Journal of Algebra Combinatorics Discrete Structures and Applications

Codes over an infinite family of algebras

Research Article

Irwansyah*, Intan Muchtadi-Alamsyah**, Ahmad Muchlis, Aleams Barra**, Djoko Suprijanto

Abstract: In this paper, we will show some properties of codes over the ring $B_k = \mathbb{F}_p[v_1, \dots, v_k]/(v_i^2 = v_i, \forall i = v_i)$ $1, \ldots, k$). These rings, form a family of commutative algebras over finite field \mathbb{F}_p . We first discuss about the form of maximal ideals and characterization of automorphisms for the ring B_k . Then, we define certain Gray map which can be used to give a connection between codes over B_k and codes over \mathbb{F}_p . Using the previous connection, we give a characterization for equivalence of codes over B_k and Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual codes over B_k through MacWilliams relation of Hamming weight enumerator for such codes.

2010 MSC: 11T71

Keywords: Gray map, Equivalence of codes, Euclidean self-dual, Hamming weight enumerator, MacWilliams relation, Invariant ring

Introduction 1.

Codes over finite rings has been an interesting topic in algebraic coding theory since the discovery of codes over \mathbb{Z}_4 , see [4]. An example of finite rings which has interesting properties is the ring $A_k =$ $\mathbb{F}_2[v_1,\ldots,v_k]$, where $v_i^2 = v_i$, for $1 \le i \le k$, because it has two Gray maps which relate codes over such ring and binary codes, see [2]. This ring also has non-trivial automorphisms which can be used to define skew-cyclic codes, for example in [1], skew-cyclic codes over the ring $A_1 = \mathbb{F}_2 + v\mathbb{F}_2$, where $v^2 = v$, which give some optimal Euclidean and Hermitian self-dual codes. Furthermore, Abualrub et al. show that skew-cyclic codes over A_1 have a connection to left submodules over a skew-polynomial ring and

^{*} The author is supported by Beasiswa Ungqulan BPKLN Direktorat Jenderal Pendidikan Tinggi. ** The authors are supported by Hibah Desentralisasi DIKTI 2016.

Irwansyah (Corresponding Author); Algebra Research Group, Institut Teknologi Bandung, Bandung, Indonesia, and Department of Mathematics, Universitas Mataram, Mataram, Indonesia (email: irw@unram.ac.id)

Intan Muchtadi-Alamsyah, Ahmad Muchlis, Aleams Barra; Algebra Research Group, Institut Teknologi Bandung, Bandung, Indonesia (email: ntan@math.itb.ac.id, muchlis@math.itb.ac.id, barra@math.itb.ac.id).

Djoko Suprijanto; Combinatorial Research Group, Institut Teknologi Bandung, Bandung, Indonesia (email: djoko@math.itb.ac.id).

give skew-polynomial generators for these codes. In [6], skew-cyclic codes over the ring A_1 have been characterized using a Gray map. This characterization gives a way to construct skew-cyclic codes over the ring A_1 from binary cyclic or quasi-cyclic codes, and also gives decoding algorithm for some codes over such ring. Meanwhile, Gao [3] consider skew-cyclic codes over the ring $B_1 = \mathbb{F}_p + v\mathbb{F}_p$, where $v^2 = v$, and found that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Using this connection, Gao is able to give an enumeration for skew-cyclic codes which are constructed using an automorphism with order relatively prime to the length of the codes.

In this paper, we consider codes over the ring $B_k = \mathbb{F}_p[v_1, \ldots, v_k]$, where $v_i^2 = v_i$ for $1 \le i \le k$, which is a generalization of the ring A_k in [2] and B_1 in [3]. We study its maximal ideals, automorphisms, equivalence codes, and Euclidean self-dual codes over these rings, including the generators for its invariant ring. This paper is organized as follows: Section 2 describes some properties of the ring B_k such as maximal ideals and automorphisms. Meanwhile, in Section 3, we describe a Gray map for the ring B_k , and we characterize linear codes and equivalent codes over the ring B_k . Finally, in Section 4, we characterize Euclidean self-dual codes, give the shape of MacWilliams relation and generators of invariant rings for Euclidean self-dual codes.

2. The ring B_k

As we readily see, the ring B_k forms a commutative algebra over prime field \mathbb{F}_p . Let $\Omega = \{1, 2, \ldots, k\}$ and 2^{Ω} is the collection of all subsets of Ω . Also, let w_i be an element in the set $\{v_i, 1-v_i\}$, for $1 \leq i \leq k$. Then, we will prove the following observation.

