Journal of Algebra Combinatorics Discrete Structures and Applications

Fourier matrices of small rank

Research Article

Gurmail Singh

Abstract

Modular data is an important topic of study in rational conformal field theory. Cuntz, using a computer, classified the Fourier matrices associated to modular data with rational entries up to rank 12, see [3]. Here we use the properties of C-algebras arising from Fourier matrices to classify complex Fourier matrices under certain conditions up to rank 5. Also, we establish some results that are helpful in recognizing C-algebras that not arising from Fourier matrices by just looking at the first row of their character tables.

2010 MSC: 05E30, 05E99, 81R05
Keywords: Fourier matrices, Modular data, Fusion rings, C-algebras

1. Introduction

Fourier matrices are a fundamental ingredient of modular data. Modular data is a basic component of rational conformal field theory, see [5]. Further, rational conformal field theory has important applications in physics, see [4] and [8]. In particular, it has nice applications to string theory, statistical mechanics, and condensed matter physics, see [10] and [13]. Modular data give rise to fusion rings, C-algebras and C^{*}-algebras, see [3] and [11]. These rings and algebras are interesting topics of study in their own right.

A unitary and symmetric matrix whose first column has positive real entries is called a Fourier matrix if its columns under entrywise multiplication produce integral structure constants. The set of columns of a Fourier matrix under entrywise multiplication and usual addition generate a fusion algebra, see [3]. But a two-step rescaling on Fourier matrices gives rise to self-dual C-algebras. Cuntz, using a computer, classified the Fourier matrices with rational entries up to rank 12, see [3]. But rational Fourier matrices do not include some other important matrices, see sections 4,5 and 6 . Here we use C-algebra perspective to classify the complex Fourier matrices up to rank 5 under certain conditions. Also, we establish some results that are helpful in recognizing the C-algebras that are not arising from Fourier matrices by mere looking at the first row of their character tables.

[^0]In Section 2, we collect the definitions and introduce a two-step rescaling of Fourier matrices. In Section 3, we summarize the results that are useful to recognize the C-algebras that are not arising from Fourier matrices. In Section 4, we classify Fourier matrices of rank 2 and 3. In sections 5 and 6, we classify non-homogeneous Fourier matrices of rank 4 and rank 5, respectively. For the classification of homogenous Fourier matrices see [11, Theorem 13].

2. C-algebras arising from Fourier matrices

A scaling of the rows of a Fourier matrix gives the basis of a Fusion algebra that contains the identity element. But a two-step rescaling of a Fourier matrix gives the standard basis of C-algebra.

Definition 2.1. Let A be a finite dimensional and commutative algebra over \mathbb{C} with distinguished basis $\mathbf{B}=\left\{b_{0}:=1_{A}, b_{1}, \ldots, b_{r-1}\right\}$, and an \mathbb{R}-linear and \mathbb{C}-conjugate linear involution $*: A \rightarrow A$. Let $\delta: A \rightarrow \mathbb{C}$ be an algebra homomorphism. Then the triple (A, \mathbf{B}, δ) is called a C-algebra if it satisfies the following properties:

1. for all $b_{i} \in \mathbf{B},\left(b_{i}\right)^{*}=b_{i^{*}} \in \mathbf{B}$,
2. for all $b_{i}, b_{j} \in \mathbf{B}$, we have $b_{i} b_{j}=\sum_{b_{k} \in \mathbf{B}} \lambda_{i j k} b_{k}$, for some $\lambda_{i j k} \in \mathbb{R}$,
3. for all $b_{i}, b_{j} \in \mathbf{B}, \lambda_{i j 0} \neq 0 \Longleftrightarrow j=i^{*}$,
4. for all $b_{i} \in \mathbf{B}, \lambda_{i i^{*} 0}=\lambda_{i^{*} i 0}>0$.
5. for all $b_{i} \in \mathbf{B}, \delta\left(b_{i}\right)=\delta\left(b_{i^{*}}\right)>0$.

The algebra homomorphism δ is called a degree map, and the values $\delta\left(b_{i}\right)$, for all $b_{i} \in \mathbf{B}$, are called the degrees of A. For $i \neq 0, \delta\left(b_{i}\right)$ is called a nontrivial degree. If $\delta\left(b_{i}\right)=\lambda_{i i^{*} 0}$, for all $b_{i} \in \mathbf{B}$, we say that \mathbf{B} is a standard basis. The order of a C-algebra is denfined as $\delta\left(\mathbf{B}^{+}\right):=\sum_{i=0}^{r-1} \delta\left(b_{i}\right)$. A C-algebra is called symmetric if $b_{i^{*}}=b_{i}$, for all i. A C-algebra with rational structure constants is called a rational C-algebra. The readers interested in C-algebras are directed to [1], [2] and [7].

To keep the generality, in the following definition of a Fourier matrix we assume the structure constants to be integers instead of nonnegative integers, see [3, Definition 2.2].

Definition 2.2. Let $r \in \mathbb{Z}^{+}$and I an $r \times r$ identity matrix. Then S is called a Fourier matrix if

1. S is a unitary and symmetric matrix, that is, $S \bar{S}^{T}=I, S=S^{T}$,
2. $S_{i 0}>0$, for $0 \leq i \leq r-1$, where S is indexed by $\{0,1,2, \ldots, r-1\}$,
3. $N_{i j k}=\sum_{l} S_{l i} S_{l j} \bar{S}_{l k} S_{l 0}^{-1} \in \mathbb{Z}$, for all $0 \leq i, j, k \leq r-1$.

Let S be a Fourier matrix. Let $s=\left[s_{i j}\right]$ be a matrix with entries $s_{i j}=S_{i j} / S_{i 0}$, for all i, j, we call it an s-matrix associated to S (briefly, s-matrix). Since S is a unitary matrix, $s \bar{s}^{T}=\operatorname{diag}\left(d_{0}, d_{1}, \ldots, d_{r-1}\right)$ is a diagonal matrix, where $d_{i}=\sum_{j} s_{i j} \bar{s}_{i j}$. The numbers d_{i} are called norms of s-matrix. The relation $s_{i j}=S_{i j} / S_{i 0}$ implies the structure constants $N_{i j k}=\sum_{l} s_{l i} s_{l j} s_{l k} d_{l}^{-1}$, for all i, j, k. Since the structure constants $N_{i j k}$ are integers, the numbers $s_{i j}$ are algebraic integers, see [3, Section 3]. Therefore, if S has only rational entries then entries of s-matrix are rational integers, and such s-matrices are known as integral Fourier matrices, see [3, Definition 3.1]. Cuntz classified the integral Fourier matrices up to rank 12 by using a computer, see [3]. In this paper, we consider the broader class of s-matrices that have algebraic integer entries.

