Journal of Algebra Combinatorics Discrete Structures and Applications

One–generator quasi–abelian codes revisited*

Research Article

Somphong Jitman, Patanee Udomkavanich

Abstract: The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicit characterization and enumeration of such codes are given. An algorithm to find all 1-generator quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are improved from Grassl's online table are presented.

2010 MSC: 94B15, 94B60, 16A26

Keywords: Group algebras, Quasi-abelian codes, Minimum distances, 1-generator

1. Introduction

As a family of codes with good parameters, rich algebraic structures, and wide ranges of applications (see [8], [9], [11], [10], [13], [14], and references therein), quasi-cyclic codes have been studied for a half-century. Quasi-abelian codes, a generalization of quasi-cyclic codes, have been introduced in [15] and extensively studied in [7].

Given finite abelian groups $H \leq G$ and a finite field \mathbb{F}_q , an *H*-quasi-abelian code is defined to be an $\mathbb{F}_q[H]$ -submodule of $\mathbb{F}_q[G]$. Note that *H*-quasi-abelian codes are not only a generalization of quasi-cyclic codes (see [7], [8], [9], and [15]) if *H* is cyclic but also of abelian codes (see [1] and [2]) if G = H, and of cyclic codes (see [12]) if G = H is cyclic. The characterization and enumeration of quasi-abelian codes have been established in [7]. An *H*-quasi-abelian code *C* is said to be of 1-generator if *C* is a cyclic $\mathbb{F}_q[H]$ -module. Such a code can be viewed as a generalization of 1-generator quasi-cyclic codes which are more frequently studied and applied (see [11], [13], and [14]). Analogous to the case of 1-generator quasi-cyclic codes, the number of 1-generator quasi-abelian codes has been determined in [7]. However, an explicit construction and an algorithm to determine all 1-generator quasi-abelian codes have not been well studied.

http://dx.doi.org/10.13069/jacodesmath.09585

 $^{^{\}ast}$ This research is supported by the DPST Research Grant 005/2557 and the Thailand Research Fund under Research Grant TRG5780065.

Somphong Jitman (Corresponding Author); Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand (email: sjitman@gmail.com).

Patanee Udomkavanich; Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (email: pattanee.u@chula.ac.th).

In this paper, we give an alternative discussion on the algebraic structure of 1-generator quasi-abelian codes and an algorithm to find all 1-generator quasi-abelian codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented.

The paper is organized as follows. In Section 2, we recall some notations and basic results. An alternative discussion on the algebraic structure of 1-generator quasi-abelian codes is given in Section 3 together with an algorithm to find all 1-generator quasi-abelian codes and the number of such codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented in Section 4.

2. Preliminaries

Let \mathbb{F}_q denote a finite field of order q and let G be a finite abelian group of order n, written additively. Denote by $\mathbb{F}_q[G]$ the group ring of G over \mathbb{F}_q . The elements in $\mathbb{F}_q[G]$ will be written as $\sum_{g \in G} \alpha_g Y^g$, where $\alpha_g \in \mathbb{F}_q$. The addition and the multiplication in $\mathbb{F}_q[G]$ are given as in the usual polynomial rings over \mathbb{F}_q with the indeterminate Y, where the indices are computed additively in G. We note that $Y^0 = 1$ is the identity of $\mathbb{F}_q[G]$, where 1 is the identity in \mathbb{F}_q and 0 is the identity of G.

Given a ring \mathcal{R} , a linear code of length n over \mathcal{R} refers to a submodule of the \mathcal{R} -module \mathcal{R}^n . A linear code in $\mathbb{F}_q[G]$ refers to an \mathbb{F}_q -subspace C of $\mathbb{F}_q[G]$. This can be viewed as a linear code of length n over \mathbb{F}_q by indexing the n-tuples by the elements in G. The Hamming weight wt(\mathbf{u}) of $\mathbf{u} = \sum_{g \in G} u_g Y^g \in \mathbb{F}_q[G]$ is defined to be the number of nonzero term u_g 's in \mathbf{u} . The minimum Hamming distance a code C is defined by $d(C) := \min\{\operatorname{wt}(\mathbf{u}) \mid \mathbf{u} \in C, \mathbf{u} \neq 0\}$. A linear code C in $\mathbb{F}_q[G]$ is referred to as an $[n, k, d]_q$ code if C has \mathbb{F}_q -dimension k and minimum Hamming distance d.

Given a subgroup H of G, a code C in $\mathbb{F}_q[G]$ is called an H-quasi-abelian code if C is an $\mathbb{F}_q[H]$ module, i.e., C is closed under the multiplication by the elements in $\mathbb{F}_q[H]$. Such a code will be called a quasi-abelian code if H is not specified or where it is clear in the context. An H-quasi-abelian code C is said to be of 1-generator if C is a cyclic $\mathbb{F}_q[H]$ -module. Since every H-quasi-abelian code C in $\mathbb{F}_q[G]$ is an $\mathbb{F}_q[H]$ -module, it is also an $\mathbb{F}_q[A]$ -module for all cyclic subgroups of H. It follows that Cis quasi-cyclic of index |G|/|A|. However, being 1-generator H-quasi-abelian does not imply that C is 1-generator quasi-cyclic. Therefore, it makes sense to study 1-generator H-quasi-abelian codes.

