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1. Introduction

Codes over commutative rings have received a great deal of attention since the discovery in the
early 1990s that certain non-linear binary codes were in fact the images under a Gray map of codes over
Z4. Very little work has been done yet on codes over non-commutative rings. In [11], J. Wood gave
foundational results for codes over commutative and non-commutative rings. Specifically, he showed that
Frobenius rings were the class of rings for which it was natural to study codes since both MacWilliams
theorems hold in this case. In [4], Dougherty and Leroy described some general theorems about self-dual
codes over non-commutative rings with respect to the Euclidean inner-product. In this work, we shall
study codes over a family of non-commutative Frobenius rings that are of great importance in the study
of algebraic topology. Namely, we study codes over the finite sub Hopf algebras of the Steenrod algebra.

We take a broader approach to duality in that we consider both the Euclidean and Hermitian inner-
products as well as duality based on the underlying additive group structure. We consider linear codes
as well as additive codes. Namely, linear codes are when the code is a submodule of the ambient space
and additive codes are when they are simply a subgroup of the ambient space in terms of the additive
operation.

Steven T. Dougherty (Corresponding Author); Department of Mathematics, University of Scranton, Scranton,
PA 18510, USA (email: prof.steven.dougherty@gmail.com).
Tane Vergili; Department of Mathematics, Ege University, 35100 Izmir, Turkey (email: tanevergili@gmail.com).

141



S.T. Dougherty, T. Vergili / J. Algebra Comb. Discrete Appl. 4(2) (2017) 141–154

2. Definitions and notations

2.1. Steenrod algebra

In this paper, we shall use as our coding alphabet, the Steenrod algebra at the prime 2. We assume
throughout the paper that all computations in the Steenrod algebra and in the sub Hopf algebra are
done with the assumption that the prime is 2. For a complete topological discussion about the Steenrod
algebra see [10]. We shall now give an algebraic description of these algebras. We start our description by
defining the Steenrod squaring operations Sqk. By convention we have that Sq0 = 1 and Sqk is assigned
grading k. The Steenrod algebra A is the free associative graded algebra generated by Sqk over the field
F2 subject to the following relations:

SqkSqj =
∑

0≤i≤b k2 c

(
j − i− 1
k − 2i

)
Sqj+k−iSqi (1)

for 0 < k < 2j. These relations are known as the Adem relations.

The Steenrod squares Sqk are group homomorphisms

Sqk : Hi(X;Z2) −→ Hi+k(X;Z2)

between the cohomology groups of a topological space X, for k, i ≥ 0 satisfying the following (see [10] for
a complete description):

1. The square Sq0 is an identity and if i < k, then Sqk = 0.

2. If k = i, then Sqkx = x2 for all x ∈ Hi(X;Z2).

3. The square Sqk(x ∪ y) =
∑

k=k1+k2

Sqk1(x) ∪ Sqk2(y), where the operation ∪ is the cup product of

the cohomology ring H∗(X;Z2) :=
⊕
n≥0

Hn(X;Z2) and x, y ∈ H∗(X;Z2).

By utilizing Z2 as the coefficient group of the cohomology group, no sign problems occur.

The grading of the Steenrod square Sqk is k and for the monomial formed as the composition of
the Steenrod squares, Sqk1Sqk2 · · ·Sqki , is k1 + k2 + . . . + ki. Formally, the Steenrod algebra A is the
graded associative algebra generated over the finite field F2 by the Steenrod squares subject to the Adem
relations and the identity homomorphism Sq0. The operations Sq0 and Sq2k

, k ≥ 0, constitute a system
of multiplicative generators for A, see [9] for a complete description.

The Steenrod algebra has a Hopf algebraic structure (see [7]) and is the union of the finite sub Hopf
algebras A(n), for n ≥ 0, where A(n) is generated by the squares Sq2j

for 0 ≤ j ≤ n and Sq0. Note that
A(n) ⊆ A(n+ 1) for all n ≥ 0.

R. Wood [13] has defined the atomic squares which are of the form Sq2s(2t−1) where s ≥ 0, t > 0
are integers such that s+ t ≤ n+ 1, to form a Z base system for the A(n) which can be extended to the
whole algebra.

The Z base system for A(n) is constructed as follows: Let

Xn = Sq1·2n

Sq3·2n−1

Sq7·2n−2

· · ·Sq2n+1−1

and define

Zn := XnXn−1 · · ·X1X0.

For instance,
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Z1 = Sq2Sq3Sq1,

Z2 = Sq4Sq6Sq7Sq2Sq3Sq1,

and Z3 = Sq8Sq12Sq14Sq15Sq4Sq6Sq7Sq2Sq3Sq1.

