Journal of Algebra Combinatorics Discrete Structures and Applications

Strongly nil *-clean rings

Abdullah Harmancı, Huanyin Chen, A. Çiğdem Özcan

Abstract

A *-ring R is called strongly nil $*$-clean if every element of R is the sum of a projection and a nilpotent element that commute with each other. In this paper we investigate some properties of strongly nil *rings and prove that R is a strongly nil $*$-clean ring if and only if every idempotent in R is a projection, R is periodic, and $R / J(R)$ is Boolean. We also prove that a $*$-ring R is commutative, strongly nil *-clean and every primary ideal is maximal if and only if every element of R is a projection.

2010 MSC: 16W10, 16U99
Keywords: Rings with involution, Strongly nil *-clean ring, *-Boolean ring, Boolean ring

1. Introduction

Let R be an associative ring with unity. A ring R is called strongly nil clean if every element of R is the sum of an idempotent and a nilpotent that commute. These rings were first considered by Hirano-Tominaga-Yakub [9] and refered to as [E-N]-representable rings. In [7], Diesl introduces this class and studies their properties. The class of strongly nil clean rings lies between the class of Boolean rings and strongly π-regular rings (i.e. for every $a \in R, a^{n} \in R a^{n+1} \cap a^{n+1} R$ for some positive integer n) [7, Corollary 3.7].

An involution of a ring R is an operation $*: R \rightarrow R$ such that $(x+y)^{*}=x^{*}+y^{*},(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring R with an involution $*$ is called a $*$-ring. An element p in a $*-$ ring R is called a projection if $p^{2}=p=p^{*}$ (see [2]). Recently the concept of strongly clean rings were considered for any $*$-ring. Vaš [12] calls a $*$-ring R strongly $*$-clean if each of its elements is the sum of a projection and a unit that commute with each other (see also [10]).

In this paper, we adapt strongly nil cleanness to $*$-rings. We call a $*$-ring R strongly nil $*$-clean if every element of R is the sum of a projection and a nilpotent element that commute. The paper consists

[^0]of three parts. In Section 2, we characterize the class of strongly nil $*$-clean rings in several different ways. For example, we show that a ring R is a strongly nil $*$-clean ring if and only if every idempotent in R is a projection, R is periodic, and $R / J(R)$ is Boolean. Also, if R is a commutative *-ring and $R[i]=\left\{a+b i \mid a, b \in R, i^{2}=-1\right\}$, then with the involution $*$ defined by $(a+b i)^{*}=a^{*}+b^{*} i$, the ring $R[i]$ is strongly nil $*$-clean if and only if R is strongly nil $*$-clean. Foster [8] introduced the concept of Boolean-like rings as a generalization of Boolean rings. In Section 3, we adapt the concept of Boolean-like rings to rings with involution and prove that a $*$-ring R is $*$-Boolean-like if and only if R is strongly nil *-clean and $\alpha \beta=0$ for all nilpotent elements α, β in R. In the last section, we investigate submaximal ideals (see [11]) of strongly nil *-clean rings. We also define $*$-Boolean rings as $*$-rings over which every element is a projection and characterize them in terms of strongly nil $*$-cleanness. As a corollary, we get that R is a Boolean ring if and only if R is commutative, strongly nil clean and every primary ideal of R is maximal. Other characterizations of Boolean rings by means of (strongly) nil clean rings can be found in [7].

Throughout this paper all rings are associative with unity (unless otherwise noted). We write $J(R)$, $N(R)$ and $U(R)$ for the Jacobson radical of a ring R, the set of all nilpotent elements in R and the set of all units in R, respectively. The ring of all polynomials in one variable over R is denoted by $R[x]$.

2. Characterization theorems

The main purpose of this section is to provide several characterizations of strongly nil $*$-clean rings.
First recall some definitions. A ring R is called uniquely nil clean if, for any $x \in R$, there exists a unique idempotent $e \in R$ such that $x-e \in N(R)$ [7]. If, in addition, x and e commute, R is called uniquely strongly nil clean [9]. Strongly nil cleanness and uniquely strongly nil cleanness are equivalent by [9 , Theorem 3].

Analogously, for a *-ring, we define uniquely strongly nil $*$-clean rings by replacing "idempotent" with "projection" in the definition of uniquely strongly nil clean rings.

We will use the following lemma frequently.
Lemma 2.1. [10, Lemma 2.1] Let R be a *-ring. If every idempotent in R is a projection, then R is abelian, i.e. every idempotent in R is central.

Proposition 2.2. Let R be $a *$-ring. Then the following are equivalent.
(i) R is strongly nil *-clean;
(ii) R is strongly nil clean and every idempotent in R is a projection;
(iii) R is uniquely strongly nil $*$-clean.

