
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.17551

J. Algebra Comb. Discrete Appl.
3(3) • 127–134

Received: 31 October 2015
Accepted: 16 February 2016

Journal of Algebra Combinatorics Discrete Structures and Applications

Locating one pairwise interaction: Three recursive
constructions∗

Research Article

Charles J. Colbourn, Bingli Fan

Abstract: In a complex component-based system, choices (levels) for components (factors) may interact to
cause faults in the system behaviour. When faults may be caused by interactions among few factors
at specific levels, covering arrays provide a combinatorial test suite for discovering the presence of
faults. While well studied, covering arrays do not enable one to determine the specific levels of factors
causing the faults; locating arrays ensure that the results from test suite execution suffice to determine
the precise levels and factors causing faults, when the number of such causes is small. Constructions
for locating arrays are at present limited to heuristic computational methods and quite specific direct
constructions. In this paper three recursive constructions are developed for locating arrays to locate
one pairwise interaction causing a fault.

2010 MSC: 05B30, 05A18, 05D99, 62K05, 68P10

Keywords: Locating array, Covering array, Detecting array

1. Introduction

Although covering arrays have been explored as a method to reveal the presence of faults caused
by interactions among components in a complex system [4, 8], they are inadequate to determine which
interaction(s) account for the faulty behaviour. Colbourn and McClary [7] extend covering arrays to
provide sufficient information to identify all faults when few faults each involving few factors are present.
To set the stage, there are k factors F1, . . . , Fk. Each factor Fi has a set Si = {vi1, . . . , visi} of si possible
values (levels). A test is an assignment, for each i with 1 ≤ i ≤ k, of a level from vi1, . . . , visi to Fi. A
test, when executed, can pass or fail. For any subset {i1, . . . , it} ⊆ {1, . . . , k} and levels σij ∈ Sij , the
set {(ij , σij) : 1 ≤ j ≤ t} is a t-way interaction, or an interaction of strength t. Thus a test on k factors

∗ The first author’s research was supported in part by the National Science Foundation under Grant No. 1421058.
The second author’s research was supported by the China Scholarship Council.
Charles J. Colbourn (Corresponding Author); School of CIDSE, Arizona State University, Tempe AZ 85287-

8809, U.S.A. (email: colbourn@asu.edu).
Bingli Fan; Department of Mathematics, Beijing Jiaotong University, Beijing, China (email: blfan@bjtu.edu.cn).

127

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

contains (covers)
(
k
t

)
interactions of strength t. A test suite is a collection of tests; the outcomes are

the corresponding set of pass/fail results. A fault is evidenced by a failure outcome for a test; however
the fault is rarely due to a complete k-way interaction; rather it is the result of one or more faulty
interactions of strength smaller than k covered in the test. Tests are executed concurrently, so that
testing is nonadaptive.

We employ a matrix representation. An array A with N rows, k columns, and symbols in the ith
column chosen from an alphabet Si of size si is denoted as an N × k array of type (s1, . . . , sk). A t-way
interaction in A is a choice of t columns i1, . . . , it, and the selection of a level σij ∈ Sij for 1 ≤ j ≤ t,
represented as T = {(ij , σij) : 1 ≤ j ≤ t}. For such an array A = (axy) and interaction T , define
ρA(T) = {r : arij = σij , 1 ≤ j ≤ t}, the set of rows of A in which the interaction is covered. For a set of
interactions T , ρA(T) =

⋃
T∈T ρA(T).

Let It be the set of all t-way interactions for an array of type (s1, . . . , sk), and let It be the set
of all interactions of strength at most t. Consider an interaction T ∈ It of strength less than t. Any
interaction T ′ of strength t that contains T necessarily has ρA(T ′) ⊆ ρA(T); a subset T ′ of interactions
in It is independent if there do not exist T, T ′ ∈ T ′ with T ⊂ T ′. Some interactions may cause faults. To
formulate arrays for testing, we limit both the number of interactions causing faults and their strengths.