Assume that $H \leq G$ such that |H| = m and the index $[G : H] = \frac{n}{m} = l$. Let $\{\mathfrak{g}_1, \mathfrak{g}_2, \ldots, \mathfrak{g}_l\}$ be a fixed set of representatives of the cosets of H in G. Let $R := \mathbb{F}_q[H]$. Define $\Phi : \mathbb{F}_q[G] \to R^l$ by

$$\Phi\left(\sum_{h\in H}\sum_{i=1}^{l}\alpha_{h+\mathfrak{g}_{i}}Y^{h+\mathfrak{g}_{i}}\right) = \left(\boldsymbol{\alpha}_{1}(Y), \boldsymbol{\alpha}_{2}(Y), \dots, \boldsymbol{\alpha}_{l}(Y)\right),$$
(1)

where $\alpha_i(Y) = \sum_{h \in H} \alpha_{h+\mathfrak{g}_i} Y^h \in R$, for all $i \in \{1, 2, \dots, l\}$. It is not difficult to see that Φ is an *R*-module isomorphism, and hence, the next lemma follows.

Lemma 2.1. The map Φ induces a one-to-one correspondence between *H*-quasi-abelian codes in $\mathbb{F}_q[G]$ and linear codes of length *l* over *R*.

Throughout, assume that gcd(q, |H|) = 1, or equivalently, $\mathbb{F}_q[H]$ is semisimple. Following [7, Section 3], the group ring $R = \mathbb{F}_q[H]$ is decomposed as follows.

For each $h \in H$, denote by $\operatorname{ord}(h)$ the order of h in H. The *q*-cyclotomic class of H containing $h \in H$, denoted by $S_q(h)$, is defined to be the set

$$S_q(h) := \{q^i \cdot h \mid i = 0, 1, \dots\} = \{q^i \cdot h \mid 0 \le i \le \nu_h\},\$$

where $q^i \cdot h := \sum_{i=1}^{q^i} h$ in H and ν_h is the multiplicative order of q in $\mathbb{Z}_{\mathrm{ord}(h)}$.

An *idempotent* in a ring R is a non-zero element e such that $e^2 = e$. An idempotent e is said to be *primitive* if for every other idempotent f, either ef = e or ef = 0. The primitive idempotents in R

are induced by the q-cyclotomic classes of H (see [4, Proposition II.4]). Every idempotent e in R can be viewed as a unique sum of primitive idempotents in R. The \mathbb{F}_q -dimension of an idempotent $e \in R$ is defined to be the \mathbb{F}_q -dimension of Re.

From [7, Subsection 3.2], $R := \mathbb{F}_q[H]$ can be decomposed as

$$R = Re_1 + Re_2 + \dots + Re_s,$$

where e_1, e_2, \ldots, e_s are the primitive idempotents in R. Moreover, every ideal in R is of the form Re, where e is an idempotent in R.

3. 1-generator quasi-abelian codes

In [7], characterization and enumeration of 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ have been given. In this section, we give alternative characterization and enumeration of such codes. The characterization in Subsection 3.1 allows us to express an algorithm to find all 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ in Subsection 3.2.

Using the *R*-module isomorphism Φ defined in (1), to study 1-generator *H*-quasi-abelian codes in $\mathbb{F}_q[G]$, it suffices to consider cyclic *R*-submodules Ra, where $a = (a_1, a_2, \ldots, a_l) \in \mathbb{R}^l$.

For each $\boldsymbol{a} = (a_1, a_2, \dots, a_l) \in \mathbb{R}^l$, there exists a unique idempotent $e \in \mathbb{R}$ such that $\mathbb{R}e = \mathbb{R}a_1 + \mathbb{R}a_2 + \dots + \mathbb{R}a_l$. The element e is called the *idempotent generator element* for $\mathbb{R}a$. An idempotent $f \in \mathbb{R}$ of largest \mathbb{F}_q -dimension such that

$$f\boldsymbol{a}=0$$

is called the *idempotent check element* for Ra.

Let $S = \mathbb{F}_{q^l}[H]$, where \mathbb{F}_{q^l} is an extension field of \mathbb{F}_q of degree l. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_l\}$ be a fixed basis of \mathbb{F}_{q^l} over \mathbb{F}_q . Let $\varphi : R^l \to S$ be an R-module isomorphism defined by

$$\boldsymbol{a} = (a_1, a_2, \dots, a_l) \mapsto A = \sum_{i=1}^l \alpha_i a_i.$$
⁽²⁾

Using the map φ , the code Ra can be regarded as an *R*-module RA in *S*.

Lemma 3.1 ([7, Lemma 6.1]). Let $a \in \mathbb{R}^l$ and let e and f be the idempotent generator and idempotent check elements of $\mathbb{R}a$, respectively, Then

$$e+f=1$$

and

$$\dim_{\mathbb{F}_a}(R\boldsymbol{a}) = \dim_{\mathbb{F}_a}(R\boldsymbol{e}) = m - \dim_{\mathbb{F}_a}(Rf).$$

For a ring \mathcal{R} , denote by \mathcal{R}^* and \mathcal{R}^{\times} the set of non-zero elements and the group of units of \mathcal{R} , respectively.

In order to enumerate and determine all 1-generator *H*-quasi-abelian codes in $\mathbb{F}_q[G]$, we need the following result.

Lemma 3.2. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^l$ and let e be the idempotent generator of $\mathbb{R}\mathbf{a}$. Let $A = \varphi(\mathbf{a})$ and $B = \varphi(\mathbf{b})$, where φ is defined in (2). Then $\mathbb{R}\mathbf{a} = \mathbb{R}\mathbf{b}$ if and only if there exists $u \in (\mathbb{R}e)^{\times}$ such that $\mathbf{b} = u\mathbf{a}$.

Equivalently, RA = RB if and only if there exists $u \in (Re)^{\times}$ such that B = uA.

Proof. Write $a = (a_1, a_2, \dots, a_l)$ and $b = (b_1, b_2, \dots, b_l)$, where $a_i, b_i \in R$ for all $i \in \{1, 2, \dots, l\}$.