Proof. (i) \Rightarrow (ii) Assume that R is strongly nil $*$-clean. Then R is strongly $*$-clean as can be seen in the proof of [7, Proposition 3.4], i.e. if $x \in R$, there exist a projection e and a nilpotent w in R such that $x-1=e+w$ and $e w=w e$. This gives that $x=e+(1+w)$ where e is a projection, $1+w$ is invertible and $e(1+w)=(1+w) e$. Now, by [10, Theorem 2.2], every idempotent in R is a projection and central. Hence R is uniquely nil clean by [9, Theorem 3].
(ii) \Rightarrow (iii) If R is uniquely nil clean, then R is uniquely strongly nil clean by Lemma 2.1. Hence R is uniquely strongly nil $*$-clean.
(iii) \Rightarrow (i) Clear.

We note that the condition "every idempotent in R is a projection" in Proposition 2.2 is necessary as the following example shows.

Example 2.3. Let $R=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right\}$ where $0,1 \in \mathbb{Z}_{2}$. Define $*: R \rightarrow R$, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{cc}a+b & b \\ a+b+c+d & b+d\end{array}\right)$. Then R is a commutative $*$-ring with the usual matrix addition and multiplication. In fact, R is Boolean. Thus, for any $x \in R$, there exists a unique idempotent $e \in R$ such that $x-e \in R$ is nilpotent. But it is not strongly nil $*$-clean because the only projections are the trivial projections and there does not exist a projection e in R such that $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)-e$ is nilpotent.

In [9, Theorem 3], it is proved that R is strongly nil clean if and only if $N(R)$ is an ideal and $R / N(R)$ is Boolean. Also, R is uniquely nil clean if and only if R is abelian, $N(R)$ is an ideal and $R / N(R)$ is Boolean [9, Theorem 4]. So if we adapt these results to rings with involution, immediately we have the following proposition by using Proposition 2.2.

Proposition 2.4. Let R be $a *$-ring. Then R is strongly nil $*$-clean if and only if
(1) Every idempotent in R is a projection;
(2) $N(R)$ forms an ideal;
(3) $R / N(R)$ is Boolean.

A ring R is called strongly $J-*$-clean if for any $x \in R$ there exists a projection $e \in R$ such that $x-e \in J(R)$ and $e x=x e[6]$, equivalently, for any $x \in R$ there exists a unique projection $e \in R$ such that $x-e \in J(R)[6$, Theorem 3.2]. We call R uniquely nil $*$-clean ring if for any $a \in R$, there exists a unique projection $e \in R$ such that $a-e \in N(R)$.

Proposition 2.5. Let R be $a *$-ring. Then the following are equivalent.
(i) R is strongly nil $*$-clean;
(ii) R is strongly J-*-clean and $J(R)$ is nil;
(iii) R is uniquely nil $*$-clean and $J(R)$ is nil.

Proof. (i) \Rightarrow (ii) Suppose that R is strongly nil $*$-clean. In view of Proposition 2.4, $N(R)$ forms an ideal of R, and this gives that $N(R) \subseteq J(R)$ (see also [7, Proposition 3.18]). By [7, Proposition 3.16], $J(R)$ is nil, and so $N(R)=J(R)$. Hence R is strongly J-*-clean.
(ii) \Rightarrow (i) is obvious.
(i) and (ii) \Rightarrow (iii) Since R is strongly J-*-clean, there exists a unique projection $e \in R$ such that $x-e \in J(R)$ by [6, Theorem 3.2]. Since $J(R)=N(R), R$ is uniquely nil $*$-clean.
(iii) \Rightarrow (ii) Since $J(R) \subseteq N(R), R$ is strongly J-*-clean rings by [6, Theorem 3.2].

From Proposition 2.5 and [6, Proposition 2.1], it follows that

$$
\{\text { strongly nil } * \text {-clean }\} \subset\{\text { strongly } J \text {-*-clean }\} \subset\{\text { strongly } * \text {-clean }\}
$$

The first inclusion is strict because, for example, the power series ring $\mathbb{Z}_{2}[[x]]$ with the identity involution is strongly J-*-clean but not strongly nil $*$-clean by [4, Example $2.5(5)]$. The second inclusion is also strict by [6, Example 2.2(2)].

We should note that a strongly nil clean ring may not be strongly J-clean (see [4, Example on p. 3799]). Hence strongly nil clean and strongly nil *-clean classes have different behavior when compared to classes of strongly J-clean and strongly J-*-clean classes respectively.

Lemma 2.6. Let R be $a *$-ring. Then R is strongly nil $*$-clean if and only if
(1) Every idempotent in R is a projection;
(2) $J(R)$ is nil;
(3) $R / J(R)$ is Boolean.

Proof. Assume that (1), (2) and (3) hold. For any $x \in R, x+J(R)=x^{2}+J(R)$. As $J(R)$ is nil, every idempotent in R lifts modulo $J(R)$. Thus, we can find an idempotent $e \in R$ such that $x-e \in$ $J(R) \subseteq N(R)$. By Lemma 2.1, $x e=e x$, and so the result follows. The converse is by Propositions 2.4 and 2.5.