The element Zn is the top element for A(n) in terms of the grading. The set of 2(n+1)(n+2)/2

monomials obtained by selecting all subsets of atomic factors in Zn, in the given order, is an additive
basis for A(n) (see [13]). We note that the product of the top element in A(i) and the top element in
A(j) is 0 in the Steenrod Algebra, that is ZiZj = 0, for all i, j, since it exceeds the maximum grading
in A(n) where n = max{i, j}. See [T. Vergili, I. Karaca, A note on the new basis in the mod 2 Steenrod
algebra, in preparation, 2016] for a description of the basis of the Steenrod algebra. All computations
done in this paper for the Steenrod algebra where performed using the computational tool given in [6].
Throughout the paper, we shall denote SqaSqb by Sqa,b for convenience.

2.2. Codes and rings

A code C of length m over a ring R is a subset of Rm. If the code is a left module then we say that
C is left linear and if C is a right module then we say that C is right linear.

Suppose R is a finite ring. Let M̂ denote the character module HomZ(M,C) where M is a module.
The following are equivalent for finite rings, see [11]:

• R is a Frobenius ring.

• As a left module, R̂ ∼=R R.

• As a right module R̂ ∼= RR.

It is well known that A(n) is a Frobenius ring for all n, see [11] for example. Next, we shall define
an involution of the Steenrod algebra which also applies to the sub Hopf Algebras.

Define the map τ : A→ A by

τ(Sq0) = Sq0, and τ(Sqk) =

k∑
i=1

Sqiτ(Sqk−i). (2)

The map τ can be restricted to A(n) in a natural way as long as Sqk ∈ A(n). It is well known that
τ is an anti-isomorphism, that is, τ is additive and τ(ab) = τ(b)τ(a) and that τ2 is the identity map. We
note that τ is often written as χ in the literature, see [7], [14] and [10] for example, but we shall use χ as
a generating character of the character module as is standard and use τ for this anti-isomorphism.

2.3. Orthogonals

We shall now describe inner-products which can be used in A(n)m. In classical coding theory, the
Euclidean inner-product is the standard inner-product. However, it is often the case that the Hermitian
inner-product is used for specific applications. For example, it is used when self-dual codes over finite
rings are used to construct Complex and Quaternionic lattices, see [3] and [2] for example.

Define the two following inner-products. The Euclidean inner-product is defined as

[v,w] =
∑

viwi. (3)

The Hermitian inner-product is defined as

[v,w]H =
∑

viτ(wi). (4)
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Let C be a code then the left Euclidean orthogonal is

L(C) = {v | [v,w] = 0, ∀w ∈ C} (5)

and the right Euclidean orthogonal is

R(C) = {v | [w,v] = 0, ∀w ∈ C}. (6)

Let C be a code then left Hermitian orthogonal is

LH(C) = {v | [v,w]H = 0, ∀w ∈ C} (7)

and the right Hermitian orthogonal is

RH(C) = {v | [w,v]H = 0, ∀w ∈ C}. (8)

In [4], is shown that L(C) is a left linear code and R(C) is a right linear code. Of course, left linearity
does not imply right linearity nor does right linearity imply left linearity.

We note that the notion of Hermitian and Euclidean duality are not identical. For example, let
a1 = a2 = Sq2,1. Then a1a2 = Sq2,3,1 but a1τ(a2) = Sq2,1Sq3 = 0. So a2 ∈ RH(A(1)[a1]) but
a2 6∈ R(A(1)[a1]).

Theorem 2.1. Let C be a code over A(n) then LH(C) is a left linear code.

Proof. Let C be a code over A(n). Let v,w ∈ LH(C). Then

[av + cw,u]H =
∑

(avi + cwi)τ(ui) = a
∑

viτ(ui) + c
∑

wiτ(ui) = 0 + 0 = 0.

Hence av + cw ∈ LH(C) and it is a left linear code.

Unlike in the Euclidean case, R(C) is not necessarily right linear, since

[u,va+ wc]H =
∑

ui(τ(via+ wic)) =
∑

uiτ(a)τ(vi) +
∑

uiτ(c)τ(wi)

which may or may not be 0. However, we do have the following theorem, which again is unlike the
Euclidean case.

Theorem 2.2. Let C be a code over A(n). Then LH(C) = RH(C).

Proof. Let w ∈ LH(C). Then [w,v]H = 0 for all v ∈ C. This implies that
∑
wiτ(vi) = 0 which gives

τ(
∑
wiτ(vi)) = τ(0) = 0. Then, we have

∑
τ(τ(vi))τ(wi) = 0 and finally

∑
viτ(wi) = 0. This gives that

w ∈ RH(C).