Lemma 2.1. $\omega \in B_k$ is a zero divisor if and only if $\omega \in \langle w_1, w_2, \ldots, w_k \rangle$.

Proof. (\Leftarrow) It is clear that, $v_i(1-v_i) = 0$, for all i = 1, ..., k. Therefore, if $\omega \in \langle w_1, w_2, ..., w_k \rangle$, then it is a zero divisor in B_k .

 (\Longrightarrow) Consider the equation,

$$(\alpha + \beta v_k)(\gamma + \epsilon v_k) = a + bv_k$$

given $\alpha + \beta v_k$, $a + bv_k \in B_k$, for some $\alpha, \beta, a, b \in B_{k-1}$. We have $\gamma = a\alpha^{-1}$ and $\epsilon = (b - \beta a)(\alpha(\beta + \alpha))^{-1}$. Therefore, if $a + bv_k = 1$, then $\gamma = 1$ and $\epsilon = -\beta(\alpha(\beta + \alpha))^{-1}$. Which implies, $\alpha + \beta v_k$ is a unit if and only if α and $\alpha + \beta$ are also units. Considering this observation for elements in $B_{k-1}, B_{k-2}, \ldots, B_1$, we have $\alpha + \beta v \in B_1$ is a unit if and only if $\alpha, \alpha + \beta \in \mathbb{F}_p$ are non zero elements. Since, every element in finite commutative ring is either a unit or a zero divisor, we can see that the only zero divisors in B_1 are the elements in the ideals generated by βv or $\alpha(1 - v)$. By generalizing this result recursively, we have the intended conclusion.

Also, we can easily show that $I = \langle w_1, w_2, \dots, w_k \rangle$ is a maximal ideal in B_k .

Lemma 2.2. Let $I = \langle w_1, w_2, \dots, w_k \rangle$. Then I is a maximal ideal in B_k .

Proof. Consider quotient ring B_k/I . If $v_i \in I$, then $1 - v_i \equiv 1 \mod I$, and if $1 - v_i \in I$, then $v_i = 1 - (1 - v_i) \equiv 1 \mod I$. Consequently, B_k/I is a field. So, I is a maximal ideal. Moreover, $B_k/I \cong \mathbb{F}_p$.

The following lemma is needed to prove Proposition 2.4.

Lemma 2.3. $\alpha^p = \alpha$, for all $\alpha \in B_k$.

Proof. Let $\alpha = \sum_{A \subseteq \{1,...,k\}} \alpha_A v_A$, for some $\alpha_A \in \mathbb{F}_p$, where $v_A = \prod_{j \in A} v_j$. Then, consider

$$\alpha^p = \sum_{i=0}^p \binom{p}{i} \alpha^i_{A_1} v_{A_1} \left(\sum_{A \neq A_1} \alpha_A v_A \right)^{p-i} = \alpha_{A_1} v_{A_1} + \left(\sum_{A \neq A_1} \alpha_A v_A \right)^p$$

since \mathbb{F}_p has characteristic p and $\beta^{p-1} = 1$ for all $\beta \in \mathbb{F}_p$. If we continue this procedure, then we have $\alpha^p = \alpha$.

The following result shows that the ring B_k is a principal ideal ring.

Proposition 2.4. Let $I = \langle \alpha_1, \ldots, \alpha_m \rangle$ be an ideal in B_k , for some $\alpha_1, \ldots, \alpha_m \in B_k$. Then,

$$I = \langle \sum_{A \subseteq \{1, \dots, m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle.$$

Proof. Consider $\alpha_i \sum_{A \subseteq \{1,\ldots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1}$. For any $A \subseteq \{1,\ldots,m\}$, if $i \in A$, then

$$\alpha_i(-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} = (-1)^{|A|+1} \alpha_i (\prod_{j \in A - \{i\}} \alpha_j)^{p-1}$$

since $\alpha_i^p = \alpha_i$ by Lemma 2.3. Consequently, there is a unique $A' = A - \{i\} \subseteq \{1, \ldots, m\}$, such that

$$\alpha_i \left((-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} + (-1)^{|A'|+1} (\prod_{j \in A} \alpha_j)^{p-1} \right) = 0$$

Otherwise, if $i \notin A$, then there is a unique $A'' = A \cup \{i\} \subseteq \{1, \ldots, m\}$ such that

$$\alpha_i \left((-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} + (-1)^{|A''|+1} (\prod_{j \in A} \alpha_j)^{p-1} \right) = 0.$$

So, every term will be vanish except $\alpha_i \alpha_i^{p-1} = \alpha_i$. Therefore,

$$I \subseteq \langle \sum_{A \subseteq \{1, \dots, m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle.$$

It is clear that

$$\langle \sum_{A \subseteq \{1, \dots, m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle \subseteq I.$$

Thus, $I = \langle \sum_{A \subseteq \{1,\dots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle.$

The following proposition shows that the ideal in Lemma 2.2 is the only maximal ideal in B_k . **Proposition 2.5.** An ideal I in B_k is maximal if and only if $I = \langle w_1, w_2, \ldots, w_k \rangle$.

