
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.327373

J. Algebra Comb. Discrete Appl.
4(3) • 247–260

Received: 23 January 2016
Accepted: 23 January 2017

Journal of Algebra Combinatorics Discrete Structures and Applications

Gaussian elimination in split unitary groups with an
application to public-key cryptography∗

Research Article

Ayan Mahalanobis, Anupam Singh

Abstract: Gaussian elimination is used in special linear groups to solve the word problem. In this paper, we
extend Gaussian elimination to split unitary groups. These algorithms have an application in building
a public-key cryptosystem, we demonstrate that.

2010 MSC: 20H30, 94A60

Keywords: Unitary groups, Gaussian elimination, Row-column operations

1. Introduction

Gaussian elimination is a very old theme in computational mathematics. It was developed to solve
linear simultaneous equations. The modern day matrix theoretic approach was developed by John von
Neumann and the popular textbook version by Alan Turing. Gaussian elimination has many applications
and is a very well known mathematical method. We will not elaborate on it any further, but will refer
an interested reader to a nice article by Grcar [10]. The way we look at Gaussian elimination is: it
gives us an algorithm to write any matrix of the general linear group, GL(d,K), of size d over a field
K as the product of elementary matrices and a diagonal matrix with all ones except one entry, using
elementary operations. That entry in the diagonal is the determinant of the matrix. There are many
ways to look at this phenomena. One simple way is: one can write the matrix as a word in generators. So
in the language of computational group theory the word problem in GL(d,K) has an efficient algorithm
– Gaussian elimination.

We write this paper to say that one can have a very similar result with split unitary groups as well.
It is well known that unitary groups over a finite field are split. So we completely solve the problem
for unitary groups over finite fields for most characteristics. However, over infinite fields, our algorithm
works only for the split case. Split unitary groups are defined by the Hermitian form with maximal Witt

∗ This work was supported by a SERB research grant MS: 831/13.
Ayan Mahalanobis (Corresponding Author), Anupam Singh; IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune

411008, India (email: ayan.mahalanobis@gmail.com, anupamk18@gmail.com).

247

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

index. From now on, by a unitary group we mean a split unitary group. We define elementary
matrices and elementary operations for unitary groups. These matrices and operations are similar to
that of elementary transvections and elementary row-column operations for special linear groups. Using
these elementary matrices and elementary operations, we solve the word problem in unitary groups in a
way that is very similar to the general linear groups. Similar algorithms are being developed for other
classical groups and will be presented elsewhere.

Unitary groups are of interest in computational group theory, in the matrix group recognition project.
In this paper, we work with a different set of generators than that is usual in computational group
theory. The usual generators are called the standard generators [14, Tables 1&2]. Our generators, we
call them elementary matrices and are defined later, have their root in the root spaces in Lie theory [6,
Sections 11.3, 14.5] and have the disadvantage of being a larger set compared to that of the standard
generators. However, standard generators being “multiplicative” in nature, depends on the primitive
element of a finite field, works only for finite fields. On the other hand, our generators, work for arbitrary
fields. Using standard generators, one needs to solve the discrete logarithm problem often. No such
need arises in our case. In the current literature, the best row-column operations in unitary groups is
by Costi [8] and implemented in Magma [3] by Costi and C. Schneider. Using their magma function
ClassicalRewriteNatural, we show that our algorithm is much faster, see Figure 1. In Costi’s algorithm
one needs to compute various powers of ω a primitive element of the finite field. This makes his algorithm
slower.

A need for row-column operations in classical groups was articulated by Seress [20, Page 677] in
1997. Computational group theory and in particular constructive recognition of classical groups have
come a long way till then. We will not give a historical overview of this, an interested reader can find
such an overview in the works of Brooksbank [5, Section 1.1], Leedham-Green and O’Brien [14, Section
1.3] and O’Brien [18]. Two recent works that are relevant to our work are Costi [8] and Ambrose et. al. [1].
Brooksbank [4, Section 5] deals with a similar algorithm which only works for finite fields.

In coming years, public key cryptography will go through a major change because of quantum
computers. The ubiquitous public key cryptosystems like the ElGamal cryptosystem over elliptic curves
and RSA will become obsolete. The need of the day are new public key cryptosystems whose security
does not rely on the discrete logarithm problem or factoring integers. We study MOR cryptosystem on
various groups with the hope to discover new quantum-secure cryptographic primitives.

In this paper, we only deal with unitary groups defined by the Hermitian form β defined later. The
Hermitian form for the even-order case works for all characteristic. However, in the odd-order case the
2 in the upper-left makes it useless in the even characteristic. One can change this 2 to a 1 in β, however,
then one needs to compensate that by putting 1

2 in the generators. We tried, but were unable to extend
our algorithm for the odd-order unitary group to even characteristic. For even-order unitary groups, the
algorithm developed in this paper works for all characteristic. However, for the odd-order case only odd
characteristic will be considered.

1.1. Notations

For the rest of the paper, let K be the quadratic extension of a field k with an automorphism
σ : x 7→ x̄ of order two that fixes k elementwise. In the case of C : R, σ is the complex conjugation. In the
case of a finite field Fq2 : Fq, σ is the map x 7→ xq. We define Ko = {x ∈ K | x̄ = −x}. We also denote
K1 = {x ∈ K | xx̄ = 1}. A d× d matrix X is called Hermitian (skew-Hermitian) if TX̄ = X (TX̄ = −X).
Two important examples of K : k pairs that we have in mind for this work are C : R and Fq2 : Fq.