Let w ∈ RH(C). Then [v,w]H = 0 for all v ∈ C. This implies that
∑
viτ(wi) = 0 which gives

τ(
∑
viτ(wi)) = τ(0) = 0. Then we have

∑
τ(τ(wi))τ(vi) = 0 and finally

∑
wiτ(vi) = 0. This gives that

w ∈ LH(C).

Example 2.3. Consider the two sided ideal A(1)[Sq3,1] = 〈Sq3,1, Sq2,3,1〉 in A(1). Then we have that
RH(A(1)[Sq3,1]) = 〈Sq1, Sq3, Sq2,1, Sq2,3, Sq3,1, Sq2,3,1〉 = LH(A(1)[Sq3,1]) is also a two sided ideal in
A(1).

Since the left and right Hermitian orthogonals are equal this gives that RH(C) is left linear but it
may not be right linear.

Example 2.4. Let C be the code of length 1 over A(1) defined by A = A(1)[Sq2 + Sq3,1]. Then C =
〈Sq2+Sq3,1, Sq3, Sq2,3, Sq3,1+Sq2,3,1, Sq2,3,1〉. Then RH(C) = 〈Sq3, Sq2,3, Sq2,3,1〉.We have that RH(C)
is not right linear since Sq3Sq1 6∈ RH(C).
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For any ring R let J (R) denote the Jacobson radical of R, which is defined as the intersection of all
maximal left ideals in R.

Theorem 2.5. Let A(n) be the sub Hopf algebra and let b1, b2, . . . , bt be the basis elements with b1 = Sq0

and bt = Zn. The ring A(n) is a left and right local ring with unique two sided maximal ideal M(n) =
A(n)[b2, b3, . . . , bt] = J (A(n)). We have that L(M(n)) = R(M(n)) = Soc(A(n)) = A(n)[bt] = {0, Zn}.

Proof. We know that btbi = bibt = 0 for all i, 1 < i ≤ t. Therefore A(n)[bt] = [bt]A(n) = {0, Zn} and
bt ∈ L(I) for all left and right ideals I ⊂ A(n), I 6= A(n). Therefore R(L(I)) = I ⊆ R(A(n)[bt]) and
L(R(I)) = I ⊆ L(A(n)[bt]). Then we have that

R(A(n)[bt]) = L(A(n)[bt]) = A(n)[b2, b3, . . . , bt] = [b2, b3, . . . , bt]A(n) = M(n).

Hence A(n)[bt] is the unique minimal ideal and its left and right dual is the unique maximal ideal.
Therefore Soc(A(n)) = A(n)[bt] = {0, Zn} and J (A(n)) = A(n)[b2, b3, . . . , bt].

This leads naturally to the following corollary.

Corollary 2.6. The two sided ideal {0, Zn} is contained in all non-trivial ideals of A(n).

3. MacWilliams relations

The MacWilliams relations are one of the foundational results of algebraic coding theory. They
relate the weight enumerator of a linear code with the weight enumerator of its dual. The critical part
of finding specific MacWilliams relations for a code over a ring R is to find a generating character for
R̂. Namely, if φ : R → R̂ is a right R-module isomorphism then the generating character is φ(1). A
generating character was given for A(1) in [12].

Theorem 3.1. Let b1, . . . , bt be a basis for A(n) with bt = Zn. Define χ : A(n)→ C∗ by

χ(

t∑
i=1

aibi) = (−1)at , (9)

where the ai ∈ F2. Then χ is a generating character of Â(n).

Proof. It is immediate that χ is a homomorphism and hence a character of A(n). We know from
Corollary 2.6 that bt ∈ I for all non-zero left ideals I in A(n). Also we have that χ(bt) = −1 so χ
contains no non-zero ideals in its kernel. By Lemma 3.1 in [11], which states that a character is both
a left generating and right generating character if it contains no non-trivial ideals in its kernel, we have
that χ is a generating character for Â(n).

Notice that the generating character for A(n+ 1) is not an extension of the generating character for
A(n). We are not claiming that there is a unique generating character. To the contrary, any character
whose kernel contains no non-trivial ideal is a generating character. We are simply identifying a useful
generating character.

We know that A(n) and Â(n) are isomorphic (although not canonically). Let χa be the character
associated with the element a, then we have that χa(c) = χ(ac), where χ is the generating character for
Â(n).

Definition 3.2. For a code over an alphabet A = {a0, a1, . . . , as−1}, the complete weight enumerator is
defined as:

cweC(xa0
, xa1

, . . . , xas−1
) =

∑
c∈C

s−1∏
i=0

xni(c)
ai

(10)
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where there are ni(c) occurrences of ai in the vector c.

Let T be the |A(n)| by |A(n)| matrix defined by Ta,c = χ(ac). For a matrix M and vector v we let
M · v = (Mvt)t so that the result is a row vector. In [11], Wood establishes the MacWilliams relations
for codes over Frobenius rings.