There is an interesting row-and-column operation (two-step rescaling) procedure that can be applied to a Fourier matrix S that results in the first eigenmatrix, the character table, of a self-dual C-algebra. The steps of the procedure are reversed to obtain the Fourier matrix S from the first eigenmatrix. The
explanation of the procedure is as follows. Let $S=\left[S_{i j}\right]$ be a Fourier matrix indexed with $\{0,1, \ldots, r-1\}$. We divide each row of S with its first entry and obtain the s-matrix. The multiplication of each column of the s-matrix with its first entry gives the P-matrix associated to S (briefly, P-matrix), the first eigenmatrix of a self-dual C-algebra. That is, $s_{i j}=S_{i j} S_{i 0}^{-1}$ and $p_{i j}=s_{i j} s_{0 j}$, for all i, j, where $p_{i j}$ denotes the (i, j)-entry of the P-matrix. Conversely, to obtain the s-matrix from a P-matrix, divide each column of the P-matrix with the squareroot of its first entry. Further, the Fourier matrix S is obtained from the s-matrix by dividing the i th row of s-matrix by $\sqrt{d_{i}}$, where $d_{i}=\sum_{j}\left|s_{i j}\right|^{2}$. That is, $s_{i j}=p_{i j} / \sqrt{p_{0 j}}$, and $S_{i j}=s_{i j} / \sqrt{d_{i}}$, for all i, j. Since the entries of an s-matrix are algebraic integers, the entries of a P-matrix are also algebraic integers.
Remark 2.3. Throughout this paper, unless mentioned explicitly, the sets of columns of a P-matrix and an s-matrix are denoted by $\mathbf{B}=\left\{b_{0}, b_{1}, \ldots, b_{r-1}\right\}$ and $\tilde{\mathbf{B}}=\left\{\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{r-1}\right\}$, respectively. The structure constants generated by the columns, with entrywise multiplication, of a P-matrix and an s-matrix are denoted by $\lambda_{i j k}$ and $N_{i j k}$, respectively. M^{T} denotes the transpose of a matrix M.

Let S be a Fourier matrix and $A:=\mathbb{C B}$, a \mathbb{C}-span of B. Define a map $*: A \longrightarrow A$ by $\left(\sum_{j} a_{j} b_{j}\right)^{*}=$ $\sum_{j} \bar{a}_{j} b_{j^{*}}=\sum_{j} \bar{a}_{j}\left[\bar{p}_{0 j}, \bar{p}_{1 j}, \ldots, \bar{p}_{r-1, j}\right]^{T}$. This map $*$ is an involution on A, and the map $\delta: A \longrightarrow \mathbb{C}$ defined as $\delta\left(\sum_{j} a_{j} \tilde{b}_{j}\right)=\sum_{j} \bar{a}_{j} s_{0 j}$, that is, $\delta\left(b_{i}\right)=\delta\left(s_{0 i} \tilde{b}_{i}\right)=s_{0 i}^{2}$ for all i, is a positive degree map of A. Since $b_{i}=s_{0 i} \tilde{b}_{i}$, the structure constants generated by the basis \mathbf{B} are given by $\lambda_{i j k}=N_{i j k} s_{0 i} s_{0 j} s_{0 k}^{-1}$, for all i, j, k. S is a unitary matrix, therefore, $N_{i j 0}=\sum_{l} S_{l i} S_{l j} \bar{S}_{l 0} S_{l 0}^{-1} \neq 0 \Longleftrightarrow j=i^{*}$ and $N_{i i^{*} 0}=1>0$, for all i, j. Thus $\lambda_{i j 0} \neq 0 \Longleftrightarrow j=i^{*}$ and $\lambda_{i i^{*} 0}>0$, for all i, j. Therefore, the vector space $A:=\mathbb{C B}$ is a C-algebra of order d_{0}, \mathbf{B} is the standard basis of A, and P-matrix is the first eigenmatrix of A, see [11, Theorem 4], and we say (A, \mathbf{B}, δ) is a C-algebra arising from a Fourier matrix S. Note that, entries of the first eigenmatrix P are the entries of the character table A. Thus at some places we consider the P-matrix of A as the character table of A and the i th row of P-matrix as the i th irreducible character of A.

Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S. Since S is a symmetric matrix, A is a self-dual C-algebra and $d_{0}=d_{j} \delta\left(b_{j}\right)$, for all j. The entries of an s-matrix and the associated P-matrix are algebraic integers. Therefore, if A has rational degrees then both the degrees and norms are rational integers and both divide the order of A, see [11, Proposition 5]. Note that, a C-algebra arising from a Fourier matrix S is a symmetric C-algebra if and only if S is a real matrix. A C-algebra that has at least two different nontrivial degrees is called a non-homogeneous C-algebra and we call the associated Fourier matrix (s-matrix) a non-homogeneous Fourier matrix (non-homogeneous s-matrix, respectively).

Every self-dual C-algebra not necessarily have rational degrees. For example, a self-dual C-algebra of rank 2 with basis $\{1, x\}$, and the structure constants given by the equation $x^{2}=1+x$ does not have rational degrees. We remark that this C-algebra does not arise from a Fourier matrix. But a rational C-algebra arising from a Fourier matrix has integral degrees, see [11, Proposition 5].
Lemma 2.4. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S of rank r.

1. If A has rational order then the order of A is an integer.
2. If A has nonnegative structure constants then degrees of A are greater or equal to 1 .
3. If A has rational order and all the degrees of A different from 1 are all equal then the degrees of A are integers. (Note: the algebra A need not be homogeneous.)

Proof. (i). Since degrees of A are algebraic integers and order of A is the sum of degrees of A, the order of A is a rational integer.
(ii). For any $i, \delta\left(b_{i}\right)$ is the first entry of column vector $\left(\tilde{b}_{i}\right)^{2}$ and $N_{i i 0}=1$. Note that, $N_{i j k} \geq 0$ for all i, j, k, because A has nonnegative structure constants. Therefore, $\delta\left(b_{i}\right)=1+m$, where m is a nonnegative algebraic integer.
(iii). Let all the degrees of A different from 1 be a positive real number t. Therefore, $d_{0}=m+n t$, where m is the number of degrees equal to 1 and n is the number of degrees equal to t. Since the order d_{0} is an integer, t is an integer.

3. Recognition of C-algebras arising from Fourier matrices

The following results are useful for recognizing C-algebras that are not arising from Fourier matrices by mere looking at the degrees of C-algebras, that is, the first row of the character tables. All the character tables of the association schemes used here are produced by Hanaki and Miyamoto, see [6].

Lemma 3.1. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S with nonnegative structure constants. Let $L(\mathbf{B})=\{b \in \mathbf{B}: \delta(b)=1\}$. Then $L(\mathbf{B})$ is an abelian group.

Proof. Since $\delta\left(b_{0}\right)=1, b_{0} \in L$. Let $b_{i}, b_{j} \in L(\mathbf{B})$. Therefore, $b_{i}=\tilde{b}_{i}$ and $b_{j}=\tilde{b}_{j}$. Thus $b_{i} b_{j}=\tilde{b}_{i} \tilde{b}_{j}=$ $\sum_{k} N_{i j k} \tilde{b}_{k}$ implies $1=\delta\left(b_{i} b_{j}\right)=\sum_{k} N_{i j k} \delta\left(\tilde{b}_{k}\right)$. By Lemma 2.4, $\delta\left(b_{l}\right) \geq 1$, thus $\delta\left(\tilde{b}_{l}\right)=\sqrt{\delta\left(b_{l}\right)} \geq 1$, for all l. Therefore, $b_{i} b_{j}=\tilde{b}_{k}$, for some $b_{k} \in \mathbf{B}$. Also, for all $b_{i} \in L(\mathbf{B}), b_{i} b_{i^{*}}=b_{0}+\sum_{j} \lambda_{i i^{*} j} b_{j}$ and $\lambda_{i i^{*} j} \geq 0$ imply $b_{i} b_{i^{*}}=b_{0}$, that is, $b_{i}^{-1}=b_{i^{*}} \in L(\mathbf{B})$. Hence $L(\mathbf{B})$ is an abelian group.
Proposition 3.2. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S with nonnegative structure constants. Let S be a real Fourier matrix.