The main result that we prove in this paper follows. The result is well known, however the algo-
rithmic proof of the result is original. Moreover, this algorithm is of independent interest in other areas,
for example, constructive recognition of classical groups. For a definition of elementary matrices and
elementary operations, see Section 3.

Theorem A. For d ≥ 4, using elementary operations, one can write any matrix A in U(d,K), the
unitary group of size d over K, as product of elementary matrices and a diagonal matrix. The diagonal

248

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

matrix is of the following form:

•

1
. . .

1
λ

1
. . .

1

λ̄−1

where λλ̄−1 = detA and d = 2l.

•

α

1
. . .

1

λ

1
. . .

1

λ̄−1

where αᾱ = 1 and αλλ̄−1 = detA and d = 2l + 1.

Here λ̄ is the image of λ under the automorphism σ.

A trivial corollary (Theorem 6.1) of our algorithm is very similar to a result by Steinberg [21, §6.2],
where he describes the generators of a projective-unitary group over odd characteristic. Our work is
somewhat similar in nature to the work of Cohen et. al. [7], where the authors study generalized row-
column operations in Chevalley groups. They did not study twisted groups.

We use the algorithm developed to construct a MOR cryptosystem in unitary groups and study its
security.

2. Unitary groups

Let K be a field with a non-trivial field automorphism σ of order 2 with fixed field k. Let V be a
vector space of dimension d over K. We denote the image of α under σ by ᾱ. Let β : V × V → K be a
non-degenerate Hermitian form, i.e., bar-linear in the first coordinate and linear in the second coordinate
satisfying β(x, y) = β(y, x). We fix a basis for V and slightly abuse the notation to denote the matrix of
β by β. Thus β is a non-singular matrix satisfying β = Tβ̄.

Definition 2.1 (Unitary Group). The unitary group is:

U(d,K) = {X ∈ GL(d,K) | TX̄βX = β}.

The special unitary group SU(d,K) consists of matrices of U(d,K) of determinant 1. Note that the unitary
group depends on the Hermitian form β.

It is known that corresponding to equivalent Hermitian forms, corresponding unitary groups are
conjugate in GL(d,K). However over a infinite field there could be more than one non-equivalent non-
degenerate Hermitian form giving rise to more than one non-isomorphic unitary groups. In this article,
we deal with a specific form β and the corresponding split unitary group. Recall, we assumed that

249

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

characteristic of K is odd whenever d is odd. For the convenience of computations we index the basis of
the vector space by 1, . . . , l,−1, . . . ,−l when d = 2l and by 0, 1, . . . , l,−1, . . . ,−l when d = 2l+ 1; where
l > 1. We also fix the matrix β as follows:

• d = 2l fix β =

(
Il

Il

)
.

• d = 2l + 1 fix β =

2

Il
Il

.

There are two important examples of fields: complex numbers C over reals R with σ the complex
conjugation and the other, finite field Fq2 over Fq with σ : α 7→ αq. In the case of C : R, Hermitian forms
are classified by signatures and unitary groups denoted by U(p, q) where p + q = d (see [12] discussion
following Theorem 6.19). The form corresponding to p being maximum is the split Hermitian form and is
of interest in this paper. However there is only one non-degenerate Hermitian form up to equivalence [11,
Corollary 10.4] over finite fields. In this case a unitary group will be denoted by U(d, q2) and special
unitary group as SU(d, q2). A word of caution: in the literature U(d, q2), U(d,Fq) and U(d, q) are used
interchangeably.

3. Elementary matrices and elementary operations in unitary
groups

Solving the word problem in any group is of interest in computational group theory. In a special
linear group, it can be easily solved using Gaussian elimination. However, for many groups, it is a very
hard problem. In this paper we present a fast, cubic-time solution to the word problem in unitary groups.

Gaussian elimination in SL(d,K) uses elementary transvections as the elementary matrices and
row-column operations as elementary operations. These elementary operations are multiplication by
elementary matrices. The elementary matrices are of the form I + tei,j (t ∈ K), where ei,j is the matrix
unit with 1 in the (i, j)th position and zero elsewhere.

In the same spirit, one can define Chevalley-Steinberg generators for the unitary group [6, Section
14.5] as follows:

3.1. Elementary matrices for U(2l,K)

In what follows, l ≥ 2. For 1 ≤ i, j ≤ l, t ∈ K and s ∈ Ko:

xi,j(t) = I + tei,j − t̄e−j,−i for i 6= j,

xi,−j(t) = I + tei,−j − t̄ej,−i for i < j,

x−i,j(t) = I + te−i,j − t̄e−j,i for i < j,

xi,−i(s) = I + sei,−i,

x−i,i(s) = I + se−i,i,

3.2. Row-column operations for U(2l,K)

Rephrasing the earlier definition in matrix format, we have three kinds of elementary matrices.

250

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

E1:

(
R

TR̄−1

)
where R = I + tei,j ; i 6= j.