Theorem 3.3. If C is a left submodule of A(n)m, then

cweC(x0, x1, . . . , xk) =
1

|R(C)|
cweR(C)(T

t · (x0, x1, . . . , xk)).

If C is a right submodule of A(n)m, then

cweC(x0, x1, . . . , xk) =
1

|L(C)|
cweL(C)(T · (x0, x1, . . . , xk)).

Let TH be the |A(n)| by |A(n)| matrix with (TH)a,c = χ(aτ(c)). We notice that (TH)a,c is not
identical to Ta,c. Let a = Sq3, c = Sq3. Then ac = Sq2,3,1 = Z1 and aτ(c) = 0. Thus χ(ac) = −1 but
χ(aτ(c)) = 1. While T 6= T t in general, we do have the following for TH .

Theorem 3.4. Let (TH)a,c = χ(aτ(c)) where χ is the generating character for Â(n). Then TH = T t
H .

Proof. We note that the anti-isomorphism τ preserves the grading of A(n), so χ defined as (−1)at for
the element

∑
aibi with bi the basis of A(n), satisfies χ(a) = χ(τ(a)).

Then

(TH)a,c = χ(aτ(c)) = χ(τ(aτ(c)) = χ(cτ(a)) = (TH)c,a.

A similar proof to Theorem 3.3 applies to the Hermitian dual although it is not stated in [11]. Namely
we have the following.

Theorem 3.5. If C is a left submodule of A(n)m, then

cweC(x0, x1, . . . , xk) =
1

|RH(C)|
cweR(C)(T

t
H · (x0, x1, . . . , xk)).

If C is a right submodule of A(n)m, then

cweC(x0, x1, . . . , xk) =
1

|LH(C)|
cweL(C)(TH · (x0, x1, . . . , xk)).

The standard proof, setting xi = 1, gives the following corollary.

Corollary 3.6. If C is a left linear code over A(n) then |C||RH(C)| = |A(n)|m and if C is a right linear
code over A(n) then |C||LH(C)| = |A(n)|m.

Example 3.7. We continue with Example 2.4. Let C be the code of length 1 over A(1) defined by
A = A(1)[Sq2 + Sq3,1]. Then C = 〈Sq2 + Sq3,1, Sq3, Sq2,3, Sq3,1 + Sq2,3,1, Sq2,3,1〉. Then RH(C) =
〈Sq3, Sq2,3, Sq2,3,1〉. Then |C| = 25 and |RH(C)| = 23 and 2523 = |A(1)|.
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4. Self-dual and Hermitian self-dual codes

Self-dual codes are one of the most widely studied families of codes, for both codes over rings and
fields. They have interesting applications to designs, lattices and invariant theory. In a recent text [8]
a very broad view of self-dual codes have been given with respect to various dualities and interesting
connections to invariant theory have been given. In this section, we shall study self-dual codes over the
finite ring A(n). We begin with the definition for a self-dual code over a non-commutative ring.

Definition 4.1. A linear code C is said to be Euclidean self-dual if C = L(C).

It is shown in [4] that a code C that is equal to L(C) must also be equal to R(C). This implies that
C is both left linear and right linear when it is self-dual. This implies that a self-dual code must be a
bimodule.

Definition 4.2. A linear code C is said to be Hermitian self-dual if C = LH(C).

We know that LH(C) = RH(C) so a Hermitian self-dual code satisfies C = LH(C) = RH(C).

We now investigate some results about self-orthogonality and self-duality. In [4] it is shown that if
v1,v2, . . . ,vs are vectors over A(n) such that [vi,vj ] = 0 for all i and j, then

[v1,v2, . . . ,vs]A(n) ⊆ R(A(n)[v1,v2, . . . ,vs]). (11)

Notice that we do not necessarily have that A(n)[v1,v2, . . . ,vs] ⊆ R(A(n)[v1,v2, . . . ,vs]) as we would
have for commutative rings. For example, if a = Sq1 and c = Sq2 then a2 = 0 but (ca)2 = (ca)(ca) =
Sq2,3,1 6= 0. So the code A(1)[a] 6⊆ R(A(1)[a]). This means that more must be considered when generating
a self-orthogonal code. Specifically, it is shown in [4] that if v1,v2, . . . ,vs are vectors in Rn, where R
is any Frobenius ring, then [vi, αvj ] = 0 for all i, j and α ∈ R if and only if 〈v1,v2, . . . ,vs〉L is a
self-orthogonal code.

Theorem 4.3. There exists Euclidean and Hermitian self-dual codes of length 2 over A(n) for all n.