1. Let the order of A be a rational number. If all the degrees of A different from 1 are equal to then t might be a power of 2 .
2. If rank of A is an even integer then A cannot have only one degree different from 1 .
3. Let the order of A be a rational number. If the rank of A is greater than 3 then A cannot have only one degree greater or equal to r and all other degrees equal to 1 .

Proof. (i). Since S is a real Fourier matrix, by Lemma 3.1, the elements of \mathbf{B} with degree 1 form an elementary abelian group. Thus the number of elements of \mathbf{B} with degree 1 is a power of 2 . By Lemma $2.4, t$ is an integer. The result follows from the fact that t divides the order of the algebra, see [11, Proposition 5 (ii)].
(ii). If rank of A is 2 then both degrees are equal to 1 , see Section 4. By Lemma 3.1, the set of elements of \mathbf{B} with degree 1 form an elementary abelian group. Therefore, the order of the group is a power of 2 , say 2^{m}, where m is a nonnegative integer. Since A has only one degree different from 1 , $2^{m}=r-1$, a contradiction to the fact that r is an even integer.
(iii). Suppose A has only one degree k that is greater or equal to r and the remaining degrees are equal to 1 . Without loss of generality, let the first row of the character table be $[1,1, \ldots, 1, k]$, where $k \geq r$. Since $\delta\left(b_{0}\right)=\ldots=\delta\left(b_{r-2}\right), d_{0}=\ldots=d_{r-2}$. The structure constants are nonnegative, therefore, $\left|p_{i j}\right| \leq p_{0 j}$ for all i, j, see [12, Proposition 4.1]. Therefore, the only possible entries of row $2, \ldots$, row $r-1$ of P-matrix are $[1,1, \ldots, 1,-k]$, which is not possible as P nonsingular.

The adjacency algebras of the association schemes as12(9), as14(4), as16(10), as16(20), as16(21) and as16(62) have the degree patterns that violate the above result, see [6]. Therefore, they are not arising from Fourier matrices. The character table of the association scheme as4 (2) [6] is an example where part (iii) of the above proposition fails for the rank 3. The above proposition also helps to sieve out a lot of C-algebras even if their self-duality is not known.

The next proposition helps to recognize the C-algebras not arising from Fourier matrices.
Proposition 3.3. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S of rational order. Let the number of i 's such that $\delta\left(b_{i}\right)=1$ be t and the remaining $r-t$ degrees are equal to k. Then the possible values of k are the divisors of t.

Proof. By Lemma 2.4, the order and degrees of A are integers. Since entries of s-matrix are algebraic integers, all the norms are also integer, that is, $d_{0} k^{-1} \in \mathbb{Z}$. Therefore, $d_{0}=t+\left(d_{0}-t\right) k$ implies $t k^{-1} \in \mathbb{Z}$. Hence k is in the subset of the divisors of t.

The above proposition illustrates that the adjacency algebras of the association schemes as9(3), as9 (8), as10(6), as16(20), as16(21) and as16(62) [6] are not arising from Fourier matrices.

In the next proposition we examine the possible number of occurrences of a degree if it is one of the degrees and satisfy a certain criteria.

Proposition 3.4. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S with integral degrees.

1. If for a given $j, \delta\left(b_{j}\right)(\neq 1)$ is a smallest nontrivial degree that divides all the nontrivial degrees $\delta\left(b_{l}\right)(\neq 1)$ then the number of degrees equal to 1 is a multiple of $\delta\left(b_{j}\right)$.
2. Let $\delta\left(b_{t}\right)$ be a degree divisible by all the smaller degrees and divides all the bigger degrees. Let $\delta\left(b_{s}\right)$ be the largest degree among all the degrees strictly less than $\delta\left(b_{t}\right)$. Let the sum of the degrees less than $\delta\left(b_{s}\right)$ be $\beta_{1} \delta\left(b_{s}\right)$ and the number of degrees equal to $\delta\left(b_{s}\right)$ be β_{2}. Then $\beta_{1} \delta\left(b_{s}\right)+\beta_{2} \delta\left(b_{s}\right)$ is divisible by $\delta\left(b_{s}\right)$. (Note: $\beta_{1} \delta\left(b_{s}\right)$ is not equal to zero only if $\delta\left(b_{s}\right)>1$.)
3. Suppose A has nonnegative structure constants. If for all $i<j, \delta\left(b_{i}\right)$ divides $\delta\left(b_{j}\right)$ then A has integral structure constants.

Proof. (i). Since degrees of A are integers, the norms are integers. Thus, $d_{0} \delta\left(b_{j}\right)^{-1} \in \mathbb{Z}$. Therefore,

$$
\left(1+\sum_{i=1}^{r-1} \delta\left(b_{i}\right)\right) \delta\left(b_{j}\right)^{-1}=\left(\sum_{\delta\left(b_{i}\right)=1} \delta\left(b_{i}\right)+\sum_{\delta\left(b_{i}\right) \geq \delta\left(b_{j}\right)} \delta\left(b_{i}\right)\right) \delta\left(b_{j}\right)^{-1}=\left(\sum_{\delta\left(b_{i}\right)=1} \delta\left(b_{i}\right)\right) \delta\left(b_{j}\right)^{-1}+\alpha \in \mathbb{Z}
$$

where $\alpha \in \mathbb{Z}$. Hence the number of degrees equal to 1 are multiple of $\delta\left(b_{j}\right)$.
(ii). The degrees and norms of A are integers. Therefore,

$$
\begin{aligned}
d_{0} \delta\left(b_{t}\right)^{-1} & =\left(\sum_{i=0}^{r-1} \delta\left(b_{i}\right)\right) \delta\left(b_{t}\right)^{-1}=\left(\sum_{\delta\left(b_{i}\right)<\delta\left(b_{s}\right)} \delta\left(b_{i}\right)+\sum_{\delta\left(b_{i}\right)=\delta\left(b_{s}\right)} \delta\left(b_{i}\right)+\sum_{\delta\left(b_{i}\right)>\delta\left(b_{s}\right)} \delta\left(b_{i}\right)\right) \delta\left(b_{t}\right)^{-1} \\
& =\left(\beta_{1} \delta\left(b_{s}\right)+\sum_{\delta\left(b_{i}\right)=\delta\left(b_{s}\right)} \delta\left(b_{i}\right)\right) \delta\left(b_{t}\right)^{-1}+\gamma \in \mathbb{Z},
\end{aligned}
$$

where $\gamma \in \mathbb{Z}$. Thus $\beta_{1} \delta\left(b_{s}\right)+\beta_{2} \delta\left(b_{s}\right)$ is divisible by $\delta\left(b_{t}\right)$.
(iii). Since $\lambda_{i j k}$ are nonnegative, $N_{i j k}$ are nonnegative, because $\lambda_{i j k}=N_{i j k} s_{0 i} s_{0 j} s_{0 k}^{-1}$, for all i, j, k. Let $\tilde{b_{i}} \tilde{b_{j}}=\sum_{k} N_{i j k} \tilde{b_{k}}$. On comparing the first entry of both sides, we conclude that $\tilde{b_{k}}$ cannot occur with nonzero coefficient whenever $s_{0 k}>s_{0 i} s_{0 j}$, that is, $\sqrt{\delta\left(b_{k}\right)}>\sqrt{\delta\left(b_{i}\right) \delta\left(b_{j}\right)}$ implies $N_{i j k}=0$. Hence the assertion follows from the relation between $\lambda_{i j k}$ and $N_{i j k}$.