E2:

(
I R

I

)
where R is either tei,j − t̄ej,i; i < j or sei,i.

E3:

(
I

R I

)
where R is either tei,j − t̄ej,i; i < j or sei,i.

Let g =

(
A B

C D

)
be a 2l × 2l matrix written in block form of size l × l. Note the effect of multiplying g

by matrices from above.

ER1 :

(
R

TR̄−1

)(
A B

C D

)
=

(
RA RB

TR̄−1C TR̄−1D

)
.

EC1 :

(
A B

C D

)(
R

TR̄−1

)
=

(
AR BTR̄−1

CR DTR̄−1

)
.

ER2 :

(
I R

I

)(
A B

C D

)
=

(
A+RC B +RD

C D

)
.

EC2 :

(
A B

C D

)(
I R

I

)
=

(
A AR+B

C CR+D

)
.

ER3 :

(
I

R I

)(
A B

C D

)
=

(
A B

RA+ C RB +D

)
.

EC3 :

(
A B

C D

)(
I

R I

)
=

(
A+BR B

C +DR D

)
.

3.3. Elementary matrices for U(2l + 1,K)

For l ≥ 2, 1 ≤ i, j ≤ l, t ∈ K, s ∈ Ko and characteristic of K odd

xi,j(t) = I + tei,j − t̄e−j,−i for i 6= j,

xi,−j(t) = I + tei,−j − t̄ej,−i for i < j,

x−i,j(t) = I + te−i,j − t̄e−j,i for i < j,

xi,−i(s) = I + sei,−i,

x−i,i(s) = I + se−i,i,

xi,0(t) = I − 2t̄ei,0 + te0,−i − tt̄ei,−i,
x0,i(t) = I + te0,i − 2t̄e−i,0 − tt̄e−i,i,

3.4. Row-column operations for U(2l + 1,K)

Rephrasing in matrix format:

251

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

E1:

1

R
TR̄−1

 where R = I + tei,j ; i 6= j.

E2:

1

I R

I

 where R is either tei,j − t̄ej,i; i < j or sei,i.

E3:

1

I

R I

 where R is either tei,j − t̄ej,i; i < j or sei,i.

E4:

 1 R

−2R̄ I −TRR̄
I

 where R = tei 1 R

I

−2R̄ −TRR̄ I

 where R = tei

Here ei is the row vector with 1 at ith place and zero elsewhere. Let g =

α X Y

E A B

F C D

 be a (2l+1)×(2l+1)

matrix where A,B,C,D are l × l matrices. The matrices X = (X1, X2, . . . , Xl), Y = (Y1, Y2, . . . , Yl),
E = T(E1, E2, . . . , El) and F = T(F1, F2, . . . , Fl) are rows of length l. Furthermore α ∈ K. Note the effect
of multiplication by elementary matrices from above is as follows:

ER1 :

1

R
TR̄−1

α X Y

E A B

F C D

 =

 α X Y

RE RA RB
TR̄−1F TR̄−1C TR̄−1D

 .

EC1 :

α X Y

E A B

F C D

1

R
TR̄−1

 =

α XR Y TR̄−1

E AR BTR̄−1

F CR DTR̄−1

 .

ER2 :

1

I R

I

α X Y

E A B

F C D

 =

 α X Y

E +RF A+RC B +RD

F C D

 .

EC2 :

α X Y

E A B

F C D

1

I R

I

 =

α X XR+ Y

E A AR+B

F C CR+D

 .

ER3 :

1

I

R I

α X Y

E A B

F C D

 =

 α X Y

E A B

RE + F RA+ C RB +D

 .

EC3 :

α X Y

E A B

F C D

1

I

R I

 =

α X + Y R Y

E A+BR B

F C +DR D

 .

For E4 we only write the equations that we need later.

252

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

• Let the matrix g has C = diag(d1, . . . , dl).

ER4 : [(I + te0,−i − 2t̄ei,0 − tt̄ei,−i)g]0,i = Xi + tdi

EC4 : [g(I + te0,−i − 2t̄ei,0 − tt̄ei,−i)]−i,0 = Fi − 2t̄di.

• Let the matrix g has A = diag(d1, . . . , dl).

ER4 : [(I + te0,i − 2t̄e−i,0 − tt̄e−i,i)g]0,i = Xi + tdi

EC4 : [g(I + te0,−i − 2t̄ei,0 − tt̄ei,−i)]i,0 = Ei − 2t̄di.

3.5. Row-interchange matrices

We need certain row interchange matrices, multiplication with these matrices from left, interchanges
ith row with −ith row for 1 ≤ i ≤ l. These are certain Weyl group elements. These matrices can be
produced as follows: for s ∈ Ko,

wi,−i(s) = xi,−i(s)x−i,i(−s−1)xi,−i(s) = I + sei,−i − ei,i − s−1e−i,i − e−i,−i.

Note that our row interchange multiplies one row by s and the other by −s−1 and then swaps them. This
scalar multiplication of rows produce no problem for our cause.

4. Gaussian elimination in unitary group

Now we present the main result of this paper, two algorithms, one for even-order unitary groups and
other for the odd-order unitary groups.