Proof. (\Leftarrow) It is clear by Lemma 2.2.

 (\Longrightarrow) Let J be a maximal ideal in B_k . By Proposition 2.4, B_k is a principal ideal ring. Then, let $J = \langle \omega \rangle$, for some $\omega \in B_k$. Note that, ω is not a unit in B_k , so it is a zero divisor. By Lemma 2.1, ω is an element of some $m_i = \langle w_1, w_2, \ldots, w_k \rangle$, which means $J \subseteq m_i$. Consequently, $J = m_i$, because J is a maximal ideal.

Using the above result, we have the following lemmas.

Lemma 2.6. The ring B_k can be viewed as an \mathbb{F}_p -vector space with dimension 2^k whose basis consists of elements of the form $w_S = \prod_{i \in S} w_i$, where $S \in 2^{\Omega}$.

Proof. As we can see, every element $a \in B_k$ can be written as $a = \sum_{S \in 2^{\Omega}} \alpha_S v_S$, for some $\alpha_S \in \mathbb{F}_p$, where $v_S = \prod_{i \in S} v_i$ and $v_{\emptyset} = 1$. So, B_k is a vector space over \mathbb{F}_p whose basis consists of elements of the form $v_S = \prod_{i \in S} v_i$, where $v_{\emptyset} = 1$ and there are $\sum_{j=0}^{k} {k \choose j} = 2^k$ elements of basis. Now, we will show that the set $\{1, w_{S_2}, \ldots, w_{S_{2^k}}\}$ is also a basis. Consider,

$$\alpha_1 + \alpha_2 w_{S_2} + \dots + \alpha_{2^k} w_{S_{2^k}} = 0$$

for some $\alpha_i \in \mathbb{F}_p$, for all $i = 1, \ldots, 2^k$, which gives,

$$-\alpha_1 = \alpha_2 w_{S_2} + \dots + \alpha_{2^k} w_{S_{2^k}}.$$

If $\alpha_1 \neq 0$, then $\xi_1 = (\alpha_2 w_{S_2} + \dots + \alpha_{2^k} w_{S_{2^k}})$ is a unit, a contradiction to the fact that $\xi_1 \in \langle w_1, \dots, w_k \rangle$. So, $\alpha_1 = 0$, which means,

$$-(\alpha_2 w_{S_2} + \dots + \alpha_{k+1} w_{S_{k+1}}) = \alpha_{k+2} w_{S_{k+2}} + \dots + \alpha_{2^k} w_{S_{2^k}}.$$

If $(\alpha_2 w_{S_2} + \dots + \alpha_{k+1} w_{S_{k+1}}) \neq 0$, then it is a contradiction to the fact that $|S_j| \geq 2$, for all $j = k+2, \dots, 2^k$. Consequently, $(\alpha_2 w_{S_2} + \dots + \alpha_{k+1} w_{S_{k+1}}) = 0$. We have to note that, the set with elements of the w_S , where $S \in 2^{\Omega}$, is also linearly independent over \mathbb{F}_p , because S_k is a vector space over \mathbb{F}_p with element of basis are of the form v_S , where $S \subseteq \Omega$. Therefore, $(\alpha_2 w_{S_2} + \dots + \alpha_{k+1} w_{S_{k+1}}) = 0$ gives $\alpha_2 = \dots = \alpha_{k+1} = 0$. By continuing this process, we have $\alpha_1 = \dots = \alpha_{2^k} = 0$, which means they are linearly independent over \mathbb{F}_p .

Lemma 2.7. The ring B_k has characteristic p and cardinality p^{2^k} .

Proof. It is immediate since characteristic of \mathbb{F}_p is p, and B_k can be viewed as a \mathbb{F}_p -vector space with dimension $\sum_{i=0}^k \binom{k}{i} = 2^k$. So, $|B_k| = p^{2^k}$.

The following theorem characterizes the shape of automorphisms in the ring B_k .