For example, the adjacency algebras of association schemes as7(2), as8(5), as8(6), as9(8), as9 (9) and adjacency algebras of homogenous schemes have the degree patterns that violate the above proposition, see [6]. Therefore, they are not arising from Fourier matrices.

Lemma 3.5. Let (A, \mathbf{B}, δ) be a C-algebra arising from a rational Fourier matrix S of odd rank and odd order. Let the odd degree among all the degrees of A be maximum. Then the rank of A must be at least 11.

Proof. Let $d_{0}=\delta\left(b_{i}\right) a_{i}$. By [3, Lemma 3.7], d_{0} is an odd square, thus a_{i} is a square. Let $\delta\left(b_{1}\right)$ be an odd integer and $\delta\left(b_{1}\right) \geq \delta\left(b_{i}\right)$ for each i. Therefore, $d_{0} \geq 9 \delta\left(b_{1}\right)$, and $d_{0} \leq 1+(r-1) \delta\left(b_{1}\right)$. Thus $9 \delta\left(b_{1}\right) \leq 1+(r-1) \delta\left(b_{1}\right)$ implies $\delta\left(b_{1}\right)(9-(r-1)) \leq 1$ implies $\delta\left(b_{1}\right) \in \mathbb{Z}^{+}$only if $r-1 \geq 9$.

4. Fourier matrices of rank 2 and 3

In this section we classify Fourier matrices of rank 2 and 3 . In fact, we find the P-matrices of C-algebras arising from Fourier matrices of rank 2 and 3. But the associated Fourier matrix S can be recovered easily from the P-matrix as described in Section 2.

Since the row sum of a character table is zero, the character table of a C-algebra of rank 2 with standard basis $\mathbf{B}=\left\{b_{0}, b_{i}\right\}$ is given by $P=\left[\begin{array}{cc}1 & n \\ 1 & -1\end{array}\right]$, and the structure constants are given by $b_{1}^{2}=$ $n b_{0}+(n-1) b_{1}$. Therefore, the structure constant N_{111} is integer only for $n=1$, and the associated Fourier matrix $S=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & n \\ 1 & -1\end{array}\right]$.

Let P be the character table for a symmetric C-algebra arising from a Fourier matrix of rank 3 with standard basis $\mathbf{B}=\left\{b_{0}, b_{1}, b_{2}\right\}$. Let $b_{1} b_{2}=u b_{1}+v b_{2}$. Then

$$
P=\left[\begin{array}{lll}
1 & k_{1} & k_{2} \\
1 & \phi_{1} & \phi_{2} \\
1 & \psi_{1} & \psi_{2}
\end{array}\right],
$$

where $\phi_{1}=\left(v-u-1+\sqrt{(u-v-1)^{2}+4 u}\right) / 2, \quad \phi_{2}=\left(u-v-1-\sqrt{(u-v-1)^{2}+4 u}\right) / 2$, and $\psi_{1}=\left(v-u-1-\sqrt{(u-v-1)^{2}+4 u}\right) / 2, \quad \psi_{2}=\left(u-v-1+\sqrt{(u-v-1)^{2}+4 u}\right) / 2$. Therefore, $d_{0}=1+k_{1}+k_{2}, d_{1}=1+\frac{\left|\phi_{1}\right|^{2}}{k_{1}}+\frac{\left|\phi_{2}\right|^{2}}{k_{2}}, d_{2}=1+\frac{\left|\psi_{1}\right|^{2}}{k_{1}}+\frac{\left|\psi_{2}\right|^{2}}{k_{2}}$.
Lemma 4.1. There is no symmetric homogenous C-algebra of rank 3 arising from a Fourier matrix S.
Proof. Suppose (A, \mathbf{B}, δ) is a symmetric homogenous C-algebra arising from a Fourier matrix. Since $S^{T}=S, \phi_{2} k=\psi_{1} l$ implies $u=v$. The structure constant $N_{210}=0$ implies $k=2 u$. Thus $\phi_{1}=$ $(-1+\sqrt{1+2 k}) / 2$ and $\phi_{2}=(-1-\sqrt{1+2 k}) / 2$. A homogenous C-algebra arising from a Fourier matrix has all degrees equal to 1 , see [11, Proposition 12]. But the structure constants

$$
N_{112}=\frac{1}{(2 k+1) \sqrt{k}}\left[k^{2}+\frac{k}{2}\right] \text { and } N_{222}=\frac{1}{(2 k+1) \sqrt{k}}\left[k^{2}-1-\frac{3}{2} k\right]
$$

are not integers for $k=1$, a contradiction.
Theorem 4.2. Let (A, \mathbf{B}, δ) be a symmetric non-homogeneous C-algebra of rank 3 arising from a Fourier matrix S with integral degrees. Then the corresponding matrices P, s and S are as follows.

$$
P=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 1 & -2 \\
1 & -1 & 0
\end{array}\right], \quad s=\left[\begin{array}{ccc}
1 & 1 & \sqrt{2} \\
1 & 1 & -\sqrt{2} \\
1 & -1 & 0
\end{array}\right] \quad \text { and } S=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right] .
$$

Proof. Let $\delta\left(b_{i}\right)=k_{i}$, for all i. Since the integral degrees of A divide the order, k_{1} divides $1+k_{2}$, and k_{2} divides $1+k_{1}$. Therefore, the only possible degree pattern of A are $[1,1,2]$ and $[1,2,3]$, up to the permutations. Since $N_{012}=0,1-\frac{v}{k_{1}}-\frac{u}{k_{2}}=0$. Therefore, the degree patterns [1, 1,2] and [1,2,3] imply $v=1-\frac{u}{2}$ and $v=2-\frac{2 u}{3}$, respectively.

Case 1. Let the degree pattern be $[1,1,2]$, that is, $k_{1}=1$ and $k_{2}=2$.
Therefore, $v=1-\frac{u}{2}$. Since $N_{011}=1, u^{3}(u-1)=0$. Hence $(u, v)=(0,1)$, or $(u, v)=(1,1 / 2)$.
Subcase 1. Let $(u, v)=(0,1)$.

Therefore,

$$
P=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 1 & -2 \\
1 & -1 & 0
\end{array}\right], s=\left[\begin{array}{ccc}
1 & 1 & \sqrt{2} \\
1 & 1 & -\sqrt{2} \\
1 & -1 & 0
\end{array}\right] \text { and } S=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right] .
$$

Subcase 2. Let $(u, v)=\left(1, \frac{1}{2}\right)$.
Therefore,

$$
P=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & \frac{-3+\sqrt{17}}{4} & \frac{-1-\sqrt{17}}{4} \\
1 & \frac{-3-\sqrt{17}}{4} & \frac{-1+\sqrt{17}}{4}
\end{array}\right]
$$

Note that $\delta\left(b_{1}\right)=\delta\left(b_{0}\right)$, but $d_{1} \neq d_{0}$, a contradiction. Hence $u=1$ and $v=\frac{1}{2}$ is not a possible case.
Case 2. Let the degree pattern be $[1,2,3]$, that is, $k_{1}=2$ and $k_{2}=3$.
Therefore, $v=2-\frac{2 u}{3}$. Since $N_{011}=1,625 u^{4}-1850 u^{3}+2520 u^{2}-1296 u+243=0$. But it has no real roots, see [9]. Thus we rule out $[1,2,3]$ degree pattern, because an s-matrix associated with a symmetric C-algebra might be a real matrix.