4.1. The algorithm for even-order unitary groups

Let g =

(
A B

C D

)
be an element of the unitary group U (2l,K). One principal reason our algorithm

works is that we are able to exploit a symmetry that comes out of the use of the Hermitian form β
described earlier.

Notice that, Tḡβg = β implies after straightforward computations that TC̄A + TĀC = 0 and TD̄B +
TB̄D = 0. This implies that TĀC and TB̄D are skew-Hermitian matrices. We now describe the algorithm.

Step 1 Using ER1 and EC1 make A into a diagonal matrix. This is the usual Gaussian elimination
algorithm. This new diagonal matrix will be referred to A as well. There are two possibilities.

a The diagonal matrix has full rank and is of the form diag(λ1, λ2, . . . , λl), where each λi are
non-zero.

b The diagonal matrix A do not have a full rank and is of rank r less than l and is of the form
diag(λ1, λ2, . . . , λr, 0, 0 . . . , 0).

Step 2 In case a, use ER3 to make C into a zero matrix. In case b, bottom l − r rows in A are zero.
Make the top r rows of C zero using ER3. We now interchange bottom l − r rows of A with the
corresponding l− r rows of C. This makes C a zero matrix. We claim that A must be of full rank.
We know that TC̄B + TĀD = I. Since, C = 0, A must be of full rank. We now go back to Step 1
and make A a diagonal matrix.

253

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

Step 3 Note that TD̄A + TB̄C = I and since C is zero and A is diagonal makes D a diagonal matrix of
full rank l. Using this diagonal matrix, we can make B a zero matrix using ER2. So now we have
a diagonal matrix instead of g.

Step 4 In this step we only work with A. Using ER1 and EC1, we reduce all diagonal elements of A to
1 except the last.

4.2. The algorithm for odd-order unitary groups

Recall that for odd-order unitary groups, we assumed the characteristic of K to be odd. Let g =α X Y

E A B

F C D

 be an element of the unitary group U(2l + 1,K). As with even-order case, our algorithm

exploits the symmetry that come out of the chosen bilinear form β. From the equation Tḡβg = β we get
two useful equations:

2TX̄X + TC̄A+ TĀC = 0 (1)
2TȲ Y + TD̄B + TB̄D = 0 (2)

Now if X = 0, TĀC is skew-Hermitian and similarly for the other case TB̄D is skew-Hermitian. The reader
will notice our insistence in making X zero as quickly as possible in the algorithm. Once we do that rest
of the algorithm is very similar to that of the even-order algorithm.

The algorithm is as follows:

Step 1 Using ER1 and EC1, make A a diagonal matrix. This new diagonal matrix will be referred to A
as well. Two things can happen

a The diagonal matrix A has full rank and is of the form diag(λ1, λ2, . . . , λl) where λi are non-zero
for 1 ≤ i ≤ l.

b The matrix A is not of full rank, but of rank r and is diag(λ1, λ2, . . . , λr, 0, . . . , 0) where λi are
non-zero for 1 ≤ i ≤ r.

Step 2 The purpose of this step is to make X and E zero using A. In the case a above, this can be easily
done using ER4 and EC4 respectively. In the case b above, from Lemma 5.1, if x1 = x2 = . . . =
xr = 0 then X = 0. However x1, x2, . . . , xr can be made zero as above and that will make whole of
X zero. Similarly, use the non-zero diagonals of A to make the corresponding entries of E zero.

Step 3 The purpose of this step is to make C zero matrix. We first use the non-zero diagonal entries
in A to make the corresponding rows in C zero. If there are any zero rows in A, i.e., we are in
case b of Step 1, we use the row interchange operation to exchange the zero rows of A with the
corresponding ones in C. Then C is a zero matrix and that makes A of full rank. Diagonalize A
using ER1 and EC1 and make E a zero matrix. This makes D a full-rank diagonal matrix.

Step 4 Using ER2 and D we make B a zero matrix.

Step 5 We now have a diagonal matrix, using ER1 and EC1 we can make the diagonal entries of A
except the last one 1.

5. Some lemmas

Lemma 5.1. Let g be an element of U(2l + 1,K) as described earlier. Furthermore assume that A is of
the form diag(λ1, λ2, . . . , λr, 0, . . . , 0) where λi are non-zero and the row vector X has first r entries 0.
Then X is zero.

254

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

Proof. Notice that from the equation Tḡβg = β, it follows that 2TX̄X + TC̄A + TĀC = 0. Then TX̄X
is a matrix with the lower right (l − r)× (l − r) block possibly non-zero. However since, A is a diagonal
matrix with lower l− r entries zero, it is clear from the equation that the possible non-zero block is zero
and this proves that X = 0.

Lemma 5.2. Once E, C and X are zero in g defined earlier, it follows that F and Y are zero.

Proof. The important equation from Tḡβg = β for this lemma is 2TX̄α + TC̄E + TĀF = 0 from which
it follows that F = 0. Then Y = 0 follows from 2ᾱY + TF̄B + ĒD = 0

A cautious reader must have noticed that in the definition of the generators we define xi,−i(s) =
I + sei,−i and x−i,i(s) = I + se−i,i where s ∈ Ko. We need these generators to clear diagonal elements
from C and B respectively. We only talk about clearing diagonal elements from C, B follows similarly.
Now if A is diagonal and λi is a non-zero element in the diagonal, then using RA + C we will clear ci,i
in C. Notice that from earlier discussion it follows λ̄ici,i = −c̄i,iλi. Then take s = − ci,iλ and it is easy to
check that it belongs to Ko.