Assume that Ra = Rb. Then b = va for some $v \in R$. Let $u = ve \in Re$. Note that, for each $i \in \{1, 2, \ldots, l\}$, we have $a_i = r_i e$ for some $r_i \in R$. Then $ua_i = (ve)(r_i e) = vr_i e^2 = v(r_i e) = va_i = b_i$ for all $i \in \{1, 2, \ldots, l\}$. Hence, b = ua and

$$Re = R\boldsymbol{a} = R\boldsymbol{b} = R(u\boldsymbol{a}) = uR\boldsymbol{a} = uRe.$$

Since $u \in Re$ and Re = uRe, we have $u \in (Re)^{\times}$.

Conversely, assume that there exists $u \in (Re)^{\times}$ such that $\mathbf{b} = u\mathbf{a}$. Then $R\mathbf{b} = Ru\mathbf{a} \subseteq R\mathbf{a}$. We need to show that $\dim_{\mathbb{F}_q}(R\mathbf{a}) = \dim_{\mathbb{F}_q}(R\mathbf{b})$. Let e' be an idempotent generator of $R\mathbf{b}$. We have

$$Re' = R\mathbf{b} = R(u\mathbf{b}) = u(R\mathbf{b}) = u(Re) = Re$$

since $u \in (Re)^{\times}$. Hence, by Lemma 3.1, we have

$$\dim_{\mathbb{F}_a}(R\boldsymbol{a}) = \dim_{\mathbb{F}_a}(R\boldsymbol{e}) = \dim_{\mathbb{F}_a}(R\boldsymbol{e}') = \dim_{\mathbb{F}_a}(R\boldsymbol{b}).$$

Therefore, $R\boldsymbol{b} = R\boldsymbol{a}$ as desired.

3.1. The enumeration of 1-generator quasi-abelian codes

First, we focus on the number of 1-generator H-quasi-abelian codes of a given idempotent generator in $\mathbb{F}_q[H]$. Using the fact that the idempotents in $\mathbb{F}_q[H]$ are known, the number of 1-generator H-quasiabelian codes in $\mathbb{F}_q[G]$ can be concluded.

Proposition 3.3. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R and $e = e_1 + e_2 + \cdots + e_r$. Then the following statements hold.

- i) e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents of Se.
- *ii*) e_j is the identity of Se_j for all $j \in \{1, 2, ..., r\}$.
- *iii*) *e* is the identity of Se.
- $iv) Se = Se_1 \oplus Se_2 \oplus \cdots \oplus Se_r.$

Proof. For *i*), it is clear that e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents in *S*. They are in *Se* since $e_j = e_j e \in Se$ for all $j \in \{1, 2, \ldots, r\}$. The statements *ii*) and *iii*) follow since $se_j = se_j^2 = (se_j)e_j$ for all $se_j \in Se_j$ and $se = se^2 = (se)e$ for all $se \in Se$. The last statement can be verified using *i*).

Corollary 3.4. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R and $e = e_1 + e_2 + \cdots + e_r$. Then the following statements hold.

- i) e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents of Re.
- ii) e_j is the identity of Re_j for all $j \in \{1, 2, \ldots, r\}$.
- *iii*) *e* is the identity of Re.
- iv) $Re = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_r$, where Re_j is isomorphic to an extension field of \mathbb{F}_q for all $j \in \{1, 2, \dots, r\}$.

Let $\Omega = \left\{ \sum_{j=1}^{r} A_j \middle| A_j \in (Se_j)^* \right\} \subset Se$. Then we have the following results.

Lemma 3.5. Let $A = \sum_{i=1}^{l} \alpha_i a_i \in S$, where $a_i \in R$, and let $b \in R$. Then $RA \subseteq Sb$ if and only if $Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Rb$.

Proof. Assume that $RA \subseteq Sb$. Then A = Bb for some $B \in S$. Write $B = \sum_{i=1}^{l} \alpha_i b_i$, where $b_i \in R$. Then $a_i = bb_i$ for all $i \in \{1, 2, ..., l\}$. Hence, we have

$$\sum_{i=1}^{l} r_i a_i = \sum_{i=1}^{l} r_i b b_i = \left(\sum_{i=1}^{l} r_i b_i\right) b \in Rb$$

for all $\sum_{i=1}^{l} r_i a_i \in Ra_1 + Ra_2 + \dots + Ra_l$.

Conversely, it suffices to show that $A \in Sb$. Since $Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Rb$, we have $a_i \in Rb$ for all $i \in \{1, 2, \ldots, l\}$. Then, for each $i \in \{1, 2, \ldots, l\}$, there exists $r_i \in R$ such that $a_i = r_i b$. Hence,

$$A = \sum_{i=1}^{l} \alpha_i a_i = \sum_{i=1}^{l} \alpha_i r_i b = \left(\sum_{i=1}^{l} \alpha_i r_i\right) b \in Sb$$

as desired.

Lemma 3.6. Let $A = \sum_{i=1}^{l} \alpha_i a_i \in Se$, where $a_i \in R$. Then $A \in \Omega$ if and only if

$$Re = Ra_1 + Ra_2 + \dots + Ra_l.$$

Proof. First, we note that $RA \subseteq Se$ since $A \in Se$. Then $Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Re$ by Lemma 3.5.

Assume that $A \in \Omega$. Then $A = A_1 + A_2 + \cdots + A_r$, where $A_j \in (Se_j)^*$. We have $Ae_j = A_j \neq 0$ for all $j \in \{1, 2, \ldots, r\}$. Suppose that $Ra_1 + Ra_2 + \cdots + Ra_l \subsetneq Re$. By Corollary 3.4, we have $Re = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_r$. Then

$$Ra_1 + Ra_2 + \dots + Ra_l \subseteq \widehat{Re_j} = R(e - e_j)$$

for some $j \in \{1, 2, ..., r\}$, where $\widehat{Re_j} := Re_1 \oplus \cdots \oplus Re_{j-1} \oplus Re_{j+1} \oplus \cdots \oplus Re_r$. By Lemma 3.5, we have

$$0 \neq A_j = Ae_j \in RA \subseteq S(e - e_j),$$

a contradiction. Therefore, $Ra_1 + Ra_2 + \cdots + Ra_l = Re$.