Remark 4.3. The above P-matrix is given by the character table of the adjacency algebra of an association scheme as4(2), see [6].

In the next theorem we prove that there is only one asymmetric C-algebra of rank 3 arising from a Fourier matrix. Moreover, the following theorem shows that for rank 3 it is not necessary to assume $\left|s_{i j}\right| \leq s_{0 j}$ to prove that the homogeneous C-algebra arising from a Fourier matrix is a group algebra, see [11, Theorem 13].

Theorem 4.4. Let (A, \mathbf{B}, δ) be an asymmetric C-algebra arising from a Fourier matrix S of rank 3 . Then the P-matrix is the first eigenmatrix of the group algebra of a group of order 3.

Proof. The P-matrix of an asymmetric C-algebra of rank 3 is as follows,

$$
P=\left[\begin{array}{lll}
1 & k & k \\
1 & \alpha & \bar{\alpha} \\
1 & \bar{\alpha} & \alpha
\end{array}\right]
$$

where $\alpha=(-1+i \sqrt{1+2 k}) / 2$. Since A is homogenous, $k=1$, see [11, Proposition 12]. Therefore,

$$
P(=s)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3} & \zeta_{3}^{2} \\
1 & \zeta_{3}^{2} & \zeta_{3}
\end{array}\right] \text { and } S=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3} & \zeta_{3}^{2} \\
1 & \zeta_{3}^{2} & \zeta_{3}
\end{array}\right]
$$

5. Fourier matrices of rank 4

In this section we classify the Fourier matrices under certain conditions, and we show that there is no non-homogeneous integral Fourier matrix of rank 4. For homogenous Fourier matrices see [11].

Lemma 5.1. Let (A, \mathbf{B}, δ) be a C-algebra arising from a Fourier matrix S of rank r. Let $\left|s_{i j}\right| \leq s_{0 j}$, for all j. Let $\delta\left(b_{j}\right)=k_{j}$ for all j, and $k_{i}=1$ for some $i>0$.

1. Then $\left|p_{i j}\right|=k_{j}$ for all j.
2. If s is a real matrix then $p_{i j}= \pm k_{j}$ for all j.

Proof. (i). Since $\delta\left(b_{i}\right)=1, d_{i}=d_{0}$. Therefore, the row 1 and row i of the s-matrix are $\left[1,1, \sqrt{k_{2}}, \ldots\right.$, $\left.\sqrt{k_{r-1}}\right]$ and $\left[1, p_{i 1}, p_{i 2} / \sqrt{k_{2}}, \ldots, p_{i, r-1} / \sqrt{k_{r-1}}\right]$, respectively. Since $d_{0}=d_{i},\left|p_{i j}\right| / \sqrt{k_{j}}=\sqrt{k_{j}}$, for all j. Hence $\left|p_{i j}\right|=k_{j}$, for all j.
(ii). By Part $(i),\left|p_{i j}\right|=k_{j}$ for all j. Since s is a real matrix, $p_{i j}= \pm k_{j}$ for all j.

The next proposition classify the non-homogeneous Fourier matrices of rank 4 with one nontrivial degree equal to 1 .

Proposition 5.2. Let (A, \mathbf{B}, δ) be a non-homogeneous rational C-algebra arising from a Fourier matrix S of rank 4. Let $\left|s_{i j}\right| \leq s_{0 j}$, for all j. Let $\delta\left(b_{j}\right)=k_{j}$, for all j, and $k_{i}=1$, for some $i>0$. Then the associated P-matrix is

$$
\left[\begin{array}{cccc}
1 & 1 & 4 & 6 \\
1 & 1 & 4 & -6 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

Proof. Since A is a rational C-algebra, the degrees of A are integers, see [11, Proposition 5]. Let $\delta\left(b_{i}\right)=k_{i}$, for all i. Without loss of generality, suppose $k_{1}=1$. Therefore, we have

$$
P=\left[\begin{array}{cccc}
1 & 1 & k_{2} & k_{3} \\
1 & p_{11} & p_{12} & p_{13} \\
1 & p_{21} & p_{22} & p_{23} \\
1 & p_{31} & p_{32} & p_{33}
\end{array}\right]
$$

Case 1. If p_{11}, p_{12} and p_{13} are not rational integers.
Since $d_{0}=d_{1},\left|p_{11}\right|=1,\left|p_{12}\right|=k_{2}$ and $\left|p_{13}\right|=k_{3}$. Thus p_{11}, p_{12} and p_{13} cannot be irrational real numbers. Therefore, they can be non-real algebraic integers. Since the structure constants are rational numbers, a complex conjugate of an irreducible character of A is an irreducible character of A. Without loss of generality, assume that the third irreducible character is a complex conjugate of the second character. Thus $k_{2}=1$. But A is non-homogenous and $d_{0}=d_{i} \delta\left(b_{i}\right)$, therefore, $k_{3}=3$ and $d_{3}=2$. Since S is a symmetric matrix, $\left|p_{31}\right|=\left|p_{32}\right|=1$, thus $d_{3}>3$, a contradiction.

Case 2. If p_{11}, p_{12} and p_{13} are rational integers.
By Lemma 5.1, $p_{11}= \pm 1, p_{12}= \pm k_{2}$ and $p_{13}= \pm k_{3}$. Since the row sum of P-matrix is zero, the second row of P-matrix is either $\left[1,-1, k_{2},-k_{2}\right]$ or $\left[1,1, k_{2},-\left(k_{2}+2\right)\right]$.

Subcase 1. Let the second row of P be $\left[1,-1, k_{2},-k_{2}\right]$.
Then, the first row of P-matrix is $\left[1,1, k_{2}, k_{2}\right]$. Since k_{2} divides d_{0} and A is non-homogenous, $k_{2}=2$. Thus, by the symmetry of Fourier matrix S and orthogonality of characters, we have

$$
P=\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & -1 & 2 & -2 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

But the s-matrix associated to the above P-matrix does not have integral structure constants.
Subcase 2 . Let the second row of P be $\left[1,1, k_{2},-\left(k_{2}+2\right)\right]$.

Then, the first row of P-matrix is $\left[1,1, k_{2}, k_{2}+2\right]$. Since k_{2} divides d_{0} and A is non-homogenous, $k_{2}=2$ or 4 . Thus, by the symmetry of Fourier matrix S and orthogonality of characters, we have

$$
P=\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
1 & 1 & 2 & -4 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 0
\end{array}\right] \text { or } P=\left[\begin{array}{cccc}
1 & 1 & 4 & 6 \\
1 & 1 & 4 & -6 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

But the s-matrix associated to the first P-matrix does not have integral structure constants.
Remark 5.3. The above P-matrix is the first eigenmatrix of the adjacency algebra of an association scheme as12(8), see [6].