5.1. Proof of Theorem A

Proof. Let g ∈ U(d,K). Using the Gaussian elimination above we can reduce g to a matrix of the
form diag(1, . . . , 1, λ, 1, . . . , 1, λ̄−1) when d = 2l and diag(α, 1 . . . , 1, λ, 1, . . . , 1, λ̄−1) when d = 2l+ 1. We
further note that row-column operations are multiplication by elementary matrices from left or right and
each of these elementary matrices have determinant one. Thus we get the required result.

5.2. Asymptotic complexity is O(l3)

In this section, we show that the asymptotic complexity of the algorithm that we developed is O(l3).
We count the number of field multiplications. We can break the algorithm into three parts. One, reduce
A to a diagonal, then deal with C and then with D. It is easy to see that reducing A to the diagonal
has complexity O(l3) and dealing with C and D has complexity O(l3). Row interchange has complexity
O(l2). In the odd-order case there is a complexity of O(l) to deal with X,Y,E and F . In all, the worst
case complexity is O(l3).

6. Finite unitary groups

In the next section, we talk about cryptography. In cryptography, we need to deal explicitly with
finite fields. In this context, when K = Fq2 , we prove a theorem similar in spirit to Steinberg [21, Section
6.2]. The proof is an obvious corollary to our algorithm.

Theorem 6.1. Fix an element ζ which generates the cyclic group F×
q2 , the subgroup F1

q2 is generated by
ζ1 = ζq−1. We add following matrices to the respective set of elementary matrices:

• h (ζ) = diag(1, . . . , ζ, 1, . . . , ζ̄−1) whenever d = 2l.

•

{
h (ζ) = diag(1, . . . , ζ, 1, . . . , ζ̄−1)

h (ζ1) = diag(ζ1, 1, . . . , 1)
whenever d = 2l + 1.

Then the group U(d, q2) is generated by elementary matrices and the matrices defined above.

255

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

6.1. Special unitary group SU(d, q2)

In the case of SU(2l, q2) a simple and straightforward enhancement of our algorithm reduces a matrix
g ∈ SU(2l, q2) to the identity matrix. Thus the word problem in SU(2l, q2) is completely solved as with
SL(d, q) using only elementary matrices; this is particularly useful for the MOR cryptosystem. An analysis
of a MOR cryptosystem similar to the MOR cryptosystem over SL(d, q) [15] will be done in the next
section.

For the reduction to identity, note that Theorem 1.1 reduces g to diag(1, . . . , 1, λ, 1 . . . , 1, λ̄−1).
However, since det(g) = λλ̄−1 = 1, we have λ = λ̄ and λ ∈ F×

q . Thus the word problem is completely
solved for even characteristics. For odd characteristics, let s = ελ where ε ∈ Ko, then

wl,−l(s)wl,−l(−ε) = diag(1, . . . , 1, λ, 1, . . . , λ−1).

So if we add wl,−l(s)wl,−l(−ε) to the output of Theorem 1.1, we have the identity matrix.

In the case of SU(2l + 1, q2) we need to add an extra generator h(ζ1) = diag(ζ1, 1, . . . , 1) where
ζ1 is a generator of F1

q2 . Now we can reduce an element of the form diag(α, 1 . . . , λ, 1, . . . , λ̄−1) to
diag(1, 1 . . . , λ, 1, . . . , λ̄−1) by multiplying with the suitable power of h(ζ1). Note that finding the suitable
power involves solving a discrete logarithm problem. Then we use similar computations for even-order
case to reduce diag(1, 1 . . . , λ, 1, . . . , λ̄−1) to identity.

7. The MOR cryptosystem on unitary groups

In this section, we will work with the MOR cryptosystem over U(2l, q2) most of time. However, we
will occasionally refer to the odd-order unitary group as well. Briefly speaking, the MOR cryptosystem
is a simple and straightforward generalization of the classic ElGamal cryptosystem and was put forward
by Paeng et. al. [19]. In a MOR cryptosystem one works with the automorphism group rather than the
group itself. It provides an interesting change in perspective in public-key cryptography – from finite
cyclic groups to finite non-abelian groups. The MOR cryptosystem was studied for the special linear
group in details by Mahalanobis [15]. For many other classical groups, except the orthogonal groups, the
analysis of a MOR cryptosystem remains almost the same. So we will remain brief in this paper and
refer an interested reader to [15] (see also [16]).

The description of the MOR cryptosystem is as follows:

Let G = 〈g1, g2, . . . , gs〉 be a finite group. Let φ be a non-identity automorphism.

• Public-key: Let {φ(gi)}si=1 and {φm(gi)}si=1 is public.

• Private-key: The integer m is private.

Encryption:
To encrypt a plaintext M ∈ G, get an arbitrary integer r ∈ [1, |φ|] compute φr and φrm. The ciphertext
is (φr, φrm (M)).
Decryption:
After receiving the ciphertext (φr, φrm (M)), the user knows the private key m. So she computes φmr
from φr and then computes M.