Conversely, assume that $Re = Ra_1 + Ra_2 + \cdots + Ra_l$. Then $RA \subseteq Se$ by Lemma 3.5. Since $A \in Se$, by Theorem 3.3, we have $A = A_1 + A_2 + \cdots + A_r$, where $A_j \in Se_j$ for all $j \in \{1, 2, \ldots, r\}$. Suppose that $A_j = 0$ for some $j \in \{1, 2, \ldots, r\}$. Then $RA = \widehat{RA_j} \subseteq \widehat{Se_j} = S(e - e_j)$. By Lemma 3.5, we have

$$Re = Ra_1 + Ra_2 + \dots + Ra_l \subseteq R(e - e_j)$$

which is a contradiction. Hence, $A_j \in (Se_j)^*$ for all $j \in \{1, 2, ..., r\}$.

Corollary 3.7. Let $A = \sum_{i=1}^{l} \alpha_i a_i \in Se_j$, where $a_i \in R$. Then $A \in (Se_j)^*$ if and only if $Re_j = Ra_1 + Ra_2 + \cdots + Ra_l$.

Let $j \in \{1, 2, ..., r\}$ and let k_j denote the \mathbb{F}_q -dimension of e_j . Then Re_j is isomorphic to a finite field of q^{k_j} elements.

Define an equivalence relation on $(Se_i)^*$ by

$$A \sim B \iff \exists u \in (Re_j)^{\times}$$
 such that $A = uB$

For $A \in (Se_j)^*$, denote by [A] the equivalence class of A and let $[(Se_j)^*] = \{[A] \mid A \in (Se_j)^*\}$. Lemma 3.8. Let $j \in \{1, 2, ..., r\}$. Then $|[A]| = q^{k_j} - 1$ for all $A \in (Se_j)^*$. **Proof.** Let $A \in (Se_j)^*$ and define $\rho : (Re_j)^{\times} \to [A]$,

 $u\mapsto uA.$

From the definition of \sim , ρ is a well-defined surjective map. For each $u_1, u_2 \in (Re_j)^{\times}$, if $u_1A = u_2A$, then $(u_1 - u_2)A = 0$. Write $A = \sum_{i=1}^{l} \alpha_i a_i$, where $a_i \in R$. Then $a_i(u_1 - u_2) = 0$ for all $i \in \{1, 2, \ldots, l\}$. Since $A \in (Se_j)^*$, by Corollary 3.7, we can write $e_j = \sum_{i=1}^{l} r_i a_i$, where $r_i \in R$. Hence,

$$e_j(u_1 - u_2) = \left(\sum_{i=1}^{i} r_i a_i\right)(u_1 - u_2) = \sum_{i=1}^{i} r_i a_i(u_1 - u_2) = 0 \in Re_j.$$

Since e_j is the identity of Re_j , it follows that $u_1 = u_2 \in (Re_j)^{\times}$. Hence, ρ is a bijection. Therefore, $|[A]| = |(Re_j)^{\times}| = |\mathbb{F}_{q^{k_j}}^*| = q^{k_j} - 1$.

Corollary 3.9. *For each* $i \in \{1, 2, ..., r\}$ *, we have*

$$|[(Se_j)^*]| = \frac{|(Se_j)^*|}{|[A]|} = \frac{q^{lk_j} - 1}{q^{k_j} - 1}.$$

Let $[\Omega] = \prod_{j=1}^{r} [(Se_j)^*]$. Then $|[\Omega]| = \prod_{j=1}^{r} \frac{q^{lk_j} - 1}{q^{k_j} - 1}$.

The number of 1-generator quasi-abelian codes sharing a idempotent has been determined in [7, Corollary 6.1]. Here, an alternative proof using a different technique is provided.

Theorem 3.10. Let \mathfrak{C} denote the set of all 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ with idempotent generator e. Then there exists a one-to-one correspondence between $[\Omega]$ and \mathfrak{C} . Hence, the number of 1-generator quasi-abelian codes having e as their idempotent generator is

$$\prod_{j=1}^r \frac{q^{lk_j} - 1}{q^{k_j} - 1}$$

Proof. Define $\sigma : [\Omega] \to \mathfrak{C}$,

$$([A_1], [A_2], \ldots, [A_r]) \mapsto Ra$$

where $A := A_1 + A_2 + \dots + A_r \in Se$ is viewed as $A = \sum_{i=1}^{l} \alpha_i a_i$ and $a := (a_1, a_2, \dots, a_l)$.

Since $A_j \in (Se_j)^*$ for all $j \in \{1, 2, ..., r\}$, we have $A \in \Omega$. Then $Re = Ra_1 + Ra_2 + \cdots + Ra_l$ by Lemma 3.6, and hence, Ra is a 1-generator quasi-abelian code with idempotent generator e, i.e., $Ra \in \mathfrak{C}$.

For $([A_1], [A_2], \dots, [A_r]) = ([B_1], [B_2], \dots, [B_r]) \in [\Omega]$, there exists $u_j \in (Re_j)^{\times}$ such that $A_j = u_j B_j$ for all $j \in \{1, 2, \dots, r\}$. Let $u := u_1 + u_2 + \dots + u_r$. Then

$$u\left(u_1^{-1} + u_2^{-1} + \dots + u_r^{-1}\right) = e_1 + e_2 + \dots + e_r = e_1$$

is the identity of Re (see Corollary 3.4), where u_j^{-1} refers to the inverse of u_j in Re_j . Hence, u is a unit in $(Re)^{\times}$. Let $B := \sum_{j=1}^r B_j$. Then

$$A = \sum_{j=1}^{r} A_j = \sum_{j=1}^{r} u_j B_j = uB.$$

Hence, Ra = Rb by Lemma 3.2. Therefore, σ is a well-defined map.

