
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.404964

J. Algebra Comb. Discrete Appl.
5(2) • 65–70

Received: 9 November 2016
Accepted: 22 November 2017

Journal of Algebra Combinatorics Discrete Structures and Applications

Some new binary codes with improved minimum
distances

Research Article

Eric Zhi Chen

Abstract: It has been well-known that the class of quasi-cyclic (QC) codes contain many good codes. In this
paper, a method to conduct a computer search for binary 2-generator QC codes is presented, and
a large number of good 2-generator QC codes have been obtained. 5 new binary QC codes that
improve the lower bounds on minimum distance are presented. Furthermore, with new 2-generator
QC codes and Construction X, 2 new improved binary linear codes are obtained. With the standard
construction techniques, another 16 new binary linear codes that improve the lower bound on the
minimum distance have also been obtained.
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1. Introduction

A binary linear [n, k, d] code is a k-dimensional subspace of GF(2 )n, where n is the block length, k
the dimension of the code, and d is the minimum distance between any two codewords. The minimum
distance determines the error-correcting or error-detecting capability. Therefore, for a given block length
n and dimension k, it is desired to have an [n, k, d] code with the minimum distance as large as possible.
One of the most fundamental problems in coding theory is to construct codes with the best possible
minimum distances.

Grassl [13] maintains online code tables of linear codes for small block length, code dimension over
small finite fields. The code tables contain both the lower bounds and upper bounds on the minimum
distance. A code with a minimum distance meeting the upper bound is said to be optimal, while a
code with a minimum distance meeting the lower bound is called best-known. The problem to construct
codes with the best possible minimum distances is shown to be very difficult. For small code dimension
and block length, it is possible to do exhaustive computer search for optimal codes. But when both the
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code dimension and block length increase, it becomes intractable. The researchers turn to some promising
subclasses of linear codes with rich mathematical structures to reduce the search time complexity. During
the last decades, the class of quasi-cyclic (QC) codes and quasi-twisted codes has been shown to contain
a large number of good codes. With the help of modern computers, a large number of record-breaking
QC codes have been constructed [1, 2, 4–7, 10–12, 14–19]. The further improvements on [13] become
difficult, and it is even difficult to improve the binary linear codes.

In this paper, a method to construct better binary linear codes is presented. In the next section, a
new weight matrix for constructing 2-generator QC codes is presented, and the iterative computer search
algorithm is then conducted. In section 3, new binary QC codes that improve the minimum distance in
[13] are given, and the well-known Construction X is applied to produce 2 more binary linear codes. With
the standard code constructions, 16 more codes that improve the minimum distance in [13] are obtained.

2. Quasi-cyclic codes and their computer constructions

A linear [n, k, d] code C is called cyclic if whenever a codeword (a0, a1, ..., an−1) is in C, then so
is (an−1, a0, a1, ..., an−2). A code is said to be quasi-cyclic (QC) if a cyclic shift of any codeword by p
positions is also a codeword. Therefore, a cyclic code is a QC code with p = 1. The length n of a QC
code is a multiple of p, i.e., n = pm.

A cyclic matrix is also called a circulant matrix. The circulant matrices are basic components in the
generator matrix for a QC code. An m×m cyclic matrix is defined as

A =


c0 c1 c2 · · · cm−1

cm−1 c0 c1 · · · cm−2
cm−2 cm−1 c0 · · · cm−3
...

...
...

. . .
...

c1 c2 c3 · · · c0

 (1)

and the algebra of m × m cyclic matrices over GF (2) is isomorphic to the algebra in the ring
GF (2)[x]/(xm − 1), if C is mapped onto the polynomial formed by the elements of its first row,
c(x) = c0 + c1x + · · · + cm−1x

m−1, with the least significant coefficient on the left. The polynomial
c(x) is also called the defining polynomial of the matrix C and it is written in octal with least significant
coefficients on the right in this paper. The generator matrix of a QC code can be transformed into rows of
m×m circulant matrices by suitable permutation of columns. An h-generator QC code has a generator
matrix of the following form:

G =


G1,1 G1,2 G1,3 · · · G1,p

G2,1 G2,2 G2,3 · · · G2,p

G3,1 G3,2 G3,3 · · · G3,p

...
...

...
. . .

...
Gh,1 Gh,2 Gh,3 · · · Gh,p

 (2)

where Gij are m × m circulant matrices, for i = 1, 2, · · · , h, and j = 1, 2, · · · , p. Let gij(x) be the
defining polynomial of the matrix Gij . Then the defining polynomials for the h-generator QC code
with generator matrix given in (2) can be written as (g11(x), g12(x), g13(x), · · · , g1p(x), · · · , gh1(x), gh2(x),
gh3(x), · · · , ghp(x)). In Magma [3], the parameter h is called the height.