As in [7], this leads to a variety of types of array A for testing a system with N tests and k factors
having (s1, . . . , sk) as the numbers of levels:

Array Definition
Covering Arrays:
MCA(N ; t, k, (s1, . . . , sk)) ρA(T) 6= ∅ for all T ∈ It
CA(N ; t, k, v) ρA(T) 6= ∅ for all T ∈ It and v = s1 = · · · = sk
Locating Arrays:
(d, t)-LA(N ; t, k, (s1, . . . , sk)) ρA(T1) = ρA(T2) ⇔ T1 = T2 whenever T1, T2 ⊆ It,

|T1| = d, and |T2| = d

(d, t)-LA(N ; t, k, (s1, . . . , sk)) ρA(T1) = ρA(T2) ⇔ T1 = T2 whenever T1, T2 ⊆ It,
|T1| ≤ d, and |T2| ≤ d

(d, t)-LA(N ; t, k, (s1, . . . , sk)) ρA(T1) = ρA(T2) ⇔ T1 = T2 whenever T1, T2 ⊆ It,
|T1| = d, |T2| = d, and T1 and T2 are independent

(d, t)-LA(N ; t, k, (s1, . . . , sk)) ρA(T1) = ρA(T2) ⇔ T1 = T2 whenever T1, T2 ⊆ It,
|T1| ≤ d, |T2| ≤ d, and T1 and T2 are independent

When all factors have the same number of levels v, the notation replaces v for (s1, . . . , sk).

Colbourn and McClary [7] also examine detecting arrays, which permit faster recovery than do
locating arrays but in general require more tests. Here we focus on locating arrays. Although locating
arrays have been successfully applied in applications to measurement and testing [1], few constructions
are known. Martínez et al. [9] develop adaptive analogues and establish feasibility conditions for a
locating array to exist. In [11] and [12] the minimum number of rows in a locating array is determined
when the number of factors is quite small. Few direct, and no recursive, constructions are known. Indeed
at present unless the number of factors is small, the observation in [7] that covering arrays of higher
strength provide examples of locating arrays serves as the main device for their construction.

In this paper, we explore a different avenue, extending recursive constructions from covering ar-
rays to locating arrays. We extend a covering array construction pioneered by Roux [10], extended by
Chateauneuf and Kreher [2], and further generalized in [3]. The basic strategy in each of these construc-
tions is a “cut–and–paste” approach using covering arrays with fewer factors and the same or smaller
strengths. Each operates by repeating subarrays; because we want different interactions to appear in
different sets of rows, such recursions for locating arrays necessitates more ingredients than for covering
arrays.

We focus on constructions for (1, 2)-locating arrays in which all factors have the same number v of
levels. In other words, we treat the case of locating one interaction of strength at most two.

128

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

We require one further class of ingredients. Let (Γ,�) be a group of order k. A (k, n;λ)-difference
matrix over Γ is an n × kλ matrix D = (dij) with entries from Γ, so that for each 1 ≤ i < j ≤ n, the
multiset

{di` � d−1j` : 1 ≤ ` ≤ kλ}

(the difference list) contains every element of Γ λ times.

2. A doubling construcion

We develop a doubling construction that is reminscent of one for covering arrays of strength three
in [2] generalizing that in [10].

Theorem 2.1. If there exist a (1, 2)-LA(N ; 2, k, v) and a (1, 1)-LA(M ; 2, k, v) in which the set of
differences modulo v between entries in two distinct columns contains all symbols, then a (1, 2)-
LA(N + (v − 1)M ; 2, 2k, v) exists.

Proof. Let A = (aij) be a (1, 2)-LA(N ; 2, k, v) on symbols {0, . . . v − 1} with columns indexed by
{1, . . . , k}. Let B = (bij) be a (1, 1)-LA(M ; 2, k, v) on symbols {0, . . . v − 1} with columns indexed by
{1, . . . , k} with the additional property that for every 1 ≤ c < c′ ≤ k and every 1 ≤ d < v, there exists a
ρ for which bρc − bρc′ ≡ d (mod v).

We form an (N +(v−1)M)×2k array C with columns indexed by {1, . . . , k}×{0, 1} by juxtaposing
v arrays C0, . . . , Cv−1. C0 is obtained by setting the entry in position (ρ, (c, α)) to aρc. For 1 ≤ ` < v,
the entry of C` in position (ρ, (c, 0)) is bρc and the entry in position (ρ, (c, 1)) is bρc + ` mod v.