For $([A_1], [A_2], \ldots, [A_r]), ([B_1], [B_2], \ldots, [B_r]) \in [\Omega]$, if Ra = Rb, then, by Lemma 3.2, there exists $u \in (Re)^{\times}$ such that A = uB. Then $A_j = uB_j = ue_jB_j$ since e_j is the identity of Se_j by Proposition 3.3. Since $A_j \in (Se_j)^*$, ue_j is a non-zero in Re_j which is a finite field. Thus ue_j is a unit in $(Re_j)^{\times}$. Hence,

$$([A_1], [A_2], \dots, [A_r]) = ([B_1], [B_2], \dots, [B_r])$$

which implies that σ is an injective map.

To verify that σ is surjective, let $Ra \in \mathfrak{C}$, where $a = (a_1, a_2, \ldots, a_l) \in \mathbb{R}^l$. Then $Re = Ra_1 + Ra_2 + \cdots + Ra_l$. Hence, by Lemma 3.6, we conclude that

$$A := \sum_{i=1}^{l} \alpha_i a_i \in \Omega$$

Write $A = \sum_{j=1}^{r} A_j$, where $A_j \in (Se_j)^*$. Then $([A_1], [A_2], \dots, [A_r]) \in [\Omega]$, and hence,

$$\sigma(([A_1], [A_2], \ldots, [A_r])) = R\boldsymbol{a}.$$

3.2. The generators for 1-generator quasi-abelian codes

In this subsection, we establish an algorithm to find all 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$. Note that every idempotent in $R := \mathbb{F}_q[H]$ can be written as a unique sum of primitive idempotents in R. Hence, it is sufficient to study H-quasi-abelian codes of a given idempotent generator.

Let $e = e_1 + e_2 + \cdots + e_r$ be an idempotent in R, where, for each $j \in \{1, 2, \ldots, r\}$, e_j is the primitive idempotent in R induced by a q-cyclotomic class $S_q(h_j)$ for some $h_j \in H$.

For each $j \in \{1, 2, ..., r\}$, assume that e_j is decomposed as

$$e_j = e_{j1} + e_{j2} + \dots + e_{js_j},$$

where, for each $i \in \{1, 2, ..., s_j\}$, e_{ji} is the primitive idempotent in S defined corresponding to a q^l -cyclotomic class $S_{q^l}(h_{ji})$ for some $h_{ji} \in S_q(h_j)$.

Note that all the elements in $S_q(h_j)$ have the same order. Hence, the q^l -cyclotomic classes $S_{q^l}(h_{ji})$ have the same size for all $1 \leq i \leq s_j$. Without loss of generality, we assume that e_{j1} is defined corresponding to $S_{q^l}(h_j)$. For each $j \in \{1, 2, ..., r\}$, let k_j and d_j denote the \mathbb{F}_q -dimension of e_j and the \mathbb{F}_{q^l} -dimension of e_{j1} , respectively. Then k_j and d_j are the smallest positive integers such that

$$q^{k_j} \cdot h_j = h_j$$
 and $q^{ld_j} \cdot h_j = h_j$.

Then $k_j | ld_j$ which implies that $\frac{k_j}{\gcd(l,k_j)} | d_j$. Since $q^{l \frac{k_j}{\gcd(l,k_j)}} \cdot h_j = q^{k_j \frac{l}{\gcd(l,k_j)}} \cdot h_j = h_j$, we have $d_j | \frac{k_j}{\gcd(l,k_j)}$. It follows that $d_j = \frac{k_j}{\gcd(l,k_j)}$. Hence, e_{ji} 's have the same q^l -size $d_j = \frac{k_j}{\gcd(l,k_j)}$ and $s_j = \gcd(l,k_j)$.

Using arguments similar to those in the proof of Proposition 3.3, we conclude the following result.

Proposition 3.11. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R. Assume that $e_j = e_{j1} + e_{j2} + \cdots + e_{js_j}$, where e_{ji} is a primitive idempotent in S for all $i \in \{1, 2, \ldots, s_j\}$. Then the following statements hold.

- i) For $j \in \{1, 2, ..., r\}$, the elements $e_{j1}, e_{j2}, ..., e_{js_j}$ are pairwise orthogonal (non-zero) idempotents of Se_j .
- ii) e_{ji} is the identity of Se_{ji} for all $j \in \{1, 2, \ldots, r\}$ and $i \in \{1, 2, \ldots, s_j\}$.

- *iii*) $e_j = e_{j1} + e_{j2} + \dots + e_{js_j}$ is the identity of Se_j for all $j \in \{1, 2, \dots, r\}$.
- iv) For $j \in \{1, 2, ..., r\}$, we have $Se_j = Se_{j1} \oplus Se_{j2} \oplus \cdots \oplus Se_{js_j}$, where Se_{ji} is an extension field of \mathbb{F}_q of order q^{ld_j} for all $i \in \{1, 2, ..., s_j\}$.

Theorem 3.12. Let $j \in \{1, 2, ..., r\}$ be fixed. For $i \in \{1, 2, ..., s_j\}$, let π_i be a primitive element of Se_{ji} , a finite field of q^{ld_j} elements. Let $L_j = \frac{q^{ld_j}-1}{q^{k_j}-1}$ and $T_j = \{\infty, 0, 1, 2, ..., q^{ld_j}-2\}$. Then the elements

$$\pi_t^{\nu_t} + \pi_{t+1}^{\nu_{t+1}} + \dots + \pi_{s_j}^{\nu_{s_j}},\tag{3}$$

for all $1 \le t \le s_j$, $0 \le \nu_t \le L_j - 1$, and $\nu_{t+1}, \nu_{t+2}, \ldots, \nu_{s_j} \in T_j$, are a complete set of representatives of $[(Se_j)^*]$. (By convention, $\pi_i^{\infty} = 0$.)