Theorem 2.8. Let θ be an endomorphism in B_k . Then, θ is an automorphism if and only if $\theta(v_i) = w_j$, for every $i \in \Omega$, and θ , when restricted to \mathbb{F}_p , is an identity map.

Proof.
$$(\Longrightarrow)$$
 Let $J = \langle v_1, \ldots, v_k \rangle$ and $J_{\theta} = \langle \theta(v_1), \ldots, \theta(v_k) \rangle$. Consider the map

$$\lambda: \begin{array}{ccc} \frac{B_k}{J} & \to & \frac{B_k}{J_{\theta}} \\ a+J & \mapsto & \theta(a)+J_{\theta} \end{array}$$

We can see that the map λ is a ring homomorphism. For any $a, b \in B_k/J$ where $\lambda(a) = \lambda(b)$, let $a = a_1 + J$ and $b = b_1 + J$ for some $a_1, b_1 \in B_k$. As we can see, $\theta(a_1 - b_1) \in J_\theta$, so $a_1 - b_1 \in J$. Consequently, a - b = 0 + J, which means a = b, in other words, λ is a monomorphism. Moreover, for any $a' \in B_k/J_\theta$, let $a' = a_2 + J_\theta$ for some $a_2 \in B_k$, then there exists $a = \theta^{-1}(a_2) + J$ such that $\lambda(a) = a'$. Therefore, $\mathbb{F}_p \simeq B_k/J \simeq B_k/J_\theta$, which implies J_θ is also a maximal ideal. By Proposition 2.5, $J_\theta = \langle w_1, \ldots, w_k \rangle$, where $w_i \in \{v_i, 1 - v_i\}$ for $1 \le i \le k$. By Proposition 2.4,

$$J_{\theta} = \langle \sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} w_j)^{p-1} \rangle = \langle \sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \theta(v_j))^{p-1} \rangle$$

which means, $\sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} w_j)^{p-1}$ and $\sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \theta(v_j))^{p-1}$ are associate. Therefore, $\theta(v_i) = \beta w_j$ for some unit β which satisfies $(\beta^{|A|})^{p-1} = \beta$, for all $A \neq \emptyset$. Consequently, we have $\beta^{p-1} = \beta$, but by Lemma 2.3, $\beta^p = \beta$. Since β is a unit, we have that $\beta^{p-1} = 1$. Therefore, β must be equal to 1. Moreover, since θ is an automorphism, $\theta(v_i) \neq \theta(v_j)$ whenever $i \neq j$. Also, since the only automorphism in \mathbb{F}_p is identity map, we have the conclusion.

(\Leftarrow) Suppose that $\theta(v_i) = w_j$, and $\theta(v_i) \neq \theta(v_j)$ whenever $i \neq j$. By Lemma 2.6, we can see that θ is also an automorphism.

Now, we have to note that every element a in B_k can be written as

$$a = \sum_{S \in 2^{\Omega}} \alpha_S w_S$$

for some $\alpha_S \in \mathbb{F}_p$, where $w_S = \prod_{i \in S} w_i$. Define a map φ as follows.

$$\varphi : B_k \to \mathbb{F}_p^{2^k} \\ a = \sum_{i=1}^{2^k} \alpha_{S_i} w_{S_i} \mapsto (\sum_{S \subseteq S_1} \alpha_S, \sum_{S \subseteq S_2} \alpha_S, \dots, \sum_{S \subseteq S_{2^k}} \alpha_S)$$

We can show that this map φ is a bijection map. Furthermore, this map can be extended n tuples of B_k as follows.

$$\overline{\varphi} : B_k^n \to \mathbb{F}_p^{n2^k} (a_1, \dots, a_n) \mapsto (\varphi(a_1), \dots, \varphi(a_n)).$$

Since φ is a bijection map, we also have $\overline{\varphi}$ is a bijection map. We have to note that, the map φ is a permutation, based on the choice of subsets $S_i \in 2^{\Omega}$, of Gray maps in [2].

3. Codes over the ring B_k

A subset $C \subseteq B_k^n$ is called *code* over B_k of length n. If C is a B_k -submodule of B_k^n , then C called *linear code*. The following proposition gives a characterization of B_k -linear codes using the map $\overline{\varphi}$.

Proposition 3.1. *C* is a linear code over B_k if and only if there exist linear codes C_1, \ldots, C_{2^k} over \mathbb{F}_p such that $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$.