Let T = {((c1, α1), σ1), ((c2, α2), σ2)} and T ′ = {((c′1, α′1), σ′1), ((c′2, α
′
2), σ′2)} be interactions of C

with ρC(T) = ρC(T ′).

Because A is a (1, 2)-locating array and ρA({(c1, σ1), (c2, σ2)}) = ρA({(c′1, σ′1), (c′2, σ
′
2)}), there are

two cases to treat.

c1 = c2, c′1 = c′2, σ1 6= σ2, and σ′1 6= σ′2: Then

T = {((c1, 0), σ1), ((c1, 1), σ2)} and T ′ = {((c′1, 0), σ′1), ((c′1, 1), σ′2)}.

Now ρ(T) contains at least one row index from Cσ2−σ1 mod v, and ρ(T ′) contains at least one row
index from Cσ′2−σ′1 mod v. These agree only when σ1 = σ′1, σ2 = σ′2, and c1 = c′1 because B is a
(1, 1)-locating array. But then T = T ′.

c1 = c′1, c2 = c′2, σ1 = σ′1, and σ2 = σ′2: Then

T = {((c1, α1), σ1), ((c2, α2), σ2)} and T ′ = {((c1, α′1), σ1), ((c2, α
′
2), σ2)}.

We treat subcases.

c1 = c2: For T and T ′ to be interactions, either σ1 = σ2, or both α1 6= α2 and α′1 6= α′2.
First suppose that σ1 = σ2. For 1 ≤ x < v,

ρB({(c1, σ1 − xα1), (c1, σ1 − xα2)}) = ρB({(c1, σ1 − xα′1), (c1, σ1 − xα′2)})

Now if α1 = α2, then ρB({(c1, σ1 − xα1)}) 6= ∅, but this is not equal to ρB({(c1, σ1 −
xα′1), (c1, σ1 − xα′2)}) unless α′1 = α′2 = α1, in which case T = T ′. Similarly when if α′1 = α′2,
T = T ′. But when α1 6= α2 and α′1 6= α′2, again T = T ′.

129

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

So suppose that σ1 6= σ2. Without loss of generality, (α1, α2) = (0, 1). For 1 ≤ ` < v,

ρC`(T) =

{
ρB({(c1, σ1)}) if ` ≡ σ2 − σ1 (mod v)

∅ otherwise

If (α′1, α
′
2) = (0, 1), then T = T ′. So suppose that (α′1, α

′
2) = (1, 0). Then ρCσ1−σ2 (T ′) =

ρB({(c1, σ2)}), and hence σ1 = σ2, which cannot be.
c′1 = c′2: This is symmetric to the previous case.
c1 6= c2 and c′1 6= c′2: If (α1, α2) = (α′1, α

′
2), then T = T ′.

First suppose that (α1, α2) = (0, 0) 6= (α′1, α
′
2). If (σ1, σ2) appears in columns (c1, c2) of B,

ρC1
({((c1, 0), σ1), ((c2, 0), σ2)}) 6= ρC1

({((c1, α′1), σ1 + α′1), ((c2.α
′
2), σ2 + α′2)}),

but then ρC(T) 6= ρC(T ′). If (σ1, σ2) does not appear in columns (c1, c2) of B, choose x so
that (σ1 − x, σ2 − x) does appear; choose y and z so that (σ1, y) and (z, σ2) appear. Then

ρCx({((c1, 0), σ1), ((c2, 0), σ2)}) 6= ρCx({((c1, 1), σ1), ((c2, 1), σ2)})
ρCσ2−y ({((c1, 0), σ1), ((c2, 0), σ2)}) 6= ρCσ2−y ({((c1, 0), σ1), ((c2, 1), σ2)})
ρCσ1−z ({((c1, 0), σ1), ((c2, 0), σ2)}) 6= ρCσ1−z ({((c1, 1), σ1), ((c2, 0), σ2)})

But then ρC(T) 6= ρC(T ′). Hence (α1, α2) 6= (0, 0) and, in the same way, (α′1, α
′
2) 6= (0, 0).