Proof. Note that the number of elements in (3) is

$$L_j q^{ld_j(s_j-1)} + L_j q^{ld_j(s_j-2)} + \dots + L_j = \frac{q^{lk_j} - 1}{q^{k_j} - 1} = |[(Se_j)^*]|.$$

Hence, it suffices to show that the elements in (3) are in different equivalence classes. Let

$$A = \pi_t^{\nu_t} + \pi_{t+1}^{\nu_{t+1}} + \dots + \pi_{s_j}^{\nu_{s_j}} \text{ and } B = \pi_x^{\mu_x} + \pi_{x+1}^{\mu_{x+1}} + \dots + \pi_{s_j}^{\mu_{s_j}}$$

where $0 \leq \nu_t, \mu_x \leq L_j - 1, \nu_{t+1}, \nu_{t+2}, \dots, \nu_{s_j} \in T_j$, and $\mu_{x+1}, \mu_{x+2}, \dots, \mu_{s_j} \in T_j$. Assume that [A] = [B]. Then there exists $u \in (Re_j)^{\times}$ such that

$$\pi_t^{\nu_t} + \pi_{t+1}^{\nu_{t+1}} + \dots + \pi_{s_j}^{\nu_{s_j}} = A = uB = u\pi_x^{\mu_x} + u\pi_{x+1}^{\mu_{x+1}} + \dots + u\pi_{s_j}^{\mu_{s_j}}.$$

Since $\pi_t^{\nu_t} \in (Se_{jt})^{\times}$ and $u\pi_x^{\mu_x} \in (Se_{jx})^{\times}$, by the decomposition in Proposition 3.11, t = x and $\pi_t^{\nu_t} = u\pi_t^{\mu_t} \in Se_{jt}$. Then $ue_{jt} = \pi_t^{\nu_t - \mu_t}$. Since $u \in (Re_j)^{\times}$, we have $u^{q^{k_j} - 1} = e_j$, and hence, $e_{jt} = e_{jt}e_j = \pi_t^{(\nu_t - \mu_t)(q^{k_j} - 1)}$. Since $0 \leq \nu_t, \mu_t \leq L_j - 1$ and π_t has order $q^{ld_j} - 1$, we conclude that $\nu_t = \mu_t$. Hence, $ue_{jt} = e_{jt} = e_{je_{jt}}$ which implies $(u - e_j)e_{jt} = 0$ in Se_{jt} . It follows that

$$S(u-e_j) \subseteq S(e_{j1} + \dots + e_{j,t-1} + e_{j,t+1} + \dots + e_{js_j}) \subsetneq Se_j.$$

Since $u, e_j \in Re_j$, we have $u - e_j \in Re_j$ and $R(u - e_j) \subsetneq Re_j$. Hence, $R(u - e_j)$ is the zero ideal, i.e., $u = e_j$. Therefore, $A = uB = e_jB = B$ since e_j is the identity of Se_j .

The following corollary now follows from Theorem 3.10 and Theorem 3.12.

Corollary 3.13. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R and $e = e_1 + e_2 + \cdots + e_r$. Then all 1-generator quasi-abelian codes having e as their idempotent generator are of the form

$$A_1 + A_2 + \dots + A_r$$

where $A_j \in (Se_j)^*$ is as defined in (3).

Combining the results above, we summarize the steps of finding all 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ as in Algorithm 1. We note that the 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ are possible to determined using [7, Theorem 6.1] which depend on linear codes of dimension 1 over various extension fields of \mathbb{F}_q . Using this concept, the algorithm might look more tedious and complicated.

An illustrative example for Algorithm 1 is given as follows.

Example 3.14. Let q = 2, $G = \mathbb{Z}_3 \times \mathbb{Z}_6$ and $H = \mathbb{Z}_3 \times 2\mathbb{Z}_6$. Denote by $a_0 := (0,0)$, $a_1 := (1,0)$, $a_2 := (2,0)$, $a_3 := (0,2)$, $a_4 := (1,2)$, $a_5 := (2,2)$, $a_6 := (0,4)$, $a_7 := (1,4)$, and $a_8 := (2,4)$, the elements in H. Then l = [G : H] = 2 and the elements in H can be partitioned into the following 2-cyclotomic

For abelian groups $H \leq G$ and a finite field \mathbb{F}_q with gcd(q, |H|) = 1 and [G : H] = l, do the following steps.

- 1. Compute the q-cyclotomic classes of H in G.
- 2. Compute the set $\{e_1, e_2, \ldots, e_r\}$ of primitive idempotents of $R = \mathbb{F}_q[H]$ (see [4, Proposition II.4]).
- 3. For each $1 \leq j \leq r$, compute a set B_j of a complete set of representatives of $[(Se_j)^*]$ (see Theorem 3.12).
- 4. Compute the idempotents of R, *i.e.*, the set

$$T = \left\{ \sum_{j=1}^{t} e_{i_j} \, \middle| \, 1 \le t \le r \text{ and } 1 \le i_1 < i_2 < \dots < i_t \le r \right\}.$$

5. For each $e = \sum_{j=1}^{t} e_{i_j} \in T$, compute the 1-generator quasi-abelian codes having e as their idempotent generator of the form

$$A_1 + A_2 + \dots + A_t$$

where $A_j \in B_{i_j}$ (see Corollary 3.13).

