1 \le i \le \lceil \frac{n-2}{2} \rceil\} \cup \{u_{2i} v'_i, u_{2i} w'_i, u_{2i+1} z_i, u_{2i+1} z'_i | 1 \le i \le \lceil \frac{n-2}{2} \rceil\}$ . We consider the following two sub cases:

Subcase i. *n* is odd.

Here |V(G)| = 7n - 6 and |E(G)| = 8n - 8. Let  $A = \{0, 1, 2, \dots, 4n - 4\}$ . Define a vertex labeling  $f: V(G) \to A$  as follows:

For  $1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ ,  $f(u_{2i-1}) = 8(i-1)$ ,  $f(u'_{2i-1}) = 8i - 7$ . For  $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$ ,  $f(u_{2i}) = 8i - 7$ ,  $f(u'_{2i}) = 8i$ ,  $f(v_i) = f(v'_i) = 8i - 3$ ,  $f(x_i) = f(z_i) = 8i - 1$ ,  $f(x'_i) = 8i - 2$ ,  $f(w_i) = f(w'_i) = 8i - 6$ ,  $f(y_i) = f(z'_i) = 8i - 4$ ,  $f(y'_i) = 8i - 5$ . It can be verified that the induced edge labels of  $S(DA(Q_n))$  are  $1, 2, \cdots, 8n - 8$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(Q_n))$ .

Subcase ii. n is even.

Let |V(G)| = 7n - 11 and |E(G)| = 8n - 14. Let  $A = \{0, 1, 2, \dots, 4n - 7\}$ . Define a vertex labeling  $f : V(G) \to A$  as follows: We label the vertices  $u_{2i-1}, u_{2i}, u'_{2i-1}$   $(1 \le i \le \lceil \frac{n}{2} \rceil)$  and  $u'_{2i}, v_i, v'_i, w_i, w'_i, x_i, x'_i, y_i, y'_i, (1 \le i \le \lceil \frac{n-2}{2} \rceil)$  as in sub case (i). It can be verified that the induced edge labels of  $S(DA(Q_n))$  are  $1, 2, \dots, 8n - 14$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence f is a vertex equitable labeling of  $S(DA(Q_n))$ .

An example for the vertex equitable labeling of  $S(DA(Q_7))$  where the two quadrilaterals start from  $u_1$  is shown in Figure 4.

**Theorem 2.6.** Let  $G_1(p_1,q), G_2(p_2,q), \dots, G_m(p_m,q)$  ) be vertex equitable graphs with q odd  $u_i, v_i$  be vertices of  $G_i$   $(1 \le i \le m)$  labeled by 0 and  $\left\lceil \frac{q}{2} \right\rceil$ . Then the graph G obtained by joining  $v_1$  with  $u_2$  and  $v_2$  with  $u_3$  and  $v_3$  with  $u_4$  and so on until joining  $v_{m-1}$  with  $u_m$  by an edge is also a vertex equitable graph.

**Proof.** The graph G has  $p_1 + p_2 + \dots + p_m$  vertices and mq + (m-1) edges. Let  $f_i$  be the vertex equitable labeling of  $G_i$   $(1 \le i \le m)$  and let  $A = \{0, 1, 2, \dots, \lceil \frac{mq+m-1}{2} \rceil\}$ . Define a vertex labeling  $f: V(G) \to A$  as  $f(x) = f_i(x) + \frac{(i-1)(q+1)}{2}$  if  $x \in G_i$  for  $1 \le i \le m$ . The edge labels of  $G_i$  are increased by (i-1)(q+1) for  $i = 1, 2, \dots, m$  under the new labeling f. The bridge between the two graphs  $G_i$ ,  $G_{i+1}$  will get the label  $i(q+1), 1 \le i \le m-1$ . Hence the edge labels of G are distinct and is  $\{1, 2, \dots, mq + m - 1\}$ . Also  $|v_f(a) - v_f(b)| \le 1$  for all  $a, b \in A$ . Then the graph G is a vertex equitable graph.  $\Box$ 



Figure 4.



Figure 5.

**Remark 2.7.** [7] The graph  $DA(Q_m) \odot nK_1$  and  $DA(T_m) \odot nK_1$  are vertex equitable graphs if m, n = 1, 2. **Theorem 2.8.** The graph  $DA(Q_2) \odot nK_1$  is a vertex equitable graph for  $n \ge 3$ 

**Proof.** Let  $G = DA(Q_2) \odot nK_1$ . Let  $V(G) = \{u_1, u_2, v, w, x, y\} \cup \{u_{ij} | 1 \le i \le 2, 1 \le j \le n\} \cup \{v_i, w_i, x_i, y_i | 1 \le i \le n\}$  and  $E(G) = \{u_1u_2, u_1v, vw, wu_2, u_1x, xy, yu_2\} \cup \{u_iu_{ij} | 1 \le i \le 2, 1 \le j \le n\} \cup \{vv_i, ww_i, xx_i, yy_i | 1 \le i \le n\}$ . Here |V(G)| = 6(n+1) and |E(G)| = 6n+7. Let  $A = \{0, 1, 2, \cdots, \lceil \frac{6n+7}{2} \rceil\}$ . Define a vertex labeling  $f : V(G) \to A$  as follows: For  $1 \le i \le n$ ,  $f(u_{1i}) = i$ ,  $f(v_i) = i+1$ ,  $f(y_i) = n+2+i$ ,  $f(u_i) = 0$ ,  $f(u_2) = 3n+4$ , f(v) = n+1, f(w) = 2(n+1), f(x) = n+2, f(y) = 2(n+2),  $f(u_{2i}) = 3n+4-i$  if  $1 \le i \le n-1$ ,  $f(u_{2n}) = 2n+3$ ,  $f(w_1) = 1$ ,  $f(w_i) = 3n+5-i$  if  $2 \le i \le n$ ,  $f(x_i) = n+i+1$  if  $1 \le i \le n-1$ ,  $f(x_n) = 2n+3$ . It can be verified that the induced edge labels of  $DA(Q_2) \odot nK_1$  are  $1, 2, \cdots, 6n+7$  and  $|v_f(a) - v_f(b)| \le 1$  for all  $a, b \in A$ . Hence f is a vertex equitable labeling of  $DA(Q_2) \odot nK_1$ .