Proof. (\Longrightarrow) Since $\overline{\varphi}$ is a bijection, there exist C_1, \ldots, C_{2^k} such that $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$. Now, we only need to show that C_i is a linear code over \mathbb{F}_p for all $i = 1, \ldots, 2^k$. For any C_i , let c_1 and c_2 be two codewords in C_i . For l = 1, 2, let $c_l = (\alpha_1^{(l)}, \ldots, \alpha_n^{(l)})$, for some $\alpha_j^{(l)}$ in \mathbb{F}_p . Consider

$$\begin{aligned} c'_{l} &= \overline{\varphi}^{-1}(\mathbf{0}, \dots, \mathbf{0}, \lambda_{l} c_{l}, \mathbf{0}, \mathbf{0}) \\ &= \left(\varphi^{-1}(0, \dots, 0, \lambda_{l} \alpha_{1}^{(l)}, 0, \dots, 0), \dots, \varphi^{-1}(0, \dots, 0, \lambda_{l} \alpha_{n}^{(l)}, 0, \dots, 0)\right) \\ &= \left(\lambda_{l} \alpha_{1}^{(l)} \left(w_{S_{l}} - \sum_{j \in \{1, \dots, k\} - S_{l}} w_{S_{l} \cup \{j\}}\right), \dots, \lambda_{l} \alpha_{n}^{(l)} \left(w_{S_{l}} - \sum_{j \in \{1, \dots, k\} - S_{l}} w_{S_{l} \cup \{j\}}\right)\right), \end{aligned}$$

for any λ_l in \mathbb{F}_p^{\times} for all l = 1, 2. The last equality holds since

$$\varphi\left(\alpha_t^{(l)}\left(w_{S_l} - \sum_{j \in \{1, \dots, k\} - S_l} w_{S_l \cup \{j\}}\right)\right) = (0, \dots, 0, \alpha_t^{(l)}, 0, \dots, 0)$$

for all $1 \le t \le n$. Since $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$, we have c'_l is in C for all l = 1, 2, and $c'_1 + c'_2$ is also in C. Then, consider

$$\overline{\varphi}(c_1'+c_2') = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \lambda_1 \alpha_1^{(1)} + \lambda_2 \alpha_1^{(2)} & \cdots & \lambda_1 \alpha_l^{(1)} + \lambda_2 \alpha_l^{(2)} & \cdots & \lambda_1 \alpha_n^{(1)} + \lambda_2 \alpha_n^{(2)} \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}.$$

Hence, $\lambda_1 c_1 + \lambda_2 c_2$ is also in C_i .

(\Leftarrow) Take any two codewords c_3 and c_4 in C. Let

$$c_3 = \left(\sum_{S \in 2^{\Omega}} \alpha_S^{(1)} w_S, \dots, \sum_{S \in 2^{\Omega}} \alpha_S^{(n)} w_S\right)$$

and

$$c_4 = \left(\sum_{S \in 2^{\Omega}} \beta_S^{(1)} w_S, \dots, \sum_{S \in 2^{\Omega}} \beta_S^{(n)} w_S\right),$$

for some α_i, β_i in \mathbb{F}_p , where $i = 1, \ldots, 2^k$. For any λ_3 and λ_4 in \mathbb{F}_p^{\times} we have

$$\overline{\varphi}(\lambda_3 c_3 + \lambda_4 c_4) = \begin{pmatrix} \lambda_3 \alpha_{S_1}^{(1)} + \lambda_4 \beta_{S_1}^{(1)} & \cdots & \lambda_3 \alpha_{S_1}^{(n)} + \lambda_4 \beta_{S_1}^{(n)} \\ \lambda_3 \sum_{S \subseteq S_2} \alpha_S^{(1)} + \lambda_4 \sum_{S \subseteq S_2} \beta_S^{(1)} & \cdots & \lambda_3 \sum_{S \subseteq S_2} \alpha_S^{(n)} + \lambda_4 \sum_{S \subseteq S_2} \beta_S^{(n)} \\ \vdots & \vdots & \vdots \\ \lambda_3 \sum_{S \subseteq S_{2^k}} \alpha_S^{(1)} + \lambda_4 \sum_{S \subseteq S_{2^k}} \beta_S^{(1)} & \cdots & \lambda_3 \sum_{S \subseteq S_{2^k}} \alpha_S^{(n)} + \lambda_4 \sum_{S \subseteq S_{2^k}} \beta_S^{(n)} \end{pmatrix}$$

is also in (C_1, \ldots, C_{2^k}) , since C_i is a linear code for every $i = 1, \ldots, 2^k$. Therefore, $\lambda_3 c_3 + \lambda_4 c_4$ is also in C.