Recall that a ring R is periodic if for any $x \in R$, there exist distinct $m, n \in \mathbb{N}$ such that $x^{m}=x^{n}$. With this information we can now prove the following.

Theorem 2.7. Let R be $a *$-ring. Then R is strongly nil $*$-clean if and only if
(1) Every idempotent in R is a projection;
(2) R is periodic;
(3) $R / J(R)$ is Boolean.

Proof. Suppose that R is strongly nil *-clean. By virtue of Lemma 2.6, every idempotent in R is a projection and $R / J(R)$ is Boolean. For any $x \in R, x-x^{2} \in N(R)$. Write $\left(x-x^{2}\right)^{m}=0$, and so $x^{m}=x^{m+1} f(x)$, where $f(x) \in \mathbb{Z}[x]$. According to Herstein's Theorem (cf. [3, Proposition 2]), R is periodic. Conversely, $J(R)$ is nil as R is periodic. Therefore the proof is completed by Lemma 2.6.

Proposition 2.8. $A *$-ring R is strongly nil $*$-clean if and only if
(1) R is strongly *-clean;
(2) $N(R)=\{x \in R \mid 1-x \in U(R)\}$.

Proof. Suppose that R is strongly nil *-clean. By the proof of Proposition 2.5, $N(R)=J(R)$. Since R is strongly J-*-clean, $N(R)=\{x \in R \mid 1-x \in U(R)\}$ by [6, Theorem 3.4].

Conversely, assume that (1) and (2) hold. Let $a \in R$. Then we can find a projection $e \in R$ such that $(a-1)-e \in U(R)$ and $e(a-1)=(a-1) e$. That is, $(1-a)+e \in U(R)$. As $1-(a-e) \in U(R)$, by hypothesis, $a-e \in N(R)$. In addition, $e a=a e$. Accordingly, R is strongly nil $*$-clean.

Let R be a $*$-ring. Define $*: R[x] /\left(x^{n}\right) \rightarrow R[x] /\left(x^{n}\right)$ by $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left(x^{n}\right) \mapsto$ $a_{0}^{*}+a_{1}^{*} x+\cdots+a_{n-1}^{*} x^{n-1}+\left(x^{n}\right)$. Then $R[x] /\left(x^{n}\right)$ is a $*-$ ring (cf. [10]).

Corollary 2.9. Let R be $a *$-ring. Then R is strongly nil $*$-clean if and only if so is $R[x] /\left(x^{n}\right)$ for every $n \geq 1$.

Proof. One direction is obvious. Conversely, assume that R is strongly nil *-clean. Clearly, $N\left(R[x] /\left(x^{n}\right)\right)=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left(x^{n}\right) \mid a_{0} \in N(R), a_{1}, \cdots, a_{n-1} \in R\right\}$. In view of Proposition 2.8, $N\left(R[x] /\left(x^{n}\right)\right)=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left(x^{n}\right) \mid 1-a_{0} \in U(R), a_{1}, \cdots, a_{n-1} \in R\right\}$. Also note that R is abelian. Thus, it can be easily seen that every element in $R[x] /\left(x^{n}\right)$ can be written as the sum of a projection and a nilpotent element that commute.

Let R be a commutative $*$-ring and consider the ring $R[i]=\left\{a+b i \mid a, b \in R, i^{2}=-1\right\}$ and i commutes with elements of R. Then $R[i]$ is a *-ring, where the involution is $*: R[i] \rightarrow R[i], a+b i \mapsto$ $a^{*}+b^{*} i$.

Note that if x and y are idempotent elements that commute, then $(x-y)^{3}=x-3 x y+3 x y-y=x-y$. This argument will also be used in Lemma 4.6.
Proposition 2.10. Let R be a commutative $*$-ring. Then with the involution $(a+b i)^{*}=a^{*}+b^{*} i, R[i]$ is strongly nil $*$-clean if and only if R is strongly nil $*$-clean.

Proof. Suppose that $R[i]$ is strongly nil *-clean. Then every idempotent in R is a projection. Since R is commutative, $N(R)$ forms an ideal. For any $a \in R$, we see that $a-a^{2} \in N(R[i])$, and so $a-a^{2} \in N(R)$. Thus, $R / N(R)$ is Boolean. Therefore R is strongly nil $*$-clean by Proposition 2.4.

Conversely, assume that R is strongly nil $*$-clean. As R is commutative, $N(R[i])$ forms an ideal of $R[i]$. Let $a+b i \in R[i]$ be an idempotent. Then we can find projections $e, f \in R$ and nilpotent elements $u, v \in R$ such that $a=e+u, b=f+w$. Then $a-a^{*}, b-b^{*} \in N(R)$. This shows that $(a+b i)-(a+b i)^{*}=\left(a-a^{*}\right)+\left(b-b^{*}\right) i \in N(R[i])$. As $a+b i,(a+b i)^{*} \in R[i]$ are idempotents, we see that $\left((a+b i)-(a+b i)^{*}\right)^{3}=(a+b i)-(a+b i)^{*}$ by the above argument. Hence, $\left((a+b i)-(a+b i)^{*}\right)(1-$ $\left.\left((a+b i)-(a+b i)^{*}\right)^{2}\right)=0$, therefore $(a+b i)-(a+b i)^{*}=0$. That is, $a+b i \in R[i]$ is a projection.

