Maximal induced paths and minimal percolating sets in hypercubes

Research Article

Anil M. Shende*

Roanoke College

Abstract

For a graph G, the r-bootstrap percolation process can be described as follows: Start with an initial set A of "infected" vertices. Infect any vertex with at least r infected neighbours, and continue this process until no new vertices can be infected. A is said to percolate in G if eventually all the vertices of G are infected. A is a minimal percolating set in G if A percolates in G and no proper subset of A percolates in G. An induced path, P, in a hypercube Q_{n} is maximal if no induced path in Q_{n} properly contains P. Induced paths in hypercubes are also called snakes. We study the relationship between maximal snakes and minimal percolating sets (under 2-bootstrap percolation) in hypercubes. In particular, we show that every maximal snake contains a minimal percolating set, and that every minimal percolating set is contained in a maximal snake.

2010 MSC: 05C38, 68R10

Keywords: Hypercubes, Induced paths, Percolating sets

1. Introduction

The problem of finding longest induced paths (often called snakes in the literature) in hypercubes has been studied since 1958 [5]. Definite values for the lengths of longest snakes in n-dimensional hypercubes are known only for dimensions $n \leq 7$ [1]. Several properties of maximal snakes have been found useful in establishing better bounds on the lengths of longest snakes in hypercubes [1, 2].

The notion of r-bootstrap percolation in graphs has been studied since 1979 [3]. Riedl considers the 2-bootstrap percolation process in hypercubes; in particular, he studies minimal percolating sets (under 2-bootstrap percolation) in hypercubes and provides an expression for the size of largest minimal percolating sets in hypercubes [4].

In this paper we show the relationship between maximal snakes and minimal percolating sets (under 2-bootstrap percolation) in hypercubes. In particular we show that every maximal snake contains a minimal percolating set, and that every minimal percolating set is contained in a maximal snake.

[^0]
2. Notation

Most of the definitions and notation in this section are directly from [2] and [4].
We will label the vertices of an n-dimensional hypercube, $Q_{n}=\left(V_{n}, E\right)$ by the 2^{n} distinct n-bit labels such that the labels on two vertices differ in exactly one bit position if and only if the two vertices are neighbours in Q_{n}. The rightmost bit in a label will be called bit number 0 and the leftmost bit will be called bit number $(n-1)$. [$\mathbf{n}]$ denotes the set $\{0, \ldots, n-1\}$. For any vertex $v \in V_{n}$, for each $i \in[\mathbf{n}]$, $(v)_{i}$ will denote the bit in bit number i of the label for v. For each $i \in[\mathbf{n}], l_{i}^{n}$ denotes the label that has all zeroes except a 1 as bit number $i . \mathbf{0}^{n}$ denotes the label with all zeroes. U^{n} will denote the set $\left\{l_{i}^{n} \mid i \in[\mathbf{n}]\right\}$, i.e., the set of all vertices at unit distance from $\mathbf{0}^{n}$. For a bit b in a label, \bar{b} will denote the bit complement of b. We will use an asterisk to denote a wildcard in labels. A sequence of k asterisks in a label will be denoted by $(*)_{k}$. Thus an n-bit label with one asterisk denotes two vertices; moreover, these two vertices are adjacent, i.e., they are a 1-subcube of Q_{n}. In general, for each $k, 0 \leq k \leq n$, a label with k asterisks denotes a k-dimensional subcube. For example, the label $(*)_{2} 01$ is a 2 -dimensional subcube of Q_{4} such that all the vertices in the subcube have 1 for bit number 0 and 0 for bit number 1 . For a subcube S of $Q_{n}, \operatorname{dim}(S)$ will denote the dimension of S. When vertices u and v differ in bit position d, we will denote this as $u \stackrel{d}{\longleftrightarrow} v$. For any two vertices $x, y \in Q_{n}, \operatorname{Ham}(u, v)$ denotes the Hamming distance between x and y.

For a path $P=v_{0}, v_{1}, \ldots, v_{l}, \hat{P}$ will denote the path v_{1}, \ldots, v_{l-1}, i.e., the path P without its endpoints. For a path P, we will use P to denote the sequence of vertices as well as the set of vertices.

An n-snake is an induced path in the n-dimensional, hypercubical, undirected graph. A maximal n-snake, P, is an n-snake such that no other n-snake properly contains P.

The r-bootstrap percolation process in $G=(V, E)$ is described as follows: Let $A \subseteq V$ be a set of "infected" vertices. Let $A_{0}=A$. Then, let A_{t} be the set of vertices in A_{t-1} union the set of vertices which have at least r neighbours in A_{t-1}. The set $\langle A\rangle=\cup_{i} A_{i}$ is the set of vertices infected by A. A set A is said to percolate in G if $\langle A\rangle=V$. A percolating set A is said to be minimal if for all $v \in A, A \backslash v$ does not percolate in G.