An example for the vertex equitable labeling of  $DA(Q_2) \odot 4K_1$  is shown in Figure 5.

**Theorem 2.9.** The graph  $DA(Q_m) \odot nK_1$  is a vertex equitable graph for  $m, n \ge 3$ .

**Proof.** By Theorem 2.8,  $DA(Q_2) \odot nK_1$  is a vertex equitable graph. Let  $G_i = DA(Q_2) \odot nK_1$  for  $1 \le i \le m-1$ . Since each  $G_i$  has 6n+7 edges, by Theorem 2.6,  $DA(Q_m) \odot nK_1$  admits vertex equitable labeling.

An example for the vertex equitable labeling of  $DA(Q_6) \odot 4K_1$  is shown in Figure 6.



#### Figure 7.

**Theorem 2.10.** The graph  $DA(T_2) \odot nK_1$  is a vertex equitable graph for  $n \ge 3$ .

 $\begin{array}{l} \textit{Proof.} \quad \text{Let } G = DA(T_2) \odot nK_1. \ \text{Let } V(G) = \{u_1, u_2, u, w\} \cup \{u_{ij} | 1 \leq i \leq 2, 1 \leq j \leq n\} \cup \{v_i, w_i | 1 \leq i \leq n\} \\ i \leq n\} \ \text{and } E(G) = \{u_1u_2, u_1v, vu_2, u_1w, wu_2\} \cup \{u_iu_{ij} | 1 \leq i \leq 2, 1 \leq j \leq n\} \cup \{vv_i, ww_i | 1 \leq i \leq n\}. \\ \text{Here } |V(G)| = 4(n+1) \ \text{and } |E(G)| = 4n+5. \ \text{Let } A = \{0, 1, 2, \cdots, \lceil \frac{4n+5}{2} \rceil\}. \ \text{Define a vertex labeling } f: V(G) \rightarrow A \ \text{as follows. For } 1 \leq i \leq n, \ f(u_{1i}) = i, \ f(u_{2i}) = 2n+3-i, \ f(v_i) = i+1, \ f(w_i) = n+1+i, \\ f(u_1) = 0, \ f(u_2) = 2n+3, \ f(v) = n+1, \ f(w) = n+2. \ \text{It can be verified that the induced edge labels of } DA(T_2) \odot nK_1 \ \text{are } 1, 2, \cdots, 4n+5 \ \text{and } |v_f(a) - v_f(b)| \leq 1 \ \text{for all } a, b \in A. \ \text{Hence } f \ \text{is a vertex equitable } \\ \text{labeling of } DA(T_2) \odot nK_1 \ . \end{array}$ 

An example for the vertex equitable labeling of  $DA(T_2) \odot 3K_1$  is shown in Figure 7.

**Theorem 2.11.** The graph  $DA(T_m) \odot nK_1$  is a vertex equitable graph for  $m, n \ge 3$ .

**Proof.** By Theorem 2.10,  $DA(T_2) \odot nK_1$  is a vertex equitable graph. Let  $G_i = DA(T_2) \odot nK_1$ ,



#### Figure 8.

 $1 \le i \le m-1$ . Since each  $G_i$  has 4n+5 edges, by Theorem 2.6,  $DA(T_m) \odot nK_1$  admits a vertex equitable labeling.

An example for the vertex equitable labeling of  $DA(T_m) \odot 4K_1$  is shown in Figure 8.

Acknowledgment: The authors would like to thank the referees for their valuable suggestions to improve the paper.

### References

- [1] J. A. Gallian, Graph labeling, Electron. J. Combin. (2015) (Dynamic Survey #DS6).
- [2] F. Harary, Graph theory, Addison-Wesley, Reading Mass, 1972.
- [3] P. Jeyanthi, A. Maheswari, Some results on vertex equitable labeling, Open J. Discrete Math. 2(2) (2012) 51–57.
- [4] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of transformed trees, J. Algorithms Comput. 44(1) (2013) 9–20.
- [5] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, J. Sci. Res. 6(1) (2014) 79–85.
- [6] P. Jeyanthi, A. Maheswari, M. Vijayalaksmi, Vertex equitable labeling of cycle and star related graphs, J. Sci. Res. 7(3) (2015) 33–42.
- [7] P. Jeyanthi, A. Maheswari, Vertex equitable labeling of cycle and path related graphs, Util. Math. 98 (2015) 215–226.
- [8] P. Jeyanthi, A. Maheswari, M. Vijayalakshmi, Vertex equitable labeling of double alternate snake graphs, J. Algorithms Comput. 46 (2015) 27–34.
- M. Seenivasan, A. Lourdusamy, Vertex equitable labeling of graphs, J. Discrete Math. Sci. Cryptogr. 11(6) (2008) 727-735.