Proof. Consider the code C = A(n)[(Sq0, Sq0)]. Then v ∈ C implies that v = (a, a) which gives
[(a, a), (c, c)] = ac+ac = 0. Hence it is both left and right self-orthogonal. Then |C| = |A(n)| =

√
|A(n)|2

and so the code is Euclidean self-dual.

For the Hermitian dual of C, we have [(a, a), (c, c)]H = aτ(c) + aτ(c) = 0 and the remainder of the
proof is identical.

Using the standard techniques we have the following corollary.

Corollary 4.4. There exist Euclidean and Hermitian self-dual codes for all even lengths over A(n) for
all n.

Proof. If C and D are self-dual codes (Euclidean or Hermitian) of length m and m′ respectively then
C ×D is a self-dual code of length m+m′. This gives the result.

Theorem 4.5. Let C be a binary self-dual code of length m, then reading 1 as Sq0, we have A(n)[C] is
a Euclidean and Hermitian self-dual code.

Proof. The code C has a basis of vectors vi over F2. We note that m must be even for a binary
self-dual code to exist. Then |A(n)[v1,v2, . . . ,vm

2
]| = |A(n)|m2 . Then

[
∑

aivi,
∑

cjvj ] = [
∑

aivi,
∑

vjcj ] =
∑
i,j

ai[vi,vj ]cj = 0, (12)

since the elements in the coordinates of vi commute with all of the elements of A(n). Therefore the code
is Euclidean self-dual.
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Next consider

[
∑

aivi,
∑

cjvj ]H = [
∑

aivi,
∑

vjcj ]H
∑
i,j

ai[vi,vj ]Hcj = 0, (13)

since the Hermitian inner-product and the Euclidean inner-product are identical for vectors with coordi-
nates containing only 0 and Sq0.

The key to this result was that 0 and Sq0 are in the center of the ring. If we take a self-orthogonal
code over a subring which is not in the center the proof would not apply and the code over the larger
ring generated by the code over the subring may not be self-orthogonal.

Theorem 4.6. Let C be a non-trivial code of length 1 over A(n). Then Zn ∈ R(C), Zn ∈ L(C) and
Zn ∈ RH(C) = LH(C),

Proof. The codes L(C), R(C), and LH(C) = RH(C) are left linear or right linear regardless if C is
linear. Therefore, as non-trivial ideals, {0, Zn} is a subset of all of them by Corollary 2.6.

Theorem 4.7. 1. Let C = A(n)[v1,v2, . . . ,vs] and C ′ = A(n + t)[v1,v2, . . . ,vs], t > 0. Then
R(C) ⊆ R(C ′) and RH(C) ⊆ RH(C ′).

2. Let C = [v1,v2, . . . ,vs]A(n) and C ′ = [v1,v2, . . . ,vs]A(n + t), t > 0. Then L(C) ⊆ L(C ′) and
LH(C) ⊆ LH(C ′).

Proof. We prove only the first item, the second follows similarly. Let w ∈ R(C). Consider the following
inner-product:

[a1v1 + a2v2 + · · ·+ asvs,w] = a1[v1,w] + a2[v2,w] + · · ·+ as[vs,w] = 0. (14)

Therefore w ∈ R(C ′).

For the second part of the statement, let w ∈ RH(C). Consider the following inner-product:

[a1v1 + a2v2 + · · ·+ asvs,w]H = a1[v1,w]H + a2[v2,w]H + · · ·+ as[vs,w]H = 0. (15)

Therefore w ∈ RH(C ′).

5. Code over A(n) and binary codes

Recall that A(n) has a canonical basis with 2
(n+1)(n+2)

2 elements. Then |A(n)| = 22(
(n+1)(n+2)

2
)

. For
example, A(1) has 8 basis elements and 28 elements. For A(2), the algebra has 26 basis elements and 264

elements.

We now fix a basis b1, b2, . . . , bt for A(n) with t = 2(
(n+1)(n+2)

2 ). Let a ∈ A(n) =
∑
aibi. Define the

map Ψ : A(n)→ Ft
2 by

Ψ(a) = Ψ(
∑

aibi) = (a1, a2, . . . , at). (16)

Note that the map Ψ is dependent on the basis b1, b2, . . . , bt for A(n) and so we keep this ordering of the
basis elements throughout the remainder of the paper.

By the definition of addition in A(n) we have that Ψ is an additive map. We extend C to A(n)m by
allowing it to act on each coordinate.

Definition 5.1. A code C over A(n) is an additive code if for all v,w ∈ C, v + w ∈ C.
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We see that an additive code is a subgroup of (A(n))m but it may not be a submodule. That is, a
linear code is necessarily additive, but an additive code may not be linear.

Theorem 5.2. Let C be an additive code over A(n) of length m. Then Ψ(C) is a linear binary code of
length 2(

(n+1)(n+2)
2 )m.