Next suppose that (α1, α2) = (1, 1) 6= (α′1, α
′
2) 6= (0, 0). Choose y 6= σ2 and z 6= σ1 so that

(σ1, y) and (z, σ2) appear in columns (c1, c2) of B. Then

ρCσ2−y ({((c1, 1), σ1), ((c2, 1), σ2)}) 6= ρCσ2−y ({((c1, 0), σ1), ((c2, 1), σ2)})
ρCσ1−z ({((c1, 1), σ1), ((c2, 1), σ2)}) 6= ρCσ1−z ({((c1, 1), σ1), ((c2, 0), σ2)})

But then ρC(T) 6= ρC(T ′).
Finally suppose without loss of generality that (α1, α2) = (1, 0) and (α′1, α

′
2) = (0, 1). Choose

a pair (z, σ2) that appears in columns (c1, c2) of B Then

ρCσ1−z ({((c1, 1), σ1), ((c2, 0), σ2)}) 6= ρCσ1−z ({((c1, 0), z), ((c2, 1), σ2 + σ1 − z)})

But then ρC(T) 6= ρC(T ′).

Hence C is a (1, 2)-LA(N + (v − 1)M ; 2, 2k, v).

3. A product construction permuting symbols

Theorem 2.1 permutes symbols in one ingredient in order to double the number of factors. In the
next construction, we also permute the symbols, but we require further ingredients in order to multiply
the number of factors by v.

Theorem 3.1. If a (1, 2)-LA(N ; 2, k, v), a (1, 2)-LA(R; 2, v, v), and a CA(M ; 2, k, v) all exist, then a
(1, 2)-LA(N +M +R; 2, kv, v) exists.

Proof. Let V = {0, . . . , v − 1}. Let

A = (aij) be a (1, 2)-LA(N ; 2, k, v) on symbols V .

B = (bij) be a CA(M ; 2, k, v) on symbols V .

130

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

C = (cij) be a (1, 2)-LA(R; 2, v, v) on symbols V with columns indexed by V .

D be the N × kv array with columns indexed by {1, . . . , k} × {0, . . . , v − 1} by placing aρ,γ in entry
(ρ, (γ, s)) whenever 1 ≤ ρ ≤ N , 1 ≤ γ ≤ k, and 0 ≤ s < v.

E be the M × kv array with columns indexed by {1, . . . , k} × {0, . . . , v − 1} by placing (bρ,γ + s) mod v
in entry (ρ, (γ, s)) whenever 1 ≤ ρ ≤M , 1 ≤ c ≤ k, and 0 ≤ s < v.

F be the R × kv array with columns indexed by {1, . . . , k} × {0, . . . , v − 1} by placing (cρ,s + s) mod v
in entry (ρ, (γ, s)) whenever 1 ≤ ρ ≤ R, 1 ≤ γ ≤ k, and 0 ≤ s < v.

L be the (N +M +R)× kv array obtained by vertically juxtaposing D, E, and F .

We show that L is a (1, 2)-locating array. Let T = {((c1, α1), σ1), ((c2, α2), σ2)} and T ′ =
{((c′1, α′1), σ′1), ((c′2, α

′
2), σ′2)} be interactions of L with ρL(T) = ρL(T ′). It follows that

ρA({(c1, σ1), (c2, σ2)}) = ρA({(c′1, σ′1), (c′2, σ
′
2)})

ρB({(c1, σ1 − α1), (c2, σ2 − α2)}) = ρB({(c′1, σ′1 − α′1), (c′2, σ
′
2 − α′2)})

ρC({(α1, σ1 − α1), (α2, σ2 − α2)}) = ρC({(α′1, σ′1 − α′1), (α′2, σ
′
2 − α′2)}),

with entries of B and C computed modulo v.

Because A is a (1, 2)-locating array and ρA({(c1, σ1), (c2, σ2)}) = ρA({(c′1, σ′1), (c′2, σ
′
2)}), there are

two cases to treat.

c1 = c2, c′1 = c′2, σ1 6= σ2, and σ′1 6= σ′2: Hence

ρC({(α1, σ1 − α1), (α2, σ2 − α2)}) = ρC({(α′1, σ′1 − α′1), (α′2, σ
′
2 − α′2)}),

Two subcases arise:

α1 = α2, α′1 = α′2, σ1 − α1 6= σ2 − α2, and σ′1 − α′1 6= σ2 − α′2: This cannot arise because then
T = {((c1, α1), σ1), ((c1, α1), σ2)} is not a 2-way interaction.