Since R is strongly nil $*$-clean, it follows from Proposition 2.4 that $2-2^{2} \in N(R)$, and so $2 \in N(R)$. For any $a+b i \in R[i]$, it is easy to verify that

$$
\begin{aligned}
(a+b i)-(a+b i)^{2} & =\left(a-a^{2}\right)-2 a b i+b i-b^{2} i^{2} \\
& \equiv b^{2}+b i \\
& \equiv b+b i(\bmod N(R[i]))
\end{aligned}
$$

This shows that $\left((a+b i)-(a+b i)^{2}\right)^{2} \equiv 2 b^{2} i \equiv 2 b \equiv 0(\bmod N(R[i]))$. Hence, $(a+b i)-(a+b i)^{2} \in N(R[i])$. That is, $R[i] / N(R[i])$ is Boolean. According to Proposition 2.4, we complete the proof.

3. $*$-Boolean like rings

In this section, we consider a subclass of strongly nil $*$-clean rings consisting of rings which we call *-Boolean-like. First recall that a ring R is called Boolean-like if it is commutative with unit and is of characteristic 2 with $a b(1+a)(1+b)=0$ for every $a, b \in R[8]$. Any Boolean ring is clearly a Boolean-like ring but not conversely (see [8]). Any Boolean-like ring is uniquely nil clean by [8, Theorem 17]. Also, R is Boolean-like if and only if (1) R is a commutative ring with unit; (2) It is of characteristic 2; (3) It is nil clean; (4) $a b=0$ for every nilpotent element a, b in R [8, Theorem 19].
Definition 3.1. A $*$-ring R is said to be $*$-Boolean-like provided that every idempotent in R is a projection and $\left(a-a^{2}\right)\left(b-b^{2}\right)=0$ for all $a, b \in R$.

The following is an example of a $*$-Boolean-like ring.
Example 3.2. Let $R=\left\{\left.\left(\begin{array}{ll}a & b \\ c & a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{2}\right\}$. Define $\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)+\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & a^{\prime}\end{array}\right)=\left(\begin{array}{ll}a+a^{\prime} & b+b^{\prime} \\ c+c^{\prime} & a+a^{\prime}\end{array}\right)$, $\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & a^{\prime}\end{array}\right)=\left(\begin{array}{cc}a a^{\prime} & a b^{\prime}+b a^{\prime} \\ c a^{\prime}+a c^{\prime} & a a^{\prime}\end{array}\right)$ and $*: R \rightarrow R,\left(\begin{array}{ll}a & b \\ c & a\end{array}\right) \mapsto\left(\begin{array}{cc}a & c \\ b & a\end{array}\right)$. Then R is a *-ring. Let $\left(\begin{array}{ll}a & b \\ c & a\end{array}\right) \in R$ be an idempotent. Then $a=a^{2}$ and $(2 a-1) b=(2 a-1) c=0$. As $(2 a-1)^{2}=1$, we see that $b=c=0$, and so the set of all idempotents in R is $\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$. Thus, every idempotent in R is a projection. For any $A, B \in R$, we see that $\left(A-A^{2}\right)\left(B-B^{2}\right)=\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)=0$. Therefore R is *-Boolean-like.

Theorem 3.3. Let R be $a *$-ring. Then R is *-Boolean-like if and only if
(1) R is strongly nil $*$-clean;
(2) $\alpha \beta=0$ for all nilpotent elements $\alpha, \beta \in R$.

Proof. Suppose that R is *-Boolean-like. Then every idempotent in R is a projection; hence, R is abelian. For any $a \in R,\left(a-a^{2}\right)^{2}=0$, and so $a^{2}=a^{3} f(a)$ for some $f(t) \in \mathbb{Z}[t]$. This implies that R is strongly π-regular, and so it is π-regular. It follows from [1, Theorem 3] that $N(R)$ forms an ideal. Further, $a-a^{2} \in N(R)$. Therefore $R / N(R)$ is Boolean. According to Proposition 2.4, R is strongly nil *-clean. For any nilpotent elements $\alpha, \beta \in R$, we can find some $m, n \in \mathbb{N}$ such that $\alpha^{m}=\beta^{n}=0$. Since $\alpha^{2}=\alpha^{3} g(\alpha)$ for some $g(t) \in \mathbb{Z}[t], \alpha^{2}=0$. Likewise, $\beta^{2}=0$. This shows that $\alpha \beta=\left(\alpha-\alpha^{2}\right)\left(\beta-\beta^{2}\right)=0$.