Cuntz, with a computer, shows that there is no non-homogenous rational Fourier matrix of rank 4, see [3]. In the next theorem, we use C-algebra perspective to show that there is no non-homogeneous rational Fourier matrix of rank 4 , that is, there is no non-homogeneous s-matrix with integral entries. Unlike the above proposition, we do not assume any nontrivial degree equal to 1 .
Theorem 5.4. There is no non-homogenous rational Fourier matrix S of rank 4.
Proof. Let (A, \mathbf{B}, δ) be a C-algebra arising from a rational Fourier matrix S of rank 4. Let $\delta\left(b_{i}\right)=k_{i}$, for all $i>0$. Since s-matrix is integral, k_{1}, k_{2} and k_{3} are square integers, see [11, Proposition 5 (iii)]. As $d_{0}=1+k_{1}+k_{2}+k_{3}$ and k_{1}, k_{2} and k_{3} divide d_{0}, therefore, $k_{2}+k_{3} \equiv-1 \bmod k_{1}, k_{1}+k_{3} \equiv-1 \bmod k_{2}$ and $k_{1}+k_{2} \equiv-1 \bmod k_{3}$.

Claim: $k_{1}=k_{2}=k_{3}=1$. Without loss of generality, suppose k_{1} is an even integer. Since k_{1}, k_{2} and k_{3} are squares, $k_{1} \equiv 0 \bmod 4$ and $d_{0} \not \equiv 0 \bmod 4$, a contradiction to the fact that k_{1} divides d_{0}. Therefore k_{1}, k_{2} and k_{3} are odd integer. Suppose $k_{1} \geq k_{2}, k_{3}$ and $k_{1}>1$. Now, if all k_{1}, k_{2} and k_{3} are odd integers then $k_{1}, k_{2}, k_{3} \equiv 1 \bmod 4$. But $d_{0} \equiv 0 \bmod 4 \operatorname{implies} d_{0}=k_{1} a, a \geq 4$. Therefore, $k_{1}(a-1)=1+k_{2}+k_{3}$ implies $3 k_{1} \leq 1+k_{2}+k_{3}$. Thus k_{2} or $k_{3}>k_{1}$, again a contradiction.

6. Fourier matrices of rank 5

In this section we prove that there is no non-homogenous s-matrix with integral entries (integral Fourier matrix) of rank 5 . But the following proposition shows, under certain conditions, that there are three s-matrices of rank 5 with algebraic integer entries. Recall that, a Fourier matrix S with rational entries has associated integral s-matrix, and a complex Fourier matrix S has associated s-matrix with algebraic integer entries.

Proposition 6.1. Let (A, \mathbf{B}, δ) be a non-homogeneous rational C-algebra arising from a Fourier matrix of rank 5. If $\left|s_{i j}\right| \leq s_{0 j}$ for all j. If $\delta\left(b_{i}\right)=1$ for one $i>0$ and $\delta\left(b_{j}\right)=k_{j}$ for all $j \neq i$. Then up to simultaneous row and column permutations the P-matrices are as follows,

$$
\left[\begin{array}{ccccc}
1 & 1 & 2 & 2 & 2 \\
1 & 1 & 2 & -2 & -2 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & \sqrt{2} & -\sqrt{2} \\
1 & -1 & 0 & -\sqrt{2} & \sqrt{2}
\end{array}\right], \quad\left[\begin{array}{ccccc}
1 & 1 & 2 & 4 & 8 \\
1 & 1 & 2 & 4 & -8 \\
1 & 1 & 2 & -4 & 0 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ccccc}
1 & 1 & 4 & 3 & 3 \\
1 & 1 & 4 & -3 & -3 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & \sqrt{3} & -\sqrt{3} \\
1 & -1 & 0 & -\sqrt{3} & \sqrt{3}
\end{array}\right] .
$$

Proof. Since A is a rational C-algebra, the degrees of A are integers. Let $\delta\left(b_{i}\right)=k_{i}$, for all i. Without loss of generality, let $k_{1}=1$. Therefore, first eigenmatrix of A is given by

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{4} \\
1 & p_{11} & p_{12} & p_{13} & p_{14} \\
1 & p_{21} & p_{22} & p_{23} & -\left(1+p_{21}+p_{22}+p_{23}\right) \\
1 & p_{31} & p_{32} & p_{33} & -\left(1+p_{31}+p_{32}+p_{33}\right) \\
1 & p_{41} & p_{42} & p_{43} & -\left(1+p_{41}+p_{42}+p_{43}\right)
\end{array}\right]
$$

Case 1. If p_{11}, p_{12}, p_{13} and p_{14} are not all rational integers.
Since $d_{0}=d_{1},\left|p_{11}\right|=1,\left|p_{12}\right|=k_{2},\left|p_{13}\right|=k_{3}$ and $\left|p_{14}\right|=k_{4}$. Since the row sum is zero, at least two of these p_{11}, p_{12}, p_{13} and p_{14} can be non-real algebraic integers. Since the structure constants are rational numbers, a complex conjugate of an irreducible character is an irreducible character. Without loss of generality, we assume that the third irreducible character is a complex conjugate of the second character, thus $k_{2}=1$. Without loss of generality, let $k_{3} \leq k_{4}$. Therefore, $d_{0}=d_{i} m_{i} \operatorname{implies}\left(k_{3}, k_{4}\right) \in$ $\{(1,2),(1,4),(2,5),(3,6),(6,9)\}$.

If $k_{3}=1$ then $d_{3}=d_{0}=d_{1}=d_{2}$ and $\left|s_{i j}\right| \leq s_{0 j}$ imply all the entries of the rows $1,2,3$ and 4 are nonzero. Since $k_{3} \neq k_{4}$, the entries of the fifth row are rational integers because Galois conjugate of an irreducible character is an irreducible character, and rows of s-matrix corresponding to the conjugate characters have equal norm. But $k_{3}=1$ implies $d_{4} \leq 3$. Thus there might be at least two zero entries in the fifth row of P-matrix. But S is a symmetric matrix, we get a contradiction.

For $\left(k_{3}, k_{4}\right) \in\{(2,5),(3,6),(6,9)\}, k_{3} \neq k_{4}$, thus the entries of the row 5 are rational integers because $k_{2}=k_{1}=k_{0}=1$ and the Galois conjugate of an irreducible character is an irreducible character. Each entry of the row 1,2 and 3 of P-matrix is non-zero. But for each of the above pair there are exactly 3 zeros in the fifth row. Since S is a symmetric matrix, we get a contradiction.

Case 2. If p_{11}, p_{12}, p_{13} and p_{14} are all rational integers.
By Lemma 5.1, the only possible degree patterns are:
$\left[1,-1, k_{2}, k_{3},-\left(k_{2}+k_{3}\right)\right],\left[1,1, k_{2}, k_{3},-\left(k_{2}+k_{3}+2\right)\right],\left[1,1, k_{2},-k_{3},-\left(k_{2}-k_{3}+2\right)\right]$,
$\left[1,-1, k_{2},-k_{3},-\left(k_{2}-k_{3}\right)\right],\left[1,1,-k_{2},-k_{3}, k_{2}+k_{3}-2\right],\left[1,-1,-k_{2},-k_{3}, k_{2}+k_{3}\right]$.
Subcase 1. Let the second row of P be $\left[1,-1, k_{2}, k_{3},-\left(k_{2}+k_{3}\right)\right]$.
Then the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}+k_{3}\right]$ and $\left(k_{2}+k_{3}\right) \mid\left(2+k_{2}+k_{3}\right)$. Thus $\left(k_{2}, k_{3}\right)=(1,1)$. Therefore, by the orthogonality of characters, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 2 \\
1 & -1 & 1 & 1 & -2 \\
1 & 1 & p_{22} & p_{23} & -1 \\
1 & 1 & p_{32} & p_{33} & -1 \\
1 & -1 & p_{42} & p_{43} & 1
\end{array}\right]
$$

Since $k_{2}=k_{3}=1, d_{2}=d_{3}=6$. But each of $\left|p_{22}\right|,\left|p_{23}\right|,\left|p_{32}\right|$ and $\left|p_{33}\right|$ can be at most 1 . Thus both d_{2} and d_{3} are strictly less than 6 , a contradiction. Hence this case is not possible.