α1 = α′1, α2 = α′2, σ1 − α1 = σ′1 − α′1, and σ2 − α2 = σ′2 − α′2: Then σ1 = σ′1 and σ2 = σ′2 and

ρB({(c1, σ1 − α1), (c1, σ2 − α2)}) = ρB({(c′1, σ1 − α1), (c′1, σ2 − α2)}).

But then c1 = c′1 and T = T ′.

c1 = c′1, c2 = c′2, σ1 = σ′1, and σ2 = σ′2: Hence

ρB({(c1, σ1 − α1), (c2, σ2 − α2)}) = ρB({(c1, σ1 − α′1), (c2, σ2 − α′2)}),

When c1 6= c2, the rows of B are partitioned into v2 nonempty sets by examining the ordered pair
of symbols appearing, because B is a covering array of strength 2. Therefore when c1 6= c2, α1 = α′1
and α2 = α′2, and hence T = T ′.
It remains to treat the case when c1 = c2. If α1 = α2 or α′1 = α′2 and both T and T ′ are interactions,
we have T = T ′. So α1 6= α2, α′1 6= α′2, and

ρC({(α1, σ1 − α1), (α2, σ2 − α2)}) = ρC({(α′1, σ1 − α′1), (α′2, σ2 − α′2)}).

Then because C is a (1, 2)-locating array, without loss of generality α1 = α′1, α2 = α′2, and hence
T = T ′.

Consequently L is a (1, 2)-locating array.

131

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

4. A product construction permuting columns

In the next construction, we combine the “cut–and–paste” approach with ideas from another main
type of recursive construction, the so-called column replacement methods (see [4], for example). To do
this, we permute columns in some of the ingredients, using a difference matrix to determine the column
permutations.

Theorem 4.1. If a (1, 2)-LA(N ; 2, k, v) exists and k ≡ 0, 1, 3 (mod 4), a (1, 2)-LA(3N ; 2, k2, v) exists.

Proof. Because k ≡ 0, 1, 3 (mod 4) and k ≥ 3, there is a (k, 3, 1)-difference matrix D = (dij) over
a group Γ (see, for example, [13]). Suppose that Γ has elements {g1, · · · , gk} and that g1 is the group
identity. Assume without loss of generality that d1j = g1 and d2j = gj for 1 ≤ j ≤ k. Let A = (aij) be a
(1, 2)-LA(N ; 2, k, v) on symbols {0, . . . v − 1} with columns indexed by Γ.

We form three arrays C1, C2, C3 with columns indexed by Γ × Γ. For s ∈ {1, 2, 3}, Cs has N
rows, and the entry in row i and column (j, `) is ai,jd−1

s`
. C is the 3N × k2 array obtained by vertical

juxtaposition of C1, C2, and C3.

Let T = {((c1, α1), σ1), ((c2, α2), σ2)} and T ′ = {((c′1, α′1), σ′1), ((c′2, α
′
2), σ′2)} be interactions of C

with ρC(T) = ρC(T ′), We permit ((c1, α1), σ1) = ((c2, α2), σ2) so T or T ′ may be 1-way interactions.
However, we do not permit that T = ((c1, α1), σ1), ((c1, α1), σ2) but σ1 6= σ2, for then T is not an
interaction at all. We must show that T = T ′. Because ρC(T) = ρC(T ′) ρCs(T) = ρCs(T

′) for each
1 ≤ s ≤ 3.

Then for each 1 ≤ s ≤ 3,

ρA({(c1d−1sα1
, σ1), (c2d

−1
sα2

, σ2)}) = ρCs(T) = ρCs(T
′) = ρA({(c′1d−1sα′1 , σ

′
1), (c′2d

−1
sα′2

, σ′2)})

Because A is a (1, 2)-locating array, for each 1 ≤ s ≤ 3,

{(c1d−1sα1
, σ1), (c2d

−1
sα2

, σ2)} = {(c′1d−1sα′1 , σ
′
1), (c′2d

−1
sα′2

, σ′2)}

unless c1d−1sα1
= c2d

−1
sα2

, c′1d
−1
sα′1

= c′2d
−1
sα′2

, σ1 6= σ2, and σ′1 6= σ′2.