6. Run e over all elements of T, the 1-generator H-quasi-abelian codes in $\mathbb{F}_q[G]$ are obtained.

Algorithm 1. Steps for determining all 1-generator *H*-quasi-abelian codes in $\mathbb{F}_q[G]$

classes $S_2(a_0) = \{a_0\}, S_2(a_1) = \{a_1, a_2\}, S_2(a_3) = \{a_3, a_6\}, S_2(a_4) = \{a_4, a_8\}, and S_2(a_5) = \{a_7, a_5\}.$ From [4, Proposition II.4], we note that

$$e_{1} = Y^{a_{0}} + Y^{a_{1}} + Y^{a_{2}} + Y^{a_{3}} + Y^{a_{4}} + Y^{a_{5}} + Y^{a_{6}} + Y^{a_{7}} + Y^{a_{8}},$$

$$e_{2} = Y^{a_{1}} + Y^{a_{2}} + Y^{a_{4}} + Y^{a_{5}} + Y^{a_{7}} + Y^{a_{8}},$$

$$e_{3} = Y^{a_{3}} + Y^{a_{4}} + Y^{a_{5}} + Y^{a_{6}} + Y^{a_{7}} + Y^{a_{8}},$$

$$e_{4} = Y^{a_{1}} + Y^{a_{2}} + Y^{a_{3}} + Y^{a_{4}} + Y^{a_{6}} + Y^{a_{8}},$$

$$e_{5} = Y^{a_{1}} + Y^{a_{2}} + Y^{a_{3}} + Y^{a_{5}} + Y^{a_{6}} + Y^{a_{7}}$$

are primitive idempotents of $R := \mathbb{F}_2[H]$ induced by $S_2(a_0)$, $S_2(a_1)$, $S_2(a_3)$, $S_2(a_4)$, and $S_2(a_5)$, respectively.

Let $e := e_1 + e_2 + e_3$. From Theorem 3.10, it follows that the number of 1-generator H-quasi abelian codes in $\mathbb{F}_2[G]$ with idempotent generator e is $3 \cdot 5 \cdot 5 = 75$.

Let $S := \mathbb{F}_4[H]$, where $\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2 = 1 + \alpha\}$. Then $e_2 = e_{21} + e_{22}$ and $e_3 = e_{31} + e_{32}$, where

$$\begin{aligned} e_{21} &= Y^{a_0} + \alpha^2 Y^{a_1} + \alpha Y^{a_2} + Y^{a_3} + \alpha^2 Y^{a_4} + \alpha Y^{a_5} + Y^{a_6} + \alpha^2 Y^{a_7} + \alpha Y^{a_8}, \\ e_{22} &= Y^{a_0} + \alpha Y^{a_1} + \alpha^2 Y^{a_2} + Y^{a_3} + \alpha Y^{a_4} + \alpha^2 Y^{a_5} + 1Y^{a_6} + \alpha Y^{a_7} + \alpha^2 Y^{a_8}, \\ e_{31} &= Y^{a_0} + Y^{a_1} + Y^{a_2} + \alpha^2 Y^{a_3} + \alpha^2 Y^{a_4} + \alpha^2 Y^{a_5} + \alpha Y^{a_6} + \alpha Y^{a_7} + \alpha Y^{a_8}, \\ e_{32} &= Y^{a_0} + Y^{a_1} + Y^{a_2} + \alpha Y^{a_3} + \alpha Y^{a_4} + \alpha Y^{a_5} + \alpha^2 Y^{a_6} + \alpha^2 Y^{a_7} + \alpha^2 Y^{a_8}. \end{aligned}$$

are primitive idempotents in S induced by 4-cyclotomic classes $\{a_1\}, \{a_2\}, \{a_3\}$ and $\{a_6\}$, respectively.

Now, we have $k_1 = 1$, $k_2 = k_3 = 2$, $d_1 = d_2 = d_3 = 1$, $s_1 = 1$, and $s_2 = s_3 = 2$. It follows that $L_1 = \frac{2^2 - 1}{2 - 1} = 3$, $L_2 = L_3 = \frac{2^2 - 1}{2^2 - 1} = 1$, and $T_1 = T_2 = T_3 = \{\infty, 0, 1, 2\}$.

Then αe_1 , αe_{21} , αe_{22} , αe_{31} , and αe_{32} are primitive elements of Se_1 , Se_{21} , Se_{22} , Se_{31} , and Se_{32} ,

respectively. Therefore, we have that

$$B_{1} = \{e_{1}, \alpha e_{1}, \alpha^{2} e_{1}\},\$$

$$B_{2} = \{e_{21}, e_{21} + e_{22}, e_{21} + \alpha e_{22}, e_{21} + \alpha^{2} e_{22}, e_{22}\},\ and\$$

$$B_{2} = \{e_{31}, e_{31} + e_{32}, e_{31} + \alpha e_{32}, e_{31} + \alpha^{2} e_{32}, e_{32}\}$$

are complete sets of representatives of $[(Se_1)^*]$, $[(Se_2)^*]$, and $[(Se_3)^*]$, respectively. Hence, all the generators of the 75 1-generator H-quasi abelian codes in $\mathbb{F}_2[G]$ with idempotent generator e are of the form

 $A_1 + A_2 + A_3$,

where $A_i \in B_i$ for all $i \in \{1, 2, 3\}$.

In order to find permutation inequivalent 1-generator H-quasi abelian codes, the following theorem is useful.

Theorem 3.15. Let $H \leq G$ be finite abelian groups of index [G : H] = l and let $\{\alpha^{q^i} \mid 1 \leq i \leq l\}$ be a fixed basis of \mathbb{F}_{q^l} over \mathbb{F}_q . If $A = \sum_{i=1}^l a_i \alpha^{q^i} \in Se$, then A and $A^q = \sum_{i=1}^l a_i^q \alpha^{q^{i+1}}$ generate permutation equivalent H-quasi abelian codes (viewed in $\mathbb{F}_q[G]$) with the same idempotent generator.