Most quasi-cyclic codes studied in the literature are 1-generator QC codes (h = 1). Very few studies
on h-generator QC codes are found in the literature. In [17], 2 new rate 2/p QC codes were presented.
In fact, they are 2-generator QC codes. In [6, 10], construction methods have been presented to obtain
h-generator QC codes with improved minimum distances.

In the computer search algorithms presented in [7, 14, 15], a weight matrix is used in the computation
of the minimum distance of a 1-generator QC code. The general r × s weight matrix has the following
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form:

W =


w0,0 w0,1 · · · w0,s−1
w1,0 w1,1 · · · w1,s−1
...

...
. . .

...
wr−1,0 wr−1,1 · · · wr−1,s−1

 (3)

where the entry wi,j is the Hamming weight of Ii(x)gj(x) mod xm - 1, Ii(x) is the i-th distinct information
polynomial, and gj(x) is the j-th defining polynomial [14, 15].

As demonstrated in [6, 7, 10], it is often possible to extend the QC codes by adding one or more rows to
the generator matrix of a 1-generator QC code. For example, with m = 57, a new binary 1-generator QC
[228, 18, 96] code was constructed [7], with the defining polynomials g1(x)= 4524727255730403632, g2(x)=
5052140564035060426, g3(x)= 3041362270077724243, and g4(x)= 6624210767535636614. By extending
one row, a 2-generator QC [228, 19, 95] code with the following generator matrix[

G1 G2 G3 G4

1 1 1 0

]
was obtained, where 1 is a vector of 57 1’s, and 0 is a vector of 57 0’s, and Gi are the circulant matrix
defined by the polynomial gi(x), i = 1, 2, 3, 4. With this motivation, the known good QC codes in [9, 13]
have been investigated to obtain good augmented h-generator QC codes, and many good h-generator QC
codes have constructed in [10].

The interesting questions to investigate in this paper are: how to do computer search for 2-generator
QC codes and will new improved codes be constructed? The general 2-generator QC codes are quite
complicated. So in this paper, we study a special form of 2-generator QC codes, as motivated in the last
example: [

G11 G12 G13 · · · G1p

G21 G22 G23 · · · G2p

]
(4)

where the first row of the defining polynomials are for 1-generator QC code, while the second row of
defining polynomials are very special, G2j = 0 or 1(x) = 1 + x + x2 + · · · + xm−1, for i = 1, 2, 3, · · · , p.
We start with derivation of distinct information polynomial Ii(x)(i = 1, 2, 3, · · · , r), and distinct defining
polynomials gj(x)(j = 1, 2, 3, · · · , s) as did in [14, 15] for finding 1-generator QC codes. Then we try
to extend the code with another row of defining polynomials. So for each possible defining polynomial
gj(x), we have 2 possible combination in constructing 2-generator QC code:[

gj(x)
0

]
,

[
gj(x)
1(x)

]
For the sake of convenience, we write them as gi(x)/0 and gi(x)/1(x). We arrange all defining

polynomials in the order of g0(x)/0, g1(x)/0, g2(x)/0, · · · , gs−1(x)/0, g0(x)/1(x), g1(x)/1(x), g2(x)/1(x),
· · · , gs−1(x)/1(x). So we obtain the weight matrix as follows:

W ′ =

 W W
0 · · · 0 m · · ·m
W M −W

 (5)

It has 2r + 1 rows, and 2s columns, where W is the weight matrix calculated as in (3), 0 · · · 0 is a
vector of all zeros of length s, m · · ·m is a vector of length s and each element has a value of m (generated
by all 1’s vector), M is a r×s matrix with each entry of value m. The first row of this new weight matrix
is from the r distinct information polynomials by only considering the first row in (4); the middle row
[0 · · · 0m · · ·m] corresponds to the weights generated by 0 and 1(x) as the defining polynomials in (4);
while the third row [WM −W ] is obtained by the considering the combined effect of both rows in (4).
With such a block structure, it is only necessary to store an r × s weight matrix W, since all other
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elements of W ′ are 0, m, or can be calculated from W. With this weight matrix, we apply the iterative
search algorithm presented in [7], and many new 2-generator QC codes have been found. Next section
will present the new codes with improved minimum distances.

When the code dimension becomes large, this weight matrix becomes too large to be able to reside
in a computer memory, and complete the search in reasonable time. As introduced in [8], we reduce
the size of the weight matrix by selecting t distinct generator polynomials randomly and compute the
(2r + 1)× (2t) weight matrix for constructions of 2-generator QC codes.