Employing this equality for s = 1, without loss of generality two cases remain.

c1 = c2, c′1 = c′2, σ1 6= σ2, and σ′1 6= σ′2: Consider the equalities when s ∈ {2, 3}. Now c1d
−1
sα1

= c1d
−1
sα2

only when α1 = α2, but then T is an interaction only when σ1 = σ2, which cannot be. Similarly
c′1d
−1
sα′1

= c′1d
−1
sα′2

only when α′1 = α′2, but then T ′ is an interaction only when σ′1 = σ′2, which cannot
be. So because A is a locating array,

{(c1d−1sα1
, σ1), (c1d

−1
sα2

, σ2)} = {(c′1d−1sα′1 , σ
′
1), (c′1d

−1
sα′2

, σ′2)}.

Without loss of generality, σ1 = σ′1 and σ2 = σ′2 so c1d−12α1
= c′1d

−1
2α′1

and c1d−12α2
= c′1d

−1
2α′2

. Then

c−11 c′1 = d−12α1
d2α′1 = d−12α2

d2α′2 = d−13α1
d3α′1 = d−13α2

d3α′2 .

Then d3α′1d
−1
2α′1

= d3α1
d−12α1

and hence α1 = α′1 becauseD is a difference matrix. Similarly d3α2
d−12α2

=

d3α′2d
−1
2α′2

and hence α2 = α′2. But then T = T ′.

c1 = c′1, c2 = c′2, σ1 = σ′1, and σ2 = σ′2: Then for each s ∈ {2, 3},

{(c1d−1sα1
, σ1), (c2d

−1
sα2

, σ2)} = {(c1d−1sα′1 , σ1), (c2d
−1
sα′2

, σ2)}

If c1d−1sα1
= c1d

−1
sα′1

, then d−1s,α1
= d−1s,α′1

and hence α1 = α′1. But then T = T ′.

132

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

Hence σ1 = σ2 and for s ∈ {2, 3}, c1d−1s,α1
= c2d

−1
s,α′2

and c1d−1s,α′1 = c2d
−1
s,α2

. Hence

c−11 c2 = d2,α′2d
−1
2,α1

= d2,α2
d−12,α′1

= d3,α′2d
−1
3,α1

= d3,α2
d−13,α′1

Then

d−12,α1
d3,α1

= d−12,α′2
d3,α′2 and d−12,α2

d3,α2
= d−12,α′1

d3,α′1 .

Because D is a difference matrix, α1 = α′2 and α2 = α′1. Then T = T ′.

Hence C is the required locating array.

5. Concluding remarks

Theorems 2.1, 3.1, and 4.1 establish that cut–and–paste constructions provide viable methods for
generating locating arrays. Although the repetition inherent in methods of this type initially result in
many interactions appearing in the same sets of rows, at least in the case for one interaction of strength
at most two, we have shown that the symmetry from the repetition can be interrupted by adjoining
further ingredients. The methods here to make locating arrays of strength two are loosely patterned on
recursive constructions for covering arrays of strength three. One might hope to obtain more powerful
recursive constructions by adapting the product construction for covering arrays of strength two [5], but
the methods we have used do not appear to be sufficient for this.

On the other hand, the theorems established here can be generalized to certain “mixed” locating
arrays in which different factors have different numbers of levels. Although we have not pursued it here,
we also expect that the methods can generalize to the location of more than one faulty interactions at the
cost of further ingredients and more cases to verify. Finally further recursive constructions that exploit
the methods developed for covering arrays in [4, 6] appear to be promising.

Acknowledgment: The authors thank Violet Syrotiuk for helpful discussions about this work, and
thank Vladimir Tonchev for the opportunity to present it at the First Annual Kliekhandler Conference.
This research was completed while the second author was visiting Arizona State University. He expresses
his sincere thanks to the School of Computing, Informatics, and Decision Systems Engineering at Arizona
State University for kind hospitality.