Proof. We already have that Ψ is an additive map. Then the theorem follows by noting that an
additive code over F2 is linear over F2.

Example 5.3. Let C be the code of length 1 over A(1) defined as C = A(1)[Sq2,1 + Sq3]. Then Ψ(C) is
the linear binary code generated by  0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .

The following theorem has a proof similar to the one of Theorem 5.2.

Theorem 5.4. Let C be a linear code over F2 of length 2(
(n+1)(n+2)

2 )m. Then Ψ−1(C) is an additive code
of length m over A(n).

Example 5.5. Let C be the binary Hamming code of length 8. Then Ψ−1(C) is a subgroup of A(1) but
not a submodule. For example, the elements Sq0 + Sq1 + Sq2 + Sq2,3,1 and Sq2 + Sq3 + Sq2,3 + Sq2,3,1

are both elements of Ψ−1(C) but their product Sq2 + Sq3,1 is not. It is easy to see that this element is
not in the code since its corresponding vector in F8

2 would have Hamming weight 2 whereas the minimum
Hamming weight of the length 8 Hamming code is 4.

We can define an orthogonality relation for additive codes that will correspond to the orthogonality
for binary codes. Let G(n) be the additive group of A(n). Order the elements of G(n) by g1, g2, . . . , gs,

where s = 2(2
(n+1)(n+2)

2 ). Fix a character table TG for Ĝ defined by

TGg1,g2 = −1[Ψ(g1),Ψ(g2)], (17)

where [Ψ(g1),Ψ(g2)] indicates the usual binary inner-product. Then χgi corresponds to the row of TG
given by χ(gigj) where j goes from 1 to s.

Definition 5.6. Let v,w ∈ A(n)m. Define [v,w]G =
∏
χvi(wi).

We note that the result of this inner-product is either 1 or −1. If C is an additive code over A(n)
define the orthogonal to be

C∗ = {(c1, c2, . . . , cm) |
∏

χci(vi) = 1, for all (v1, v2, . . . , vm) ∈ C}. (18)

Theorem 5.7. If C is an additive code in A(n)m, then

cweC(x0, x1, . . . , xk) =
1

|C∗|
cweC∗(TG · (x0, x1, . . . , xk)). (19)

Proof. It follows from the standard MacWilliams relations for codes over groups. Namely, the matrix
TG serves as a duality for the underlying additive group of the ring.

Theorem 5.8. Let C be a code over A(n) then Ψ(C∗) = Ψ(C)⊥.

Proof. Let v,w ∈ A(n)m. The following are equivalent statements:
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1. [v,w]G = 1

2.
∏
χvi(wi) = 1

3.
∏

(−1)[Ψ(vi),Ψ(wi)] = 1

4. [Ψ(v),Ψ(w)] = 0.

This gives that [v,w]G = 1 if and only if [Ψ(v),Ψ(w)] = 0.

The next corollary follows immediately from Theorem 5.8.

Corollary 5.9. A code C in (A(n))m is self-dual with respect to the duality TG if and only if Ψ(C) is
a binary self-dual code.

Corollary 5.10. Self-dual codes exists for all lengths over A(n) with respect to the duality TG.

Proof. Since 2
(n+1)(n+2)

2 is even, for all n ≥ 0, there exists binary self-dual codes of all lengths
2

(n+1)(n+2)
2 m. Then apply Corollary 5.9.

Note that we can replace the duality TG with a different duality for the group, which may or may
not correspond directly to the binary orthogonality.

6. Codes over the Steenrod algebra

Just as we described codes over A(n) we can extend these ideas to the infinite ring A. This was done
in a similar way for codes over the p-adics in [1] and [5]. A code here is a subset of Am and it is left linear
or right linear if it is a left submodule or right submodule of Am. Similarly, we can define L(C), R(C),
LH(C) and RH(C) as in the finite case. We cannot define the group orthogonality since the underlying
additive group is infinite and the technique no longer applies. Notice that in this infinite case, we have
that LH(C) = RH(C) as it is in the finite case.

We can now define a projection to A(n). Let C be a code over A, then let

Cn = C ∩ (A(n))m. (20)

Theorem 6.1. Let C be a left (right) linear code over A then Cn is a left (right) linear code for all n.

Proof. Assume C is left linear. Let v,w ∈ C and a, c ∈ A(n). Then av+ cw ∈ C since C is left linear.
Each coordinate of v and w is an element of A(n) so av + cw ∈ (A(n))m since the ring A(n) is closed
under addition and multiplication. Then av + cw ∈ C ∩ (A(n))m = Cn and Cn is left linear.

The proof in the right linear case is similar.

In general we have C0 ⊆ C1 ⊆ · · · ⊆ C.

Theorem 6.2. Let C be a code over A.