In the case $r=2$ and $G=Q_{n}=\left(V_{n}, E\right)$, the progress of the percolation process can be described as follows: Given a set $A \subseteq V_{n}$, let $\mathbf{A}_{0}=\bigcup_{u \in A}\{\{u\}\}$, i.e., the set of all the 0 -subcubes represented by the vertices in A. Then, choose a sequence of sets of subcubes $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{k}$ so that \mathbf{A}_{t} is identical to \mathbf{A}_{t-1} except that two subcubes $B, C \in \mathbf{A}_{t-1}$ that are within distance 2, in Q_{n}, of each other are replaced by the subcube $\langle B \cup C\rangle$, and so that \mathbf{A}_{k} is a set of subcubes all of which are distance at least 3 , in Q_{n}, from each other. Clearly, then, A percolates in Q_{n} if $\mathbf{A}_{k}=\left\{V_{n}\right\} . \mathbf{A}_{0}, \ldots, \mathbf{A}_{k}$ is called an execution path of the percolation process. In the rest of the paper, unless specified otherwise, "distance" will refer to "distance in Q_{n} ", and by "percolating" we will mean 2-percolating.

3. Maximal snakes percolate

Theorem 3.1. Every maximal n-snake is a percolating set.

Proof. The set of maximal n-snakes that have $\mathbf{0}^{n}$ as one of the end points, and l_{0}^{n} as the next vertex is equal to the set of all maximal n-snakes up to isomorphism [2]. Thus, without loss of generality, let P be a maximal n-snake $v_{0}, v_{1}, \ldots, v_{k}$ where $v_{0}=\mathbf{0}^{n}$ and $v_{1}=l_{0}^{n}$. Since the snake is maximal, none of the vertices $l_{i}^{n}, 1 \leq i<n$ are on the snake (since $\mathbf{0}^{n}$ is an end point of the snake and l_{0}^{n} is on the snake), and each of these vertices has at least two neighbours on the snake. (If not, then the snake could have been extended from $\mathbf{0}^{n}$ and thus would not be maximal.) Thus, if all the vertices of the snake are infected, then in one percolation step, each of the vertices, $l_{i}^{n}, 1 \leq i<n$, gets infected. Thus, each vertex in the set $U^{n}=\left\{l_{i}^{n} \mid 0 \leq i<n\right\}$ is infected. By Proposition 7 in [4], U^{n} is a minimal percolating set in Q_{n} for $n \geq 2$. Thus, every maximal n-snake is a percolating set.

4. Minimal percolating sets and snakes

Lemma 4.1. Suppose $P=v_{0}, v_{1}, \ldots, v_{l}$ is an n-snake. Then, $G^{\prime}=\left(Q_{n} \backslash \hat{P}\right)$ is connected.
Proof. Let $d_{1}, d_{2}, \ldots, d_{l} \in[\mathbf{n}]$ such that for each $i, 1 \leq i \leq l, v_{i-1} \stackrel{d_{i}}{\longleftrightarrow} v_{i}$. Let $N_{P}\left(v_{i}\right)$ be defined as:

$$
N_{P}\left(v_{i}\right)=\left\{u \mid u \notin P \text { and } \operatorname{Ham}\left(u, v_{i}\right)=1 \text { and }(\forall j \in[\mathbf{i}]) \operatorname{Ham}\left(u, v_{j}\right)>1\right\}
$$

It suffices to show that for each vertex u at distance 1 from P, there is a path in G^{\prime} from v_{0} to u, i.e., for each $i \in[1]$, for each vertex u in $N_{P}\left(v_{i}\right)$, there is a path in G^{\prime} from v_{0} to u. (To show that there is a path in G^{\prime} from v_{l} to u, we can reverse the labeling of vertices on P and apply the argument below.) We will use mathematical induction on i.

Base Case : $i=0$. Every vertex in $N_{P}\left(v_{0}\right)$ is a neighbour of v_{0}, and thus the claim is trivially true.
Induction Hypothesis : For some $k \in[\mathbf{n}]$, for all $k^{\prime}, 0 \leq k^{\prime} \leq k$, for each vertex u in $N_{P}\left(v_{k^{\prime}}\right)$, there is a path in G^{\prime} from v_{0} to u.