To develop a MOR cryptosystem we need a thorough understanding of the automorphisms group
of the group involved. The automorphisms of unitary groups are well described in the literature. We
mention them briefly to facilitate further discussion.

7.1. Automorphism group of unitary groups

First we define the similitude group. We need these groups to define diagonal automorphisms.

256

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

Definition 7.1 (Unitary similitude group). The unitary similitude group is defined as:

GU(d, q2) = {X ∈ GL(d, q2) | TX̄βX = µβ, for some µ ∈ F×
q }.

Note that the multiplier µ defines a group homomorphism from GU(d, q2) to F×
q with kernel the unitary

group.

Conjugation Automorphisms: When the conjugation map g 7→ ngn−1 for n ∈ GU(d, q2)
is an automorphism, we call it a conjugation automorphism. They are a composition of two types
of automorphisms – inner automorphisms given as conjugation by elements of U(d, q2) and diagonal
automorphisms given as conjugation by diagonals of GU(d, q2).

Central Automorphisms: Let χ : U(d, q2) → F1
q2 be a group homomorphism. Then the central

automorphism cχ is given by g 7→ χ(g)g. Since [U(d, q2),U(d, q2)] = [SU(d, q2), SU(d, q2)] = SU(d, q2) [11,
Theorem 11.22], any χ is equivalent to a group homomorphism from U(d, q2)/SU(d, q2) to F1

q2 . There
are at most q + 1 such maps.

Field Automorphisms: For any automorphism σ of the field Fq2 , replacing all entries of a matrix
by their image under σ give us a field automorphism.

The following theorem, due to Dieudonné [9, Theorem 25], describes all automorphisms:

Theorem 7.2. Let q be odd and d ≥ 4. Then any automorphism φ of the unitary group U(d, q2) is written
as cχιδσ where cχ is a central automorphism, ι is an inner automorphism, δ is a diagonal automorphism
and σ is a field automorphism.

As we saw above there are three kind of automorphisms in an unitary group. One is conjugation
automorphism, the others are central and field automorphisms. A central automorphism being multipli-
cation by an element of the center which is a field element. Exponentiation of a central automorphism
will give rise to a discrete logarithm problem in Fq2 . Similar is the case with a field automorphism. So
the only choice for a better MOR cryptosystem is a conjugation automorphism.

Once, we have decided that the automorphism that we are going to use in the MOR cryptosystem
will act by conjugation. Further analysis is straightforward and follows [15, Section 7]. Recall that we
insisted that automorphisms in the MOR cryptosystem are presented as action on generators. In this
case, the generators are elementary matrices and the group is a special unitary group of even-order. Other
groups can be used and analyzed similarly. Note that two things can happen: one can find the conjugator
element for the automorphism in use, finding the conjugator up to a scalar multiple is enough or one
cannot find the conjugator in the automorphism.

In the first case, the discrete logarithm problem in the automorphism becomes a discrete logarithm
problem in a matrix group. Assume that we found the conjugating matrix A up to a scalar multiple,
where A ∈ GU(d, q2). Now the discrete logarithm problem in φ becomes a discrete logarithm problem in
A. One can show that by suitably choosing A, the discrete logarithm in A is embedded in the field Fq2d .
This argument is presented in details [15, Section 7.1]. We will not repeat it here. In the next section
(reduction of security), we show that one can find this conjugating element for unitary groups.

The success of any cryptosystem comes from a balance between speed and security. In this paper,
we deal with both speed and security of the MOR cryptosystem briefly. For an implementation of the
MOR cryptosystem, we need to compute power of an automorphism. The algorithm of our choice is
the famous square-and-multiply algorithm. Since we do not use any special algorithm for squaring,
squaring and multiplying is the same for us. So we talk about multiplying two automorphisms. We
present automorphisms as action on generators, i.e., φ(gi) is a matrix for i = 1, 2, . . . , s. The first step of
the algorithm is to find the word in generators from the matrix1. So now the automorphism is φ(gi) = wi
where each wi is a word in generators. Once that is done then composing with an automorphism is

1 One can also present the automorphisms as word in generators, we choose matrices.

257

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

substituting each generator in the word by another word. This can be done fast. The challenging thing
is to find the matrix corresponding to the word thus formed. This is not a hard problem, but can be
both time and memory intensive. What is the best way to do it is still an open question! However,
there are many shortcuts available. One being an obvious time-memory trade off, like storing matrices
corresponding to a word in generators. The other being there are many trivial and non-trivial relations
among these generators and moreover these generators are sparse matrices. One can use these properties
in the implementation.

This problem, which is of independent interest in computational group theory and is a reason that we
insist on automorphisms being presented as generators for the MOR cryptosystem. For more information,
see [15, Section 8].

7.2. Reduction of security

In this subsection, we show that for unitary groups, the security of the MOR cryptosystem reduces
to the discrete logarithm problem in Fq2d . This is the same as saying that we can find the conjugating
matrix up to a scalar multiple. Let φ be an automorphism that works by conjugation, i.e., φ = ιg for
some g and we try to determine g.