Subcase 2. Let the second row of P be $\left[1,1, k_{2}, k_{3},-\left(k_{2}+k_{3}+2\right)\right]$.
Then the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}+k_{3}+2\right]$. Therefore, by the orthogonality of the irreducible characters and symmetry of the matrix S, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{2}+k_{3}+2 \\
1 & 1 & k_{2} & k_{3} & -\left(k_{2}+k_{3}+2\right) \\
1 & 1 & p_{22} & -2-p_{22} & 0 \\
1 & 1 & p_{32} & -2-p_{32} & 0 \\
1 & -1 & 0 & 0 & 0
\end{array}\right]
$$

Without loss of generality, let $k_{2} \leq k_{3}$. Since $k_{2} \mid\left(2 k_{3}+4\right)$ and $k_{3} \mid\left(2 k_{2}+4\right)$, we have

$$
\left(k_{2}, k_{3}\right) \in\{(1,2),(1,3),(1,6),(2,4),(2,8),(3,10),(4,6),(4,12),(6,16),(8,10),(12,28)\} .
$$

Note that $k_{2} \neq k_{3}$, thus $d_{3} \neq d_{4}$. The structure constants are rational. Therefore, if p_{22} or p_{33} is not rational then row 3 and 4 of P-matrix should be Galois conjugates. But the rows of s-matrix corresponding to conjugate irreducible characters should have equal norm. Thus p_{22} and p_{32} are rational integers. Therefore, $\operatorname{det}(P) \in \mathbb{Z}$ and $(\operatorname{det} P)^{2}=n^{5}$. Thus $n=2\left(k_{2}+k_{3}+2\right)$ need to be a square. But the only two pairs $(2,4),(4,12)$ do not fail this test. For $\left(k_{2}, k_{3}\right)=(2,4), d_{2}=8=1+1+\left(\frac{p_{22}}{\sqrt{2}}\right)^{2}+\left(\frac{-2-p_{22}}{\sqrt{4}}\right)^{2}$.

Since the entries of P-matrix are algebraic integers, we have $p_{22}=2$. Similarly, $d_{3}=4$ implies $p_{32}=-2$. Therefore,

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 2 & 4 & 8 \\
1 & 1 & 2 & 4 & -8 \\
1 & 1 & 2 & -4 & 0 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & 0 & 0
\end{array}\right]
$$

For $\left(k_{2}, k_{3}\right)=(4,12), d_{2}=9$ and $d_{3}=3$. Therefore, we have $p_{22}=4,-5$ and $p_{32}=1,-2$. Since S is a symmetric matrix, $p_{22}=4$ and $p_{32}=-2$ is the only possibility. But for $p_{22}=4$ and $p_{32}=-2$, the associated s-matrix does not have integral structure constants.

Subcase 3. Let the second row of P be [1, $\left.1, k_{2},-k_{3},-\left(k_{2}-k_{3}+2\right)\right]$.
Then, the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}-k_{3}+2\right]$. Therefore, by the orthogonality of characters, symmetry of the Fourier matrix S and $P \bar{P}=n I$, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{2}-k_{3}+2 \\
1 & 1 & k_{2} & -k_{3} & -\left(k_{2}-k_{3}+2\right) \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & p_{33} & -p_{33} \\
1 & -1 & 0 & p_{43} & -p_{43}
\end{array}\right]
$$

Therefore, $k_{2}\left|4, k_{3}\right| 2 k_{2}+4,\left(k_{2}-k_{3}+2\right) \mid\left(k_{2}+k_{3}+2\right)$ and $k_{2}-k_{3}+2>0$. Hence $\left(k_{2}, k_{3}\right) \in$ $\{(1,1),(1,2),(2,2),(4,2),(4,3),(4,4)\}$. Since $\left|s_{i j}\right| \leq s_{0 j},\left(k_{2}, k_{3}\right) \notin\{(1,1),(1,2)\}$. For $\left(k_{2}, k_{3}\right)=(2,2)$, $d_{3}=d_{4}=4$. Thus $p_{33} \bar{p}_{33}=2, p_{43} \bar{p}_{43}=2$. But the integrality of the structure constants of s-matrix and orthogonality of characters forces $p_{33}= \pm \sqrt{2}$ and $p_{43}=\mp \sqrt{2}$. Therefore, up to simultaneous permutation of row 4 and row 5 , and column 4 and column 5 , we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 2 & 2 & 2 \\
1 & 1 & 2 & -2 & -2 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & \sqrt{2} & -\sqrt{2} \\
1 & -1 & 0 & -\sqrt{2} & \sqrt{2}
\end{array}\right]
$$

For $\left(k_{2}, k_{3}\right)=(4,2), d_{3}=6$. Thus $\left|p_{33}\right|=\frac{4}{\sqrt{3}}>2$, a contradiction. For $\left(k_{2}, k_{3}\right)=(4,3), k_{4}=3, d_{3}=4$ and $d_{4}=4$. Thus $\left|p_{33}\right|=\sqrt{3}$ and $\left|p_{43}\right|=\sqrt{3}$. But the integrality of structure constants and orthogonality of characters forces $p_{33}= \pm \sqrt{3}$ and $p_{43}=\mp \sqrt{3}$. Therefore, up to simultaneous permutation of row 4 and row 5 , and column 4 and column 5 , we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 4 & 3 & 3 \\
1 & 1 & 4 & -3 & -3 \\
1 & 1 & -2 & 0 & 0 \\
1 & -1 & 0 & \sqrt{3} & -\sqrt{3} \\
1 & -1 & 0 & -\sqrt{3} & \sqrt{3}
\end{array}\right]
$$

Although the structure constants are not all integers, for example $\lambda_{342}=3 / 2$, but the associated s-matrix has integral structure constants.

Subcase 4. Let the second row of P be $\left[1,-1, k_{2},-k_{3},-\left(k_{2}-k_{3}\right)\right]$.
Then, the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}-k_{3}\right]$. Therefore, by the orthogonality of the characters and symmetry of the matrix S, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{2}-k_{3} \\
1 & -1 & k_{2} & -k_{3} & -\left(k_{2}-k_{3}\right) \\
1 & 1 & 0 & p_{23} & -\left(2+p_{23}\right) \\
1 & -1 & p_{32} & p_{33} & -\left(p_{32}+p_{33}\right) \\
1 & -1 & p_{42} & p_{43} & -\left(p_{42}+p_{43}\right)
\end{array}\right] .
$$

Since $P \bar{P}=n I$, from row 1,2 and column 3 , we get $k_{2}=0$, a contradiction.
Subcase 5. Let the second row of P be $\left[1,1,-k_{2},-k_{3}, k_{2}+k_{3}-2\right]$.
Then the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}+k_{3}-2\right]$. Therefore, by the symmetry of the matrix S and orthogonality of characters, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{2}+k_{3}-2 \\
1 & 1 & -k_{2} & -k_{3} & k_{2}+k_{3}-2 \\
1 & -1 & p_{22} & -p_{22} & 0 \\
1 & -1 & p_{32} & -p_{32} & 0 \\
1 & 1 & 0 & 0 & -2
\end{array}\right]
$$