Conversely, assume that (1) and (2) hold. By Proposition 2.4, every idempotent is a projection, and for any $a \in R, a-a^{2}$ is nilpotent. Hence for any $a, b \in R,\left(a-a^{2}\right)\left(b-b^{2}\right)=0$. Therefore R is *-Boolean-like.

Corollary 3.4. *-Boolean-like rings are commutative rings.
Proof. Let $x, y \in R$. In view of Theorem $3.3, x-e$ and $y-f$ are nilpotent for some projections $e, f \in R$. Again by Theorem 3.3, $(x-e)(y-f)=0=(y-f)(x-e)$. Since R is abelian, it follows that $x y=y x$. Hence R is commutative.

Example 3.5. Let R be the ring

$$
\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\}
$$

where $0,1 \in \mathbb{Z}_{2}$. Define $*: R \rightarrow R, A \mapsto A^{T}$, the transpose of A. Then R is a $*$-ring in which $\left(a-a^{2}\right)(b-$ $\left.b^{2}\right)=0$ for all $a, b \in R$. Further, $\alpha \beta=0$ for all nilpotent elements $\alpha, \beta \in R$. But R is not $*$-Boolean-like.

We end this section with an example showing that strongly nil clean rings need not be strongly nil *-clean.

Example 3.6. Consider the ring

$$
R=\left\{\left.\left(\begin{array}{cc}
a & 2 b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{4}\right\}
$$

Then for any $x, y \in R,\left(x-x^{2}\right)\left(y-y^{2}\right)=0$. Obviously, R is not commutative. This implies that R is not a $*$-Boolean-like ring for any involution $*$. Accordingly, R is not strongly nil $*$-clean for any involution $*$; otherwise, every idempotent in R is a projection, a contradiction (see Lemma 2.1). We can also consider the involution $*: R \rightarrow R,\left(\begin{array}{cc}a & 2 b \\ 0 & c\end{array}\right) \mapsto\left(\begin{array}{cc}c & -2 b \\ 0 & a\end{array}\right)$ and the idempotent $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ which is not a projection. On the other hand, since $\left(x-x^{2}\right)^{2}=0$ and so $x-x^{2} \in N(R)$ for all $x \in R$, we get that R is strongly nil clean by [9, Theorem 3].

4. Submaximal ideals and *-Boolean rings

An ideal I of a ring R is called a submaximal ideal if I is covered by a maximal ideal of R. That is, there exists a maximal ideal I_{1} of R such that $I \varsubsetneqq I_{1} \varsubsetneqq R$ and for any ideal K of R such that $I \subseteq K \subseteq I_{1}$, we have $I=K$ or $K=I_{1}$. This concept was initially introduced to study Boolean-like rings (cf. [11]).

A $*$-ring R is called a $*$-Boolean ring if every element of R is a projection.
The purpose of this section is to characterize submaximal ideals of strongly nil $*$-clean rings, and *-Boolean rings by means of strongly nil $*$-cleanness. We begin with the following lemma.

Lemma 4.1. Let R be strongly nil *-clean. Then an ideal M of R is maximal if and only if
(1) M is prime;
(2) For any $a \in R, n \geq 1, a^{n} \in M$ implies that $a \in M$.

Proof. Suppose that M is maximal. Obviously, M is prime. Let $a \in R$ and $a^{n} \in M$. If $a \notin M$, $R a R+M=R$. Thus, $\bar{R} \bar{a} \bar{R}=\bar{R}$ where $\bar{R}=R / M$ and $\bar{a}=a+M$. Clearly, R is an abelian clean ring, and so it is an exchange ring by [5, Theorem 17.2.2]. This implies that R / M is an abelian exchange ring. As in the proof of [5, Proposition 17.1.9], there exists a nonzero idempotent $\bar{e} \in \bar{R}$ such that $\bar{e} \in \bar{a} \bar{R}$ and $\overline{1}-\bar{e} \in(\overline{1}-\bar{a}) \bar{R}$. Since $\bar{R} \bar{e} \bar{R}$ is a nonzero ideal of simple ring $\bar{R}, \bar{R} \bar{e} \bar{R}=\bar{R}$. Thus $1-e \in M$. Hence, $1-a r \in M$ for some $r \in R$. This implies that $a^{n-1}-a^{n} r \in M$, and so $a^{n-1} \in M$. By iteration of this process, we see that $a \in M$, as required.

Conversely, assume that (1) and (2) hold. Assume that M is not maximal. Then we can find a maximal ideal I of R such that $M \varsubsetneqq I \varsubsetneqq R$. Choose $a \in I$ while $a \notin M$. By hypothesis, there exists a projection $e \in R$ and a nilpotent $u \in R$ such that $a=e+u$. Write $u^{m}=0$. Then $u^{m} \in M$. By hypothesis, $u \in M$. This shows that $e \notin M$. Clearly, R is abelian. Thus $e R(1-e) \subseteq M$. As M is prime, we deduce that $1-e \in M$. As a result, $1-a=(1-e)-u \in M$, and so $1=(1-a)+a \in I$. This gives a contradiction. Therefore M is maximal.