Step 1: The automorphism φ is presented as action on generators. Thus φ(xi,−i(s)) = g(I +
sei,−i)g

−1 = I + sgei,−ig
−1. This implies that we know εgei,−ig

−1 and similarly εge−i,ig−1 for a fixed
ε ∈ Ko. We first claim that we can determine N := gD where D is diagonal.

When d = 2l, write g in the column form [G1, . . . Gl, G−1, . . . , G−l]. Now,

1. [G1, . . . Gl, G−1, . . . , G−l] εei,−i = [0, . . . , 0, εGi, 0, . . . , 0] where Gi is at −ith place. Multiplying this
with g−1 gives us scalar multiple of Gi, say di.

2. [G1, . . . Gl, G−1, . . . , G−l] εe−i,i = [0, . . . , 0, εG−i, 0, . . . , 0] where G−i is at ith place. Multiplying
this with g−1 gives us scalar multiple of G−i, say d−i.

Thus we get N = gD where D is a diagonal matrix diag(d1, . . . , dl, d−1, . . . , d−l). In the case when
d = 2l + 1 we write g = [G0, G1, . . . , Gl, G−1, . . . , G−l] and get scalar multiple of columns Gi and G−i.
We now use xi,0(t) and x0,i(t) to get linear combination of G0 with Gi or G−i, say we get αG0 + βG−1.
In this case we get N = gD where D is of the form

α

d1
. . .

dl
β d−1

. . .
d−l

.

Step 2: Now we compute N−1φ(xr(t))N = D−1g−1(gxr(t)g
−1)gD = D−1xr(t)D. Substituting

various xr(t) it amounts to computing D−1erD. When d = 2l, we first compute D−1(ei,j − e−j,−i)D and
get d−1

i dj , d−1
−i d−j for i 6= j. Then we compute D−1ei,−iD,D

−1e−i,iD and get did−1
−i , d−id

−1
i . We form

a matrix

diag(1, d−1
2 d1, . . . , d

−1
l d1, d

−1
−1d1, . . . , d

−1
−l d1)

and multiply it to N = gD to get d1g. Thus we can determine g up to a scalar multiple and the attack
follows [15, Section 7.1.1].

258

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

Figure 1. Some simulations comparing our algorithm with the one inbuilt in Magma.

In the case d = 2l+1, the matrixD is almost a diagonal matrix except the first column. However while
computing D−1(e12 − e−2,−1)D we also get d−1

−2β and by computing D−1(e0,1 − 2e−1,0 − e−1,1)D we get
α−1D. Thus we can multiply αG0 +βG−1 by β−1d1 = β−1d−2d

−1
−2d−1d

−1
−1d1 and get αβ−1d1G0 +d1G−1.

With the computation in even case we can determine d1G−1 and hence can determine αG0. Furthermore,
since we know α−1d1 we can determine d1G0 thus in this case as well we can determine d1g, i.e., g up to
a scalar multiple.

8. Conclusion

For us, this paper is an interplay of finite (non-abelian) groups and public key cryptography. Compu-
tational group theory, in particular computations with quasi-simple groups have a long and distinguished
history [2, 7, 13, 14, 17]. The interesting thing to us is, some of the questions that arise naturally when
dealing with the MOR cryptosystem are interesting in its own right in computational group theory and
are actively studied. The row-column operations that we developed is one example of that. In the row-
column operations we developed, we used a different set of generators. These generators have a long
history starting with Chevalley. In our knowledge, we are the first to use them in row-column operations
in unitary groups. Earlier works were mostly done using the standard generators. It seems that Chevalley
generators might offer a paradigm shift in algorithms with quasi-simple groups. In Magma, there is an
implementation of row-column operations in unitary groups in a function ClassicalRewriteNatural. We
compared that function with our algorithm in an actual implementation on even order unitary groups
using identical parameters. To select parameters for our simulation, we followed Costi’s work [8, Table
6.2]. In one case, the characteristic of the field was fixed at 7 and the size of the matrix at 20, we varied
the degree of the extension of the field from 4 to 34. We then picked at random elements from the
GeneralUnitaryGroup and timed our algorithm. We did the same with the magma function using special
unitary group. The final time was the average over one thousand such repetitions. Times of both these
algorithms were tabulated and is presented in Figure 1. In another case, we kept the field fixed at 710

and changed the size of the matrix. In all cases, the final time was the average of one thousand random
repetitions. The timing was tabulated and presented in Figure 1. It seems the our algorithm is much
better than that of Costi’s from all aspects.

Acknowledgment: Authors owe a debt of gratitude to the referee and the handling editor for
careful reading and wonderful comments which has improved the paper substantially.

259

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605

A. Mahalanobis, A. Singh / J. Algebra Comb. Discrete Appl. 4(3) (2017) 247–260

References

[1] S. Ambrose, S. Murray, C. E. Praeger, C. Schneider, Constructive membership testing in black–box
classical groups, Proceedings of The Third International Congress on Mathematical Software, LNCS
6327 (2011) 54–57.

[2] H. Bäärnhielm, D. Holt, C. R. Leedham-Green, E. A. O’Brien, A practical model for computation
with matrix groups, J. Symb. Comput. 68 (2015) 27–60.

[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language, J. Symb.
Comput. 24(3-4) (1997) 235–265.