Now, following [5], we define permutation equivalence of codes as follows.

Definition 3.2. Two codes are permutation equivalent if one can be obtained from the other by permuting the coordinates.

Using Definition 3.2, we can define the following notion of equivalence between two codes.

Definition 3.3. Two codes C and C' over B_k are equivalent if either they are permutation-equivalent or C is permutation equivalent to the code $\theta(C')$ for some automorphism θ in B_k , i.e. the code $\theta(C')$ obtained from C' by changing α with $\theta(\alpha)$ in all coordinates.

Note that, the above definition is similar to the one in [5]. Now, let Π_{θ} be a permutation on 2^k tuples of \mathbb{F}_p induced by automorphism θ . Then we have

$$(\Pi_{\theta} \circ \overline{\varphi})(c) = \overline{\varphi}(\theta(c)) \tag{1}$$

for any $c \in B_k^n$. Then, we have the following characterization.

Theorem 3.4. Let C and C' be two codes over B_k . Then, C and C' are equivalent if and only if there exists a permutation which sends (C_1, \ldots, C_{2^k}) to (C'_1, \ldots, C'_{2^k}) or to $(\Pi_{\theta}(C'_1), \ldots, \Pi_{\theta}(C'_{2^k}))$.

Proof. (\Longrightarrow) Let $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$ and $C' = \overline{\varphi}^{-1}(C'_1, \ldots, C'_{2^k})$, where C_i and C'_i are codes over \mathbb{F}_p , for all $1 \leq i \leq 2^k$. If there exists an automorphism θ such that C is permutation equivalent to $\theta(C')$, then by equation 1, we have $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$ is permutation equivalent to $(\Pi_{\theta}(C'_1), \ldots, \Pi_{\theta}(C'_{2^k}))$.

(\Leftarrow) If there exists a permutation which sends (C_1, \ldots, C_{2^k}) to

$$\left(\Pi_{\theta}(C'_1),\ldots,\Pi_{\theta}(C'_{2^k})\right),\,$$

for some bijective map Π_{θ} , then we can have the automorphism θ using the equation 1.

4. Invariant ring

In this section, we describe some aspect of Euclidean self-dual codes as well as MacWiliams identity and invariant ring.

Related to Euclidean self-dual codes over the ring B_k , we have the following result.

Proposition 4.1. Let $C = \overline{\varphi}^{-1}(C_1, C_2, \dots, C_{2^k})$, for some p-ary codes C_1, \dots, C_{2^k} . Then, C is Eulidean self-dual codes over B_k if and only if C_i is also Euclidean self-dual codes, for $1 \le i \le 2^k$.

Proof. (\Longrightarrow) For any $c_i \in C_i$, let $c_i = (\alpha_{S_i}^{(0)}, \ldots, \alpha_{S_i}^{(n-1)})$, for some $\alpha_{S_i}^{(j)} \in \mathbb{F}_p$, where $0 \le j \le n-1$. Let $c = \overline{\varphi}^{-1}(0, \ldots, 0, c_i, 0, \ldots, 0) \in C$, then we have $\langle c, c' \rangle = 0$ for every $c' \in C$. To make the representation for any element in the ring B_k easier, we will use the basis whose elements are of the form v_S , for all $S \subseteq \{1, 2, \ldots, k\}$. Now, let

$$c' = \left(\beta_{S_i}^{(0)} v_{S_i} + \sum_{S \in 2^{\Omega}, S \neq S_i} \beta_S^{(0)} v_S, \dots, \beta_{S_i}^{(n-1)} v_{S_i} + \sum_{S \in 2^{\Omega}, S \neq S_i} \beta_S^{(n-1)} v_S\right).$$

Consider,

$$c = \overline{\varphi}^{-1}(0, \dots, 0, c_i, 0, \dots, 0)$$

= $\left(\alpha_{S_i}^{(0)}(v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} v_{S_i \cup \{j\}}), \dots, \alpha_{S_i}^{(n-1)}(v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} v_{S_i \cup \{j\}})\right).$

Since $\langle c, c' \rangle = 0$ for every $c' \in C$ and $v_S^2 = v_S$ for every $S \in 2^{\Omega}$, we have

$$\sum_{j=0}^{n-1} \left(\alpha_{S_i}^{(j)} \beta_{S_i}^{(j)} v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} \alpha_{S_i}^{(j)} \beta_{S_i \cup \{j\}}^{(j)} v_{S_i \cup \{j\}} = 0 \right).$$