• If C ⊆ L(C) then Cn ⊆ L(Cn).

• If C ⊆ R(C) then Cn ⊆ R(Cn).

• If C ⊆ LH(C) = RH(C) then Cn ⊆ LH(Cn) = RH(C).

Proof. We prove the first case and the rest are similar. If C ⊆ L(C) then Cn ⊆ C ⊆ L(C) and
Cn ⊆ L(C) ∩ (A(n))m ⊆ L(Cn).
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In this sense self-orthogonality projects down but self-duality may not. For example, let C1 =
A(1)(Sq2,1 + Sq3), which is self-dual. But C0 ∩A(0) = {0} is not self-dual.

Lemma 6.3. Let G be a binary matrix in standard form (I |M) and let C = A[G]. Then Cn = A(n)[G].

Proof. If v ∈ C ∩ (A(n))m then the coefficients of the rows in the linear combination resulting in v
must all be from A(n) since the first part of the matrix is the identity.

Theorem 6.4. Let G be a matrix in standard form that generates a self-dual binary code, then A[G] is
a self-dual code over A.

Proof. The proof of Theorem 4.5 shows that the code must be self-orthogonal. However, it does not
show self-duality since it uses a cardinality argument.

Assume there exists v ∈ L(C) with v 6∈ C. Then for some n, we have that v ∈ A(n)m. This implies
that Cn = A(n)[G], by Lemma 6.3, has an element v ∈ L(Cn),v 6∈ Cn which contradicts Theorem 4.5.
Therefore the code is self-dual.

Let G generate a binary self-dual code of length m and let C = A[G]. Then C is self-dual and Cn is
self-dual for all n. This gives infinite families of self-dual codes for all even lengths.

We shall now investigate some codes over A which we can then project down.

Lemma 6.5. For all α ∈ A we have that Z1αZ1 = 0.

Proof. Any α in A can be written as a sum of atomic squares so it is sufficient to prove the result for
atomic squares.

• If α is one of the atomic squares in A(1) then the claim is true since Z1 is the top element of A(1).

• Next, we consider the case for atomic squares with an odd power. Let α = Sq2t−1 for t ≥ 3 then

Sq1Sq2t−1 = 0 (21)

since 2t − 1 is an odd number and the result follows from the Adem relations. Hence Z1αZ1 = 0.

• Next, we consider the case for atomic squares where the power of the atomic square is a power of
2. Let α = Sq2s

for s ≥ 2. First we multiply Z1 and α. Note that if k is an even integer then from
the Adem relations we have that

Sq1Sqk = Sqk+1. (22)

Then we have

Z1α = Sq2Sq3Sq1Sq2s

= Sq2Sq3Sq2s+1. (23)

For s ≥ 2, 3 < 2(2s + 1), we then apply the Adem relations to Sq3Sq2s+1 which gives

Sq2Sq3Sq2s+1 = Sq2[

1∑
k=0

(
2s − k
3− 2k

)
Sq2s+4−kSqk]

= Sq2[

(
2s

3

)
Sq2s+4 +

(
2s − 1

1

)
Sq2s+3Sq1].
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The first term will be 0 since the binomial coefficient is an even number. Hence Z1α =
Sq2Sq3Sq2s+1 = Sq2Sq2s+3Sq1. Since 2 < 2(2s + 3) for s ≥ 2, we can apply the Adem rela-
tions to Sq2Sq2s+3, which gives

Sq2Sq2s+3Sq1 = [

1∑
k=0

(
2s + 2− k

2− 2k

)
Sq2s+5−kSqk]Sq1

= [

(
2s + 2

2

)
Sq2s+5 +

(
2s + 1

0

)
Sq2s+4Sq1]Sq1

= Sq2s+5Sq1 + Sq2s+4Sq1Sq1

= Sq2s+5Sq1.

Now we have Z1α = Sq2s+5Sq1. If we multiply these with Z1 from the right we have

Z1αZ1 = Sq2s+5Sq1Sq2Sq3Sq1 = Sq2s+5(Sq3Sq3Sq1) = Sq2s+50 = 0. (24)

• Next we consider the remaining two cases of atomic squares. Let α = Sq2(2t−1) where t ≥ 2. From
the Adem relations we have that Sq2Sq3Sq1 = Sq5Sq1. Then

Z1α = Sq2Sq3Sq1Sq2(2t−1) = Sq5Sq1Sq2(2t−1) = Sq5Sq2t+1−1. (25)

Since 5 < 2(2t+1 − 1) for t ≥ 2, we can apply the Adem relations to Sq5Sq2t+1−1 which gives

Sq5Sq2t+1−1 =

2∑
k=0

(
2t+1 − k − 2

5− 2k

)
Sq2t+1+4−kSqk

=

(
2t+1 − 2

5

)
Sq2t+1+4 +

(
2t+1 − 3

3

)
Sq2t+1+3Sq1

+

(
2t+1 − 4

1

)
Sq2t+1+2Sq2 = 0,

since the binomial coefficients are always even numbers. Hence we get Z1α = 0 so Z1αZ1 = 0.