Let R be a strongly nil $*$-clean ring, and let $x \in R$. Then there exists a unique projection $e \in R$ such that $x-e \in N(R)$. We denote e by x_{P} and $x-e$ by x_{N}.

Lemma 4.2. Let I be an ideal of a strongly nil $*$-clean ring R, and let $x \in R$ be such that $x \notin I$. If $x_{P} \notin I$, then there exists a maximal ideal J of R such that $I \subseteq J$ and $x \notin J$.

Proof. Let $\Omega=\left\{K \mid K\right.$ is an ideal in $\left.R, I \subseteq K, x_{P} \notin K\right\}$. Then $\Omega \neq \emptyset$. Given $K_{1} \subseteq K_{2} \subseteq \cdots$ in Ω, we set $Q=\bigcup_{i=1}^{\infty} K_{i}$. Then Q is an ideal of R. If $Q \notin \Omega$, then $x_{P} \in Q$, and so $x_{P} \in K_{i}$ for some i. This gives a contradiction. Thus, Ω is inductive. By using Zorn's Lemma, there exists an ideal L of R which is maximal in Ω. Let $a, b \in R$ such that $a, b \notin L$. By the maximality of L, we see that $R a R+L, R b R+L \notin \Omega$. This shows that $x_{P} \in(R a R+L) \cap(R b R+L)$. Hence, $x_{P}=x_{P}^{2} \in R a R b R+L$. This yields that $a R b \nsubseteq L$; otherwise, $x_{P} \in L$, a contradiction. Hence, L is prime. Assume that L is not maximal. Then we can find a maximal ideal M of R such that $L \varsubsetneqq M \varsubsetneqq R$. Clearly, R is abelian. By the maximality, we see that $x_{P} \in M$, and so $1-x_{P} \notin M$. This implies that $1-x_{P} \notin L$. As $x_{P} R\left(1-x_{P}\right)=0 \subseteq L$, we have that $x_{P} \in L$, a contradiction. Therefore L is a maximal ideal, as asserted.

Proposition 4.3. Let R be strongly nil *-clean. Then the intersection of two maximal ideals is submaximal and it is covered by each of these two maximal ideals. Further, there is no other maximal ideals containing it.

Proof. Let I_{1} and I_{2} be two distinct maximal ideals of R. Then $I_{1} \cap I_{2} \varsubsetneqq I_{1}$. Suppose $I_{1} \cap I_{2} \subseteq L \varsubsetneqq I_{1}$. Then we can find some $x \in I_{1}$ while $x \notin L$. Write $x_{N}^{n}=0$. Then $x_{N}^{n} \in I_{1}$. In light of Lemma 4.1, $x_{N} \in I_{1}$. Likewise, $x_{N} \in I_{2}$. Thus, $x_{N} \in I_{1} \cap I_{2} \subseteq L$. This shows that $x_{P} \notin L$. By virtue of Lemma 4.2, there exists a maximal ideal M of R such that $\bar{L} \subseteq M$ and $x \notin M$. Hence, $I_{1} \cap I_{2} \subseteq M$ and $I_{1} \neq M$. If $I_{2} \neq M$, then $I_{2}+M=R$. Write $t+y=1$ with $t \in I_{2}, y \in M$. Then for any $z \in I_{1}, z=z t+z y \in I_{1} \cap I_{2}+M=M$, and so $I_{1}=M$. This gives a contradiction. Thus $I_{2}=M$, and then $L \subseteq M \subseteq I_{2}$. As a result, $L \subseteq I_{1} \cap I_{2}$, and so $I_{1} \cap I_{2}=L$. Therefore $I_{1} \cap I_{2}$ is a submaximal ideal of R. We claim that $I_{1} \cap I_{2}$ is semiprime. If $K^{2} \subseteq I_{1} \cap I_{2}$, then for any $a \in K$, we see that $a^{2} \in I_{1} \cap I_{2}$. In view of Lemma 4.1, $a \in I_{1} \cap I_{2}$. This implies that $K \subseteq I_{1} \cap I_{2}$. Hence, $I_{1} \cap I_{2}$ is semiprime. Therefore $I_{1} \cap I_{2}$ is the intersection of maximal ideals containing $I_{1} \cap I_{2}$.

Assume that K is a maximal ideal of R such that $I_{1} \cap I_{2} \subseteq K$. If $K \neq I_{1}, I_{2}$, then $I_{1}+K=I_{2}+K=R$. This implies that $I_{1} \cap I_{2}+K=R$, and so $K=R$, a contradiction. Thus, $K=I_{1}$ or $K=I_{2}$, and so the proof is completed.

We call a local ring R absolutely local provided that for any $0 \neq x \in J(R), J(R)=R x R$.
Corollary 4.4. Let R be strongly nil $*$-clean, and let I be an ideal of R. Then I is a submaximal ideal if and only if R / I is Boolean with four elements or R / I is absolutely local.