Consequently, $\sum_{j=0}^{n-1} \alpha_{S_i}^{(j)} \beta_{S_i}^{(j)} = 0.$

Take any $c'_i \in C_i$. Let $c'_i = (\gamma_{S_i}^{(0)}, \dots, \gamma_{S_i}^{(n-1)})$, for some $\gamma_{S_i}^{(j)} \in \mathbb{F}_p$, where $0 \leq j \leq n-1$. Since $c' = \overline{\varphi}^{-1}(0, \dots, 0, c_i, 0, \dots, 0) \in C$, we have $\langle c, c' \rangle = 0$. So

$$\langle c_i, c'_i \rangle = \sum_{j=0}^{n-1} \alpha_{S_i}^{(j)} \gamma_{S_i}^{(j)} = 0.$$

Therefore $C_i \subseteq C_i^{\perp}$.

For any $c_1 \in C_i^{\perp}$, let $c_1 = (\zeta_0, \ldots, \zeta_{n-1})$ for some $\zeta_j \in \mathbb{F}_p$, where $0 \leq j \leq n-1$. Since $\langle c_1, c_i \rangle = 0$, we have $\sum_{j=0}^{n-1} \zeta_j \alpha_{S_i}^{(j)} = 0$. We can see that

$$c_1' = \overline{\varphi}^{-1}(0, \dots, 0, c_1, 0, \dots, 0) \\ = \left(\zeta_0(v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} v_{S_i \cup \{j\}}), \dots, \zeta_{n-1}(v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} v_{S_i \cup \{j\}})\right).$$

Now, since $\sum_{j=0}^{n-1} \zeta_j \alpha_{S_i}^{(j)} = 0$, we also have $\langle c'_1, c_2 \rangle = 0$ for every $c_2 \in C$. Remember that $C = C^{\perp}$, which gives $c'_1 \in C$. So, $c_1 \in C_i$, or in other words $C_i^{\perp} \subseteq C_i$. Thus, C_i is a Euclidean self-dual code, for all $i = 1, \ldots, 2^k$.

(\Leftarrow) Take any $c_1, c_2 \in C$. For every i = 1, 2, let

$$c_{i} = \left(\sum_{S \subseteq \{1, \dots, k\}} c_{S}^{(i,0)}, \dots, \sum_{S \subseteq \{1, \dots, k\}} c_{S}^{(i,n-1)}\right)$$

for some $c_S^{(i,j)} \in \mathbb{F}_p$, where i = 1, 2, and $j = 0, \ldots, n-1$. Consider,

$$\overline{\varphi}(c_i) = \left(\sum_{S \subseteq S_1} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_1} c_S^{(i,n-1)}, \dots \right) \\ \dots, \sum_{S \subseteq S_l} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_l} c_S^{(i,n-1)}, \dots \\ \dots, \sum_{S \subseteq S_{2^k}} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_{2^k}} c_S^{(i,n-1)} \right)$$

where i = 1, 2. Since C_l is a Euclidean self-dual code, for all $l = 1, \ldots, 2^k$, we have

$$\begin{array}{ll} \langle c_1, c_2 \rangle &=& \sum_{j=0}^{n-1} \sum_{S_l \in 2^{\Omega}} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S \\ &=& 0. \end{array}$$

So, $C \subseteq C^{\perp}$.

Now, take any $c_3 \in C^{\perp}$. Since $\langle c_3, c \rangle = 0$ for all $c \in C$, we have

$$\sum_{j=0}^{n-1} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S = 0,$$

for all $S \in 2^{\Omega}$. Remember that C_l is a Euclidean self-dual code, for all $l = 1, 2, \ldots, 2^k$, which give

$$\sum_{j=0}^{n-1} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S = 0,$$

for all $S \in 2^{\Omega}$, and moreover $c_3 \in C$. So, $C^{\perp} \subseteq C$. Therefore, C is a Euclidean self-dual code.

The following lemma gives MacWilliams identity for codes over the ring B_k .

Lemma 4.2. The MacWilliams identity for Hamming weight enumerators for codes over B_k is :

$$W_{C^{\perp}}(X,Y) = \frac{1}{|C|} W_C(X + (p^{2^k} - 1)Y, X - Y)$$
(2)

Proof. The identity follows from [7, Theorem 8.3] and Proposition 4.1.