[4] P. Brooksbank, Constructive recognition of classical groups in their natural representation, J. Symb.
Comput. 35(2) (2003) 195–239.

[5] P. Brooksbank, Fast constructive recognition of black–box unitary groups, LMS J. Comput. Math.
6 (2003) 162–197.

[6] R. Carter, Simple Groups of Lie Type, New York: John Wiley and Sons, 1972.
[7] A. M. Cohen, S. H. Murray, D. E. Taylor, Computing in groups of Lie type, Math. Comput. 73

(2004) 1477–1498.
[8] E. Costi, Constructive Membership Testing in Classical Groups, Ph.D. thesis, Queen Mary, Univ. of

London, 2009.
[9] J. Dieudonne, On the automorphisms of the classical groups. with a supplement by Loo-Keng Hua,

Mem. Amer. Math. Soc. 2 (1951) vi+122.
[10] J. F. Grcar, Mathematicians of Gaussian elimination, Notices Amer. Math. Soc. 58(6) (2011) 782–

792.
[11] L. C. Grove, Classical Groups and Geometric Algebra, vol. 39, American Mathematical Society,

Graduate Studies in Mathematics, 2002.
[12] N. Jacobson, Basic Algebra I, W. H. Freeman and Company, New York, 1985.
[13] W. Kantor À. Seress, Black box classical groups, vol. 149, Mem. Amer. Math. Soc. 149 (2001)

viii+168.
[14] C. R. Leedham–Green, E. A. O’Brien, Constructive recognition of classical groups in odd character-

istic, J. Algebra 322(3) (2009) 833–881.
[15] A. Mahalanobis, A simple generalization of the ElGamal cryptosystem to non–abelian groups II,

Commun. Algebra 40(9) (2012) 3583–3596.
[16] C. Monico, Cryptanalysis of matrix–based MOR system, Commun. Algebra 44(1) (2016) 218–227.
[17] A. C. Niemeyer, C. E. Praeger, A recognition algorithm for classical groups over finite fields, Proc.

London Math. Soc. 77(1) (1998) 117–169.
[18] E. A. O’Brien, Algorithms for matrix groups, Groups St. Andrews 2009 in Bath, II, London Math.

Soc. Lecture Note Ser., 388 (Cambridge Univ. Press, Cambridge, 2011), 297–323.
[19] SH. Paeng, KC. Ha, J. H. Kim, S. Chee, C. Park, New public key cryptosystem using finite non–

abelian groups, Crypto 2001 (J. Kilian, ed.), LNCS, vol. 2139, Springer–Verlag, (2001) 470–485.
[20] Á. Seress, An introduction to computational group theory, Notices Amer. Math. Soc. 44(6) (1997)

671–679.
[21] R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959) 875–891.

260

http://orcid.org/0000-0001-9822-3672
http://orcid.org/0000-0002-6162-4605
http://dx.doi.org/10.1007/978-3-642-15582-6_11
http://dx.doi.org/10.1007/978-3-642-15582-6_11
http://dx.doi.org/10.1007/978-3-642-15582-6_11
http://dx.doi.org/10.1016/j.jsc.2014.08.006
http://dx.doi.org/10.1016/j.jsc.2014.08.006
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1016/S0747-7171(02)00132-3
http://dx.doi.org/10.1016/S0747-7171(02)00132-3
https://doi.org/10.1112/S1461157000000437
https://doi.org/10.1112/S1461157000000437
https://doi.org/10.1090/S0025-5718-03-01582-5
https://doi.org/10.1090/S0025-5718-03-01582-5
http://www.ams.org/mathscinet-getitem?mr=45125
http://www.ams.org/mathscinet-getitem?mr=45125
http://www.ams.org/mathscinet-getitem?mr=2839923
http://www.ams.org/mathscinet-getitem?mr=2839923
http://www.ams.org/mathscinet-getitem?mr=1859189
http://www.ams.org/mathscinet-getitem?mr=1859189
http://www.ams.org/mathscinet-getitem?mr=780184
http://www.ams.org/mathscinet-getitem?mr=1804385
http://www.ams.org/mathscinet-getitem?mr=1804385
http://dx.doi.org/10.1016/j.jalgebra.2009.04.028
http://dx.doi.org/10.1016/j.jalgebra.2009.04.028
http://dx.doi.org/10.1080/00927872.2011.602998
http://dx.doi.org/10.1080/00927872.2011.602998
http://dx.doi.org/10.1080/00927872.2014.974254
https://doi.org/10.1112/S0024611598000422
https://doi.org/10.1112/S0024611598000422
http://www.ams.org/mathscinet-getitem?mr=2858866
http://www.ams.org/mathscinet-getitem?mr=2858866
http://dx.doi.org/10.1007/3-540-44647-8_28
http://dx.doi.org/10.1007/3-540-44647-8_28
http://www.ams.org/mathscinet-getitem?mr=1452069
http://www.ams.org/mathscinet-getitem?mr=1452069
http://www.ams.org/mathscinet-getitem?mr=109191

	Introduction
	Unitary groups
	Elementary matrices and elementary operations in unitary groups
	Gaussian elimination in unitary group
	Some lemmas
	Finite unitary groups
	The MOR cryptosystem on unitary groups
	Conclusion
	References