Proof. Let I be a submaximal ideal of R.
Case I. I is contained in more than one maximal ideal. Then I is contained in two distinct maximal ideals of R. Since I is submaximal, there exists a maximal ideal L of R such that I is covered by L. Thus, we have a maximal ideal L^{\prime} such that $L^{\prime} \neq L$ and $I \varsubsetneqq L^{\prime}$. Hence, $I \subseteq L \cap L^{\prime} \subseteq L$. Clearly, $L \cap L^{\prime} \neq L$ as $L+L^{\prime}=R$, and so $I=L \cap L^{\prime}$. In view of Proposition 4.3, there is no maximal ideal containing I except for L and L^{\prime}. This shows that R / I has only two maximal ideals covering $\{0+I\}$. For any $a \in R$, it follows from Proposition 2.4 that $a-a^{2} \in R$ is nilpotent. Write $\left(a-a^{2}\right)^{n}=0$. Then $\left(a-a^{2}\right)^{n} \in L$. According to Lemma 4.1, $a-a^{2} \in L$. Likewise, $a-a^{2} \in L^{\prime}$. Thus, $a-a^{2} \in L \cap L^{\prime}$, and so $a-a^{2} \in I$. This shows that R / I is Boolean. Therefore R / I is Boolean with four elements.

Case II. Suppose that I is contained in only one maximal ideal L of R. Then R / I has only one maximal ideal L / I. Clearly, R is an abelian exchange ring, and then so is R / I. Let $\bar{e} \in R / I$ be a nontrivial idempotent. Then $I \subseteq I+R e R \subseteq L$ or $I+R e R=R$. Likewise, $I \subseteq I+R(1-e) R \subseteq L$ or $I+R(1-e) R=R$. This shows that $I+R e \bar{R}=R$ or $I+R(1-e) R=R$ Thus, $(R / I)(e+I)(R / I)=R / I$ or $(R / I)(1-e+I)(R / I)=R / I$, a contradiction. Therefore all idempotents in R / I are trivial. It follows from [5, Lemma 17.2.1] that R / I is local. For any $\overline{0} \neq \bar{x} \in L / I$, we see that $0 \neq I \subseteq R x R \subseteq L$. As I is submaximal, we deduce that $L=R x R$. Therefore R is absolutely local.

Conversely, assume that R / I is Boolean with four elements. Then R / I has precisely two maximal ideals covering $\{0+I\}$, and so R has precisely two maximal ideals covering I. Thus, we have a maximal ideal L such that $I \varsubsetneqq L$. If $I \subseteq K \subseteq L$. Then $K=I$ or K is maximal, and so $K=L$. Consequently, I is submaximal. Assume that R / I is absolutely local. Then R / I has a unique maximal ideal L / I. Hence, L is a maximal ideal of R such that $I \varsubsetneqq L$. Assume that $I \varsubsetneqq K \subseteq L$. Choose $a \in K$ while $a \notin I$. Then $L=R a R \subseteq K$, and so $K=L$. Therefore I is submaximal, as required.

Corollary 4.5. Let R be strongly nil *-clean. If I_{1} and I_{2} are distinct maximal ideals of R, then $R /\left(I_{1} \cap I_{2}\right)$ is Boolean.

Proof. Since $I_{1} /\left(I_{1} \cap I_{2}\right)$ and $I_{2} /\left(I_{1} \cap I_{2}\right)$ are distinct maximal ideals, $R /\left(I_{1} \cap I_{2}\right)$ is not local. In view of Proposition 4.3, $I_{1} \cap I_{2}$ is a submaximal ideal of R. Therefore Corollary 4.4 yields the proof.

Recall that an ideal I of a commutative ring R is primary provided that for any $x, y \in R, x y \in I$ implies that $x \in I$ or $y^{n} \in I$ for some $n \in \mathbb{N}$. Clearly, every maximal ideal of a commutative ring is primary. We end this article by giving the relation between strongly nil $*$-clean rings and $*$-Boolean rings.

Lemma 4.6. Let R be a commutative strongly nil $*$-clean ring. Then the intersection of all primary ideals of R is zero.