Proof. Let e be the idempotent generator of a quasi-abelian code RA. Then

$$Ra_1^q + Ra_2^q + \dots + Ra_l^q \subseteq Ra_1 + Ra_2 + \dots + Ra_l = Re$$

Assume that $e = \sum_{i=1}^{l} r_i a_i$, where $r_i \in R$. It follows that

$$e = e^q = \sum_{i=1}^{l} r_i^q a_i^q \in Ra_1^q + Ra_2^q + \dots + Ra_l^q.$$

Hence, we have $Re = Ra_1^q + Ra_2^q + \cdots + Ra_l^q$. Therefore, A and A^q generate 1-generator H-quasi-abelian codes with the same idempotent generator e.

Let $\psi: R \to R$ be a ring homomorphism defined by

 $\gamma \mapsto \gamma^q$.

Let $\gamma = \sum_{h \in H} \gamma_h Y^h$ and $\beta = \sum_{h \in H} \beta_h Y^h$ be elements in R, where γ_h and β_h are elements in \mathbb{F}_q . If $\psi(\gamma) = \psi(\beta)$, then

$$0 = \gamma^q - \beta^q = (\gamma - \beta)^q = \sum_{h \in H} (\gamma_h - \beta_h) Y^{q \cdot h}.$$

By comparing the coefficients, we have $\gamma_h = \beta_h$ for all $h \in H$, *i.e.*, $\gamma = \beta$. Hence, ψ is a ring automorphism and

$$R(a_l^q, a_1^q, \dots, a_{l-1}^q) = R(\psi(a_l), \psi(a_1), \dots, \psi(a_{l-1})) = \Psi(R(a_l, a_1, \dots, a_{l-1})),$$
(4)

where Ψ is a natural extension of ψ to R^l .

Since $\psi(\gamma) = \sum_{h \in H} \gamma_h Y^{q \cdot h}$, $\psi(\gamma)$ is just a permutation on the coefficients of γ . Hence, by (4), $\Psi \circ \Phi$ is a permutation on $\mathbb{F}_q[G]$ such that $\Phi^{-1}\left(R(a_l^q, a_1^q, \dots, a_{l-1}^q)\right)$ is permutation equivalent to $\Phi^{-1}\left(R(a_l, a_1, \dots, a_{l-1})\right)$ in $\mathbb{F}[G]$, where Φ is the *R*-module isomorphism defined in (1). Therefore, the result follows since $R(a_l, a_1, \dots, a_{l-1})$ is permutation equivalent to $R(a_1, a_2, \dots, a_l)$. \Box

4. Computational results

It has been shown in [6] and [7] that a family of quasi-abelian codes contains various new and optimal codes. Here, we present other 2 new codes from 1-generator quasi-abelian codes together with 1 new code obtained by shortening of one of these codes.

Given an abelian group $H = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ of order $n = n_1 n_2$, denote by $u = (u_0, u_1, u_2, \dots, u_{n-1}) \in \mathbb{F}_q^n$ the vector representation of

$$u = \sum_{j=0}^{n_2-1} \sum_{i=0}^{n_1-1} u_{jn_1+i} Y^{(i,j)} \text{ in } \mathbb{F}_q[H]$$

Let

$$C_{(a,b)} := \{ (fa, fb) \mid f \in \mathbb{F}_q[H] \},$$
(5)

where a and b are elements in $\mathbb{F}_q[H]$. Using (5), 2 quasi-abelian codes whose minimum distance improves on Grassl's online table [5] can be found. The codes C_1 and C_2 are presented in Table 1 and the generator matrices of C_1 and C_2 are

and

respectively.

By puncturing C_2 at the first coordinate, a $[35, 11, 17]_5$ code can be obtained with minimum distance improved by 1 from Grassl's online table [5]. All the computations are done using MAGMA [3].

Acknowledgment: The authors thank to San Ling for useful discussions and to the anonymous referees for their helpful comments.

Table 1. New codes from quasi-abelian codes

name	$C_{(a,b)}$	Н	a and b
C1	$[36, 14, 15]_5$	$\mathbb{Z}_3 \times \mathbb{Z}_6$	a = (3, 3, 3, 0, 0, 1, 4, 3, 4, 0, 4, 4, 4, 4, 3, 0, 1, 0)
			b = (2, 4, 1, 1, 3, 3, 0, 0, 4, 4, 1, 0, 0, 1, 4, 2, 2, 4)
C2	$[36, 11, 18]_5$	$\mathbb{Z}_3 \times \mathbb{Z}_6$	a = (2, 4, 4, 3, 4, 4, 3, 2, 4, 3, 4, 4, 3, 4, 2, 3, 4, 4)
			b = (3, 0, 0, 0, 3, 3, 3, 0, 3, 0, 3, 0, 1, 1, 1, 1, 1, 1)

References

- [1] S. D. Berman, Semi-simple cyclic and abelian codes. II, Kibernetika 3(3) (1967) 21–30.
- [2] S. D. Berman, On the theory of group codes, Kibernetika 3(1) (1967) 31–39.
- [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3-4) (1997) 235-265.
- [4] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.
- [5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, Accessed on 2015-10-09.
- [6] S. Jitman, Generator matrices for new quasi-abelian codes, Online available at https://sites.google.com/site/quasiabeliancodes, Accessed on 2015-10-09.
- [7] S. Jitman, S. Ling, Quasi-abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511-531.
- [8] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1-2) (2001) 157-175.
- [9] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.
- [10] S. Ling, P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.
- [11] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.
- [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.
- [13] J. Pei, X. Zhang, 1-generator quasi-cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554-561.
- [14] G. E. Seguin, A class of 1-generator quasi-cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.
- [15] S. K. Wasan, Quasi abelian codes, Pub. Inst. Math. 21(35) (1977) 201–206.