As we can see from Lemma 4.2, MacWilliams identity gives a transformation between polynomial representing a code and polynomial representing its corresponding dual code. We have to note that if C is an Euclidean self-dual code, then the weight enumerator of C is invariant under this transformation. The above transformation can be formulated as an action 'o' by a matrix group G generated by matrices $T = \begin{pmatrix} \frac{1}{p^{2^{k-1}}} & \frac{p^{2^{k}-1}}{p^{2^{k}-1}} \\ 0 & -1 \end{pmatrix} \text{ and } D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$ The action of any $g = \begin{pmatrix} a_1 & a_2 \\ a_2 & a_1 \end{pmatrix} \in G$ to a polynomial

$$T = \begin{pmatrix} \frac{1}{p^{2^{k-1}}} & \frac{p^2 - 1}{p^{2^{k-1}}} \\ \frac{1}{p^{2^{k-1}}} & \frac{-1}{p^{2^{k-1}}} \end{pmatrix} \text{ and } D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 The action of any $g = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in G$ to a polynomia $f(X, Y)$ is written as

$$g \circ f(X, Y) = f(a_1X + a_2Y, a_3X + a_4Y)$$

Note that the matrix T is derived from the identity in Lemma 4.2 and the matrix D is derived from the condition that n is always even. Also, it is easy to see that $G = \{I, D, T, -T\}$. Formally, we have the following result.

Lemma 4.3. If $W_C(X,Y)$ is a Hamming weight enumerator for an Euclidean self-dual code C over B_k , then $W_C(X,Y)$ is invariant under the action of G.

Let R_G be a set of all polynomials in two variables which are invariant under the action \circ of G. We can easily prove that R_G is a ring, and by the above Lemma we can see that every Hamming weight enumerator of Euclidean self-dual codes must be inside R_G . This ring R_G called *invariant ring* for Euclidean self-dual codes over B_k . The following theorem gives generators for R_G .

Theorem 4.4. Invariant ring of G is generated by

$$W_{C_0}(x,y) = x^2 + (p^{2^k} - 1)y^2$$

and

$$\tilde{f}(x,y) = \frac{1}{4} \left(\frac{2p^{2^{k-1}} + 2}{p^{2^k}} x^2 + \frac{4\left(p^{2^k} - 1\right)}{p^{2^{k-1}}} xy + \frac{2(p^{2^k} - 1)^2}{p^{2^{k-1}}} y^2 \right).$$

Proof. Consider the Molien series,

$$\Phi(\lambda) = \frac{1}{|G|} \sum_{A \in G} \frac{1}{\det(I - \lambda A)} \\
= \frac{1}{4} \left(\frac{1}{(1 + \lambda)^2} + \frac{1}{(1 - \lambda)^2} + \frac{2}{(1 - \lambda^2)} \right) \\
= \frac{1}{(1 - \lambda^2)^2} \\
= 1 + 2\lambda^2 + 3\lambda^4 + 4\lambda^6 + 5\lambda^8 + \dots + n\lambda^{2(n-1)} + \dots$$

we can see that, the invariant ring generated by two invariants of degree 2. Consider the weight enumerator for self-dual code

$$C_0 = \{cc | \forall c \in A_k\}$$

i.e. $W_{C_0}(x,y) = x^2 + (p^{2^k} - 1)y^2$. This weight enumerator is of degree 2 and invariant under the action of G. So, this weight enumerator is one of the generator. We use averaging method to find the other one. Let $f(x) = x^2$, then by averaging method, we have

$$\tilde{f}(x,y) = \frac{1}{4} \left(\frac{2p^{2^{k-1}} + 2}{p^{2^k}} x^2 + \frac{4\left(p^{2^k} - 1\right)}{p^{2^{k-1}}} xy + \frac{2(p^{2^k} - 1)^2}{p^{2^{k-1}}} y^2 \right)$$

 $\tilde{f}(x,y)$ are algebraically independent.

References

- [1] T. Abualrub, N. Aydin, P. Seneviratne, On θ -cyclic codes over $\mathbb{F}_2 + v\mathbb{F}_2$, Australas. J. Combin. 54 (2012) 115–126.
- [2] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72(3) (2014) 559–580.
- [3] J. Gao, Skew cyclic codes over $\mathbb{F}_p + v\mathbb{F}_p$, J. Appl. Math. Inform. 31(3–4) (2013) 337–342.

- [4] A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z₄-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319.
- [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
- [6] Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of θ–cyclic codes over an algebra of order 4, Proceeding of the Third International Conference on Computation for Science and Technology (ICCST–3), Atlantis Press, 2015.
- [7] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3) (1999) 555-575.