3. The new binary codes

With the weight matrix (5) developed in the last section, the iterative search algorithm [7] has been
used to conduct the search for good 2-generator QC codes. More than 150 good 2-generator QC codes
have been obtained. They can be accessed via the on line database of quasi-twisted codes [9]. In this
paper, only the codes that improve the minimum distances on [13] are presented.

Theorem 3.1. There exist binary QC [219, 18, 92], [225, 18, 96], [210, 20, 83], [81, 21, 25], [210, 24, 80] codes.

Proof. The 1-generator QC [219, 18, 92] code is constructed with m = 73, and the defining polyno-
mials g1(x) = 3212271004340324237, g2(x) = 17721056076522411474157, and g3(x) = 3744160632054554
3443755.

The 1-generator QC [225, 18, 96] code is constructed with m = 45, and the defining polynomials
g1(x) = 30426152246431, g2(x) = 404750035361, g3(x) = 1342223621127, g4(x) = 1776673524175, and
g5(x) = 36670644573317.

The 2-generator QC [210, 20, 83] code is constructed with m = 35, and the defining polynomi-
als g1(x) = 23477263277, g2(x) = 17461151113, g3(x) = 1631721217, g4(x) = 11576655613, g5(x) =
2267175171, g6(x) = 14354313511, g7(x) = g9(x) = g10(x) = g11(x) = g12(x) = 377777777777, and
g8(x) = 0.

The 2-generator QC [81, 21, 25] code is constructed with m = 27, and the defining polynomials
g1(x) = 273277337, g2(x) = 14234775, g3(x) = 132552753, g4(x) = 0, g5(x) = 777777777, and g6(x) = 0.

The 3-generator QC [210, 24, 80] code is constructed with m = 105, and the defining polynomials
g1(x) = 6334264131043230150262137101, g2(x) = 4377421050451574564521102407255, g3(x) = g6(x) =
77777777777777777777777777777777777, and g4(x) = g5(x) = 0.

The weight distributions of these codes can be found in on line database of quasi-twisted codes
[9].

The well-known Construction X is a simple and efficient method to construct new codes by combining
3 codes.

Theorem 3.2. (Construction X) Let C1 = [n, k1, d1] and C2 = [n, k2, d2] be a pair of nested codes, where
C1 ⊂ C2. Let C3 = [n3, k2 − k1, d3] be an auxiliary code. Then there exists a C = [n+n3, k2, d] code with
d ≥ min(d1, d2 + d3).

Theorem 3.3. There exists binary [86, 18, 30], and [107, 18, 40] codes.

Proof. Let m = 21. With the search method given above, a best-known 2-generator QC [84, 18, 28]
code was found. Its defining polynomials are g1(x) = 54211, g2(x) = 26515, g3(x) = 321125, g4(x) =
244147, g5(x) = g8(x) = 7777777, and g6(x) = g7(x) = 0. Let C1 be its sub-code of dimension 17. It is
defined by the first row defining polynomials and is a 1-generator QC [84, 17, 30] code. Let C2 be the
2-generator QC [84, 18, 28] code, and let C3 be a binary [2, 1, 2] code. By applying Construction X, we
obtain a new binary [86, 18, 30] code.
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Let m = 21. With the search method given above, a best-known 2-generator QC [105, 18, 38]
code was found. Its defining polynomials are g1(x) = 77415, g2(x) = 1525677, g3(x) = 13427, g4(x) =
22137, g5(x) = 141531, and g6(x) = g7(x) = g10(x) = 0, and g8(x) = g9(x) = 7777777. Let C1 be its
sub-code of dimension 17. It is defined by the first row defining polynomials, and is a 1-generator QC
[105, 17, 40] code. Let C2 be the 2-generator QC [105, 18, 38] code and let C3 be a binary [2, 1, 2] code.
By applying Construction X, we obtain a new binary [107, 18, 30] code.

It should be noted that all the codes given above improve the minimum distances in [13]. By applying
standard construction methods, such as puncturing, shortening and extending, 16 more improvements on
[13] are obtained. All the codes given in the paper have been checked with the Magma algebraic system
[3].

4. Conclusion

In this paper, a construction method for binary 2-generator QC codes is presented and many good
new QC codes are obtained. Although it is quite difficult to improve the binary codes, we have made a
total of 23 improvements on [13]. It should also be noted that these codes (and ones given in [10]) are
only special cases of h-generator QC codes. Further investigation on general h-generator QC codes is
promising.

Acknowledgment: The author is grateful to the referees for their helpful comments and suggestions
that improved the presentation of the results.
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