Therefore $k_{2}\left|2 k_{3}, k_{3}\right| 2 k_{2},\left(k_{2}+k_{3}-2\right) \mid\left(k_{2}+k_{3}+2\right)$ and $k_{2}+k_{3}-2>0$. Without loss of generality, let $k_{2} \leq k_{3}$. Hence $\left(k_{2}, k_{3}\right) \in\{(1,2),(2,2)\}$. Since $\left|s_{i j}\right| \leq s_{0 j},\left(k_{2}, k_{3}\right) \neq(1,2)$. For $\left(k_{2}, k_{3}\right)=(2,2)$, $d_{2}=d_{3}=4$. Thus $p_{22} \bar{p}_{22}=2, p_{32} \bar{p}_{32}=2$. But the integrality of structure constants and orthogonality of characters forces $p_{22}= \pm \sqrt{2}$ and $p_{32}=\mp \sqrt{2}$. Therefore, up to simultaneous permutation of rows and columns, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 2 & 2 & 2 \\
1 & 1 & -2 & -2 & 2 \\
1 & -1 & \sqrt{2} & -\sqrt{2} & 0 \\
1 & -1 & -\sqrt{2} & \sqrt{2} & 0 \\
1 & 1 & 0 & 0 & -2
\end{array}\right]
$$

Subcase 6. Let the second row of P be $\left[1,-1,-k_{2},-k_{3}, k_{2}+k_{3}\right]$.
Then the first row of the character table is $\left[1,1, k_{2}, k_{3}, k_{2}+k_{3}\right]$. Therefore, by the symmetry of the matrix S and orthogonality of the characters, we have

$$
P=\left[\begin{array}{ccccc}
1 & 1 & k_{2} & k_{3} & k_{2}+k_{3} \\
1 & -1 & -k_{2} & -k_{3} & k_{2}+k_{3} \\
1 & -1 & p_{22} & p_{23} & -1 \\
1 & -1 & p_{32} & p_{33} & -1 \\
1 & 1 & p_{42} & p_{43} & 0
\end{array}\right]
$$

Similar to the Subcase $1, k_{2}=k_{3}=1$ implies $d_{2}=d_{3}=6$, and we get a contradiction.
Remark 6.2. We note that the associated s-matrices to the P-matrices in the above proposition are not integral Fourier matrices. The first two matrices are the character tables of as08(10), as16(24), respectively, see [6]. The third matrix is not a first eigenmatrix of an adjacency algebra of any association scheme because the structure constants generated by the columns of P-matrix are not all nonnegative integers.

In the next theorem, by using the properties of C-algebras, we show that there is no non-homogeneous rational Fourier matrix of rank 5 .
Theorem 6.3. There is no non-homogeneous rational Fourier matrix S of rank 5 .
Proof. Let (A, \mathbf{B}, δ) be a non-homogenous C-algebra arising from a rational Fourier matrix S of rank 5 . Let $\delta\left(b_{i}\right)=k_{i}$, for all i. Since s-matrix is integral, k_{i} are perfect square integers, see [11, Proposition 5]. By [3, Lemma 3.7], d_{0} is a square. Therefore, $d_{0} \equiv 0,1 \bmod 4$. Let $d_{0}=k_{4} a, d_{0}=k_{3} b, d_{0}=k_{2} c, d_{0}=k_{1} d$. Then each of a, b, c and d is greater than 1 and a square integer because A is non-homogeneous.

Case 1. If each of $k_{1}, k_{2}, k_{3}, k_{4}$ is an odd integer, then d_{0} is odd. Also, the fact that $k_{1}, k_{2}, k_{3}, k_{4}$ are odd implies a, b, c, d are odd and greater than or equal to 9 . Without loss of generality, let $k_{4} \geq k_{1}, k_{2}, k_{3}$. Therefore, $d_{0} \geq 9 k_{4}, d_{0}=1+k_{1}+k_{2}+k_{3}+k_{4} \leq 1+4 k_{4}$, a contradiction.

Case 2. If three of $k_{1}, k_{2}, k_{3}, k_{4}$ are odd and one is even, then d_{0} is even. Without loss of generality, suppose k_{4} is even. Thus $d_{0}=k_{4} a$ implies $a \geq 4$.

Subcase 1. If $k_{4}>k_{1}, k_{2}, k_{3}$, then $d_{0} \geq 4 k_{4}, d_{0} \leq 1+\left(k_{4}-1\right)+\left(k_{4}-1\right)+\left(k_{4}-1\right)+k_{4}=4 k_{4}-2$, a contradiction.

Subcase 2. If $k_{4}<$ one of k_{1}, k_{2}, k_{3}, say k_{3}, so $k_{1}, k_{2} \leq k_{3}$, then $d_{0} \geq 4 k_{3}$ because b is an even square. Thus $d_{0} \leq 1+k_{3}+k_{3}+k_{3}+\left(k_{3}-1\right)=4 k_{3}$ implies $k_{1}=k_{2}=k_{3}$ and $k_{4}=k_{3}-1, d_{0}=4 k_{3}$. Now $d_{0}=4 x^{2}$ because d_{0} is a square and an even integer. Hence $k_{1}=k_{2}=k_{3}=x^{2}$ and $k_{4}=x^{2}-1$. Since $x^{2}-1$ divides $4 x^{2}$ and x is an odd integer, $x^{2}-1$ divides 4 , we get a contradiction.

Case 3. If two of $k_{1}, k_{2}, k_{3}, k_{4}$ are odd and two are even, then $d_{0} \equiv 3 \bmod 4$, a contradiction.
Case 4. If one of $k_{1}, k_{2}, k_{3}, k_{4}$ is odd and three are even, then $d_{0} \equiv 2 \bmod 4$, a contradiction.
Acknowledgment: The author would like to thank Professor Allen Herman whose valuable suggestions helped him to improve this paper.

References

[1] Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Israel J. Math. 114(1) (1999) 29-60.
[2] H. I. Blau, Table algebras, European J. Combin. 30(6) (2009) 1426-1455.
[3] M. Cuntz, Integral modular data and congruences, J. Algebraic Combin. 29(3) (2009) 357-387.
[4] P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York, 1997.
[5] T. Gannon, Modular data: The algebraic combinatorics of conformal field theory, J. Algebraic Combin. 22(2) (2005) 211-250.
[6] A. Hanaki, I. Miyamoto, Classification of association schemes with small vertices, 2017, available at: math.shinshu-u.ac.jp/ hanaki/as/.
[7] D. G. Higman, Coherent algebras, Linear Algebra Appl. 93 (1987) 209-239.
[8] J. D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [hep-th].
[9] E. L. Rees, Graphical Discussion of the Roots of a Quartic Equation, Amer. Math. Monthly 29(2) (1922) 51-55.
[10] M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2008.
[11] G. Singh, Classification of homogeneous Fourier matrices, arXiv:1610.05353 [math.RA].
[12] B. Xu, Characters of table algebras and applications to association schemes, J. Combin. Theory Ser. A 115(8) (2008) 1358-1373.
[13] A. Zahabi, Applications of Conformal Field Theory and String Theory in Statistical Systems, Ph.D. dissertation, University of Helsinki, Helsinki, Finland, 2013.

[^0]: Gurmail Singh; Department of Mathematics and Statistics, University of Regina, Canada, S4S 0A2 (email: gurmail.singh@uregina.ca).