Proof. Let a be in the intersection of all primary ideal of R. Assume that $a \neq 0$. Let $\Omega=$ $\{I \mid I$ is an ideal of R such that $a \notin I\}$. Then $\Omega \neq \emptyset$ as $0 \in \Omega$. Given any ideals $I_{1} \subseteq I_{2} \subseteq \cdots$ in Ω, we set $M=\bigcup_{i=1}^{\infty} I_{i}$. Then $M \in \Omega$. Thus, Ω is inductive. By using Zorn's Lemma, we can find an ideal Q which is maximal in Ω. It will suffice to show that Q is primary. If not, we can find some $x, y \in R$ such that $x y \in Q$, but $x \notin Q$ and $y^{n} \notin Q$ for any $n \in \mathbb{N}$. This shows that $a \in Q+(x)$, and so $a=b+c x$ for some $b \in Q, c \in R$. Since R is strongly nil $*$-clean, it follows from Theorem 2.7 that there are some distinct $k, l \in \mathbb{N}$ such that $y^{k}=y^{l}$. Say $k>l$. Then $y^{l}=y^{k}=y^{l+1} y^{k-l-1}=y^{l} y y^{k-l-1}=y^{l+2} y^{2(k-l-1)}=\cdots=y^{2 l} y^{l(k-l-1)}$. Hence, $y^{l(k-l)}=y^{l}\left(y^{l(k-l-1)}\right)=y^{2 l} y^{2 l(k-l-1)}=\left(y^{l(k-l)}\right)^{2}$. Choose $s=l(k-l)$. Then y^{s} is an idempotent. Write $y=y_{P}+y_{N}$. Then $y^{s}-y_{P}=\left(y_{P}+y_{N}\right)^{s}-y_{P}=y_{N}\left(s y_{P}+\cdots+y_{N}^{s-1}\right) \in N(R)$. As R is a commutative ring, we see that $\left(y^{s}-y_{P}\right)^{3}=y^{s}-y_{P}$. This implies that $y^{s}=y_{P}$. Since $x y \in Q$, we have that $x y^{s} \in Q$, and so $x y_{P} \in Q$. It follows from $a=b+c x$ that $a y_{P}=b y_{P}+c x y_{P} \in Q$. Clearly, $y^{s} \notin Q$, and so $a \in Q+\left(y_{P}\right)$. Write $a=d+r y_{P}$ for some $d \in Q, r \in R$. We see that $a y_{P}=d y_{P}+r y_{P}$,
and so $r y_{P} \in Q$. This implies that $a \in Q$, a contradiction. Therefore Q is primary, a contradiction. Consequently, the intersection of all primary ideals of R is zero.

(1) R is commutative;
(2) Every primary ideal of R is maximal;
(3) R is strongly nil *-clean.

Proof. Suppose that R is a $*$-Boolean ring. Clearly, R is a commutative strongly nil $*$-clean ring. Let I be a primary ideal of R. If I is not maximal, then there exists a maximal ideal M such that $I \varsubsetneqq M \varsubsetneqq R$. Choose $x \in M$ while $x \notin I$. As x is an idempotent, we see that $x R(1-x) \subseteq I$, and so $(1-x)^{m^{\neq}} \in I \subset M$ for some $m \in \mathbb{N}$. Thus, $1-x \in M$. This implies that $1=x+(1-x) \in M$, a contradiction. Therefore I is maximal, as required.

Conversely, assume that (1), (2) and (3) hold. Clearly, every maximal ideal of R is primary, and so $J(R)=\bigcap\{P \mid P$ is primary $\}$. In view of Lemma 4.6, $J(R)=0$. Hence every element is a projection i.e. R is $*$-Boolean.

Corollary 4.8. A ring R is a Boolean ring if and only if
(1) R is commutative;
(2) Every primary ideal of R is maximal;
(3) R is strongly nil clean.

Proof. Choose the involution as the identity. Then the result follows from Theorem 4.7.
Acknowledgment: The authors are grateful to the referee for his/her careful reading and valuable comments on this manuscript. This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK-2221 Visiting Scientists Fellowship Programme). Huanyin Chen is thankful for the support by the Natural Science Foundation of Zhejiang Province (No. LY17A010018).

References

[1] A. Badawi, On abelian π-regular rings, Comm. Algebra 25(4) (1997) 1009-1021.
[2] S. K. Berberian, Baer *-Rings, Springer-Verlag, Heidelberg, London, New York, 2011.
[3] M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969) 1348-1353.
[4] H. Chen, On strongly J-clean rings, Comm. Algebra 38(10) (2010) 3790-3804.
[5] H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
[6] H. Chen, A. Harmancı A. Ç. Özcan, Strongly J-clean rings with involutions, Ring theory and its applications, Contemp. Math. 609 (2014) 33-44.
[7] A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197-211.
[8] A. L. Foster, The theory of Boolean-like rings, Trans. Amer. Math. Soc. 59 (1946) 166-187.
[9] Y. Hirano, H. Tominaga, A. Yaqub, On rings in which every element is uniquely expressable as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988) 33-40.
[10] C. Li, Y. Zhou, On strongly *-clean rings, J. Algebra Appl. 10(6) (2011) 1363-1370.
[11] V. Swaminathan, Submaximal ideals in a Boolean-like rings, Math. Sem. Notes Kobe Univ. 10(2) (1982) 529-542.
[12] L. Vaš, *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra 324(12) (2010) 3388-3400.

[^0]: Abdullah Harmancı (Corresponding Author), A. Çiğdem Özcan; Hacettepe University, Department of Mathematics, 06800 Beytepe, Ankara, Turkey (email: harmanci@hacettepe.edu.tr, ozcan@hacettepe.edu.tr).
 Huanyin Chen; Hangzhou Normal University, Department of Mathematics, 310036, Hangzhou, China (email: huanyinchen@aliyun.com).