References

[1] A. N. Aldaco, C. J. Colbourn, V. R. Syrotiuk, Locating arrays: A new experimental design for
screening complex engineered systems, SIGOPS Oper. Syst. Rev. 49(1) (2015) 31–40.

[2] M. Chateauneuf, D. L. Kreher, On the state of strength-three covering arrays, J. Combin. Des. 10(4)
(2002) 217–238.

[3] M. B. Cohen, C. J. Colbourn, A. C. H. Ling, Constructing strength three covering arrays with
augmented annealing, Discrete Math. 308(13) (2008) 2709–2722.

[4] C. J. Colbourn, Covering arrays and hash families, Information Security and Related Combinatorics,
NATO Peace and Information Security, IOS Press (2011), 99–136.

[5] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. Shasha, G. B. Sherwood, J. L. Yucas, Products
of mixed covering arrays of strength two, J. Combin. Des. 14(2) (2006) 124–138.

[6] C. J. Colbourn, S. S. Martirosyan, T. van Trung, R. A. Walker II, Roux-type constructions for
covering arrays of strengths three and four, Des. Codes Cryptogr. 41(1) (2006) 33–57.

133

http://dx.doi.org/10.1145/2723872.2723878
http://dx.doi.org/10.1145/2723872.2723878
http://dx.doi.org/10.1002/jcd.10002
http://dx.doi.org/10.1002/jcd.10002
http://dx.doi.org/10.1016/j.disc.2006.06.036
http://dx.doi.org/10.1016/j.disc.2006.06.036
http://dx.doi.org/10.3233/978-1-60750-663-8-99
http://dx.doi.org/10.3233/978-1-60750-663-8-99
http://dx.doi.org/10.1002/jcd.20065
http://dx.doi.org/10.1002/jcd.20065
http://dx.doi.org/10.1007/s10623-006-0020-8
http://dx.doi.org/10.1007/s10623-006-0020-8

C. J. Colbourn, B. Fan / J. Algebra Comb. Discrete Appl. 3(3) (2016) 127–134

[7] C. J. Colbourn, D. W. McClary, Locating and detecting arrays for interaction faults, J. Comb.
Optim. 15(1) (2008) 17–48.

[8] A. Hartman, Software and hardware testing using combinatorial covering suites, Graph Theory,
Combinatorics and Algorithms, Springer, 2005, 237–266.

[9] C. Martínez, L. Moura, D. Panario, B. Stevens, Locating errors using ELAs, covering arrays, and
adaptive testing algorithms, SIAM J. Discrete Math. 23(4) (2009/10) 1776–1799.

[10] G. Roux, k-Propriétés dans les tableaux de n colonnes: cas particulier de la k-surjectivité et de la
k-permutivité, Ph.D. Dissertation, University of Paris 6, 1987.

[11] C. Shi, Y. Tang, J. Yin, Optimal locating arrays for at most two faults, Sci. China Math. 55(1)
(2012) 197–206.

[12] Y. Tang, C. J. Colbourn, J. Yin, Optimality and constructions of locating arrays, J. Stat. Theory
Pract. 6(1) (2012) 20–29.

[13] J. Yin, Cyclic difference packing and covering arrays, Des. Codes Cryptogr. 37(2) (2005) 281–292.

134

http://dx.doi.org/10.1007/s10878-007-9082-4
http://dx.doi.org/10.1007/s10878-007-9082-4
http://dx.doi.org/10.1007/0-387-25036-0_10
http://dx.doi.org/10.1007/0-387-25036-0_10
http://dx.doi.org/10.1137/080730706
http://dx.doi.org/10.1137/080730706
http://dx.doi.org/10.1007/s11425-011-4307-5
http://dx.doi.org/10.1007/s11425-011-4307-5
http://dx.doi.org/10.1080/15598608.2012.647484
http://dx.doi.org/10.1080/15598608.2012.647484
http://dx.doi.org/10.1007/s10623-004-3991-3

	Introduction
	A doubling construcion
	A product construction permuting symbols
	A product construction permuting columns
	Concluding remarks
	References