• We now consider the final case. Let α = Sq2s(2t−1) where s, t ≥ 2. We have that

Z1α = Sq2Sq3Sq1Sq2s(2t−1) = Sq5Sq1Sq2s(2t−1) = Sq5Sq2s(2t−1)+1. (26)

Since 5 < 2(2s(2t − 1) + 1) for s, t ≥ 0, we can apply the Adem relations to Sq5Sq2s(2t−1)+1 which
gives

Sq5Sq2s(2t−1)+1 =

2∑
k=0

(
2s(2t − 1)− k

5− 2k

)
Sq2s(2t−1)+6−kSqk

=

(
2s(2t − 1)

5

)
Sq2s(2t−1)+6 +

(
2s(2t − 1)− 1

3

)
Sq2s(2t−1)+5Sq1

+

(
2s(2t − 1)− 2

1

)
Sq2s(2t−1)+4Sq2.

The first and the last term are zero since the binomial coefficients are even. For the second term
if the binomial coefficient is 0 then Z1α = 0 and Z1αZ1 = 0. Otherwise it will be 1 and then
Z1α = Sq2s(2t−1)+5Sq1 and then Z1αZ1 will again be 0 as in the third case when the powers of the
atomic squares were a power of 2.
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This does not say that αZi is necessarily 0 for all α. For example, Z1Sq
4 = Sq9,1 and Sq4Z1 =

Sq7,2,1 + Sq9,1 but Z1Sq
4Z1 = 0.

Theorem 6.6. Let C = A[Z1, Z2, . . . ] and D = [Z1, Z2, . . . ]A. Then C and D are Hermitian self-
orthogonal codes.

Proof. For the left linear code C, we need to show that [aZi, cZj ]H = 0 for all integer i, j ≥ 1. We
have that [aZi, cZj ]H = aZiτ(cZj) = aZiτ(Zj)τ(c) = aZiZjτ(c) = a(0)τ(c) = 0. This gives that C is
Hermitian self-orthogonal.

We note that Zi = γZ1 and Zj = δZ1 for some γ, δ ∈ A(n), n = max{i, j}. For the right linear code
D, we need to show that [Zia, Zjc]H = 0 for all integers i, j ≥ 1.We have that [Zia, Zjc]H = Ziaτ(Zjc) =
Zi(aτ(c))Zj = γ(Z1(aτ(c)δ)Z1) = 0 by Lemma 6.5. This gives that D is Hermitian self-orthogonal.

Similarly, we have the following theorem.

Theorem 6.7. Let C = A[Z1, Z2, . . . ] and D = [Z1, Z2, . . . ]A. Then C and D are Euclidean self-
orthogonal codes.

Proof. As in the previous proof, we let Zi = γZ1 and Zj = δZ1 for some γ, δ ∈ A(n), n = max{i, j}.
For the left linear code C we need to show that [aZi, cZj ] = 0 for all integers i, j ≥ 1. We have that

[aZi, cZj ] = aZi(cZj) = aγZ1βδZ1 = aγ(Z1(βδ)Z1) = 0 by Lemma 6.5. This gives that C is Euclidean
self-orthogonal.

For the right linear code D, we need to show that [Zia, Zjc] = 0 for all integers i, j ≥ 1. We
have that [Zia, Zjc] = γZ1aδZ1c = γ(Z1(aδ)Z1)c = 0 by Lemma 6.5. This gives that D is Euclidean
self-orthogonal.

This leads naturally to the following corollary.

Corollary 6.8. Let C = A[Z1, Z2, . . . ], D = [Z1, Z2, . . . ]A, Cn = C ∩ (A(n))m and Dn = D ∩ (A(n))m

then Cn and Dn are both Euclidean and Hermitian self-orthogonal codes for all n.

Proof. The results follow directly from Theorem 6.6, Theorem 6.7 and Theorem 6.2.

The code C = A[Z1, Z2, . . . ] is not self-dual. If it were then L(C) would be equal to R(C). However,
Sq1Sq6Z1 = Sq9,3,1 6= 0 but Zn = γZ1 = γSq2Sq3Sq1 is ZnSq

1 = 0 and Sq1 6∈ L(C) but Sq1 ∈ R(C).
In terms of the Hermitian inner-product, Sq1 is in both duals but Sq1 is not in C, hence the code is not
Hermitian self-dual. Similar results hold for D = [Z1, Z2, . . . ]A.
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