To show that : For each vertex u in $N_{P}\left(v_{k+1}\right)$, there is a path in G^{\prime} from v_{0} to u.
Let u^{\prime} be the vertex such that $u \stackrel{d_{k+1}}{\longleftrightarrow} u^{\prime}$. Clearly, then, u^{\prime} is a neighbour of v_{k}, and $u^{\prime} \notin P$ by the definition of N_{P}. (If $u^{\prime} \in P$, then, since P is an induced path, $u^{\prime}=v_{k-1}$, a neighbour of u, contradicting $u \in N_{P}\left(v_{k+1}\right)$.) Thus, for some $k^{\prime} \leq k, u^{\prime} \in N_{P}\left(v_{k}^{\prime}\right)$. Then, by the induction hypothesis there is a path in G^{\prime} from v_{0} to u^{\prime} and thus, there is a path in G^{\prime} from v_{0} to u.

As a corollary of the above result we have
Corollary 1. Suppose $P=v_{0}, v_{1}, \ldots, v_{l}$ is an n-snake. Then for each vertex $w \in V_{n} \backslash P$, there exist n-snakes, P_{1} and P_{2}, in $Q_{n} \backslash \hat{P}$ such that P_{1} has end points v_{0} and w, and P_{2} has end points v_{l} and w.

Lemma 4.2. Every set $A \subseteq V_{n}$ that is isomorphic to U^{n} is contained in an n-snake, and both the end points of the snake are in A.

Proof. For each $i \neq j \in[\mathbf{n}]$, let $l_{i j}^{n}$ denote the n-bit label that has ones in bit positions i and j and zeroes everywhere else. Then, consider the path defined by the sequence of vertices

$$
l_{0}^{n}, l_{01}^{n}, l_{1}^{n}, l_{12}^{n}, \ldots, l_{(n-2)}^{n}, l_{(n-2)(n-1)}^{n}, l_{(n-1)}^{n}
$$

It can easily be verified that this path is an n-snake. Moreover, U^{n} is contained in this path and both the end points of the path are in U^{n}.

Lemma 4.3. Let $A \subseteq V_{n}$ be a minimal percolating set in Q_{n} such that $A=B \cup C$ where $\langle B\rangle=Q_{n-1}$ and $C=\{u\}$ such that $u \notin\langle B\rangle$. Suppose P is a snake in $\langle B\rangle$ such that P contains each vertex in B, and both the end points of P are in B. Then, there is a snake P^{\prime} in Q_{n} that contains each vertex in A, and both the end points of P^{\prime} are in A.

Proof. Suppose $P=v_{0}, v_{1}, \ldots, v_{k}$. We consider the two cases: u is at distance 1 in Q_{n} from P, and u is at distance greater than 1 in Q_{n} from P.

Case 1 Suppose u is at distance 1 in Q_{n} from P. Since $u \notin\langle B\rangle, u$ is a neighbour of at most one vertex in P.

If u is a neighbour of one of the two end points, say v_{0}, of P, then P^{\prime} is simply P extended by the edge $\left(v_{0}, u\right)$. Clearly, P^{\prime} is a snake in Q_{n} that contains each vertex of A, and both the end points of P^{\prime} are in A.
Suppose u is a neighbour of an internal vertex v_{i} in P, and $v_{i} \stackrel{d}{\longleftrightarrow} u$. There are two cases to consider: $v_{i} \in B$ and $v_{i} \notin B$.
$v_{i} \in B$ Then, by the minimality of $A, v_{i-1} \notin A$ and $v_{i+1} \notin A$. Since $v_{i-1} \notin A$, it is not an end point of P. Then, consider the vertices u_{1} and u_{2} such that $v_{i-1} \stackrel{d}{\longleftrightarrow} u_{1}$ and $v_{i-2} \stackrel{d}{\longleftrightarrow} u_{2}$. (Note that v_{i-2} exists since v_{i-1} is not an end point of P.) u_{1} and u_{2} are not in $\langle B\rangle, u_{1}$ is a neighbour of u and u_{2} is a neighbour of u_{1}. Let P^{\prime} be the path P with the edges $\left(v_{i-2}, v_{i-1}\right)$ and $\left(v_{i-1}, v_{i}\right)$ replaced by the path $v_{i-2}, u_{2}, u_{1}, u, v_{i}$. Then, P^{\prime} is a snake in Q_{n} that contains each vertex of A, and both the end points of P^{\prime} are in A.
$v_{i} \notin B$ Consider the vertices u_{1} and u_{2} such that $v_{i-1} \stackrel{d}{\longleftrightarrow} u_{1}$ and $v_{i+1} \stackrel{d}{\longleftrightarrow} u_{2} . u_{1}$ and u_{2} are not in $\langle B\rangle, u_{1}$ is a neighbour of u and u_{2} is a neighbour of u, and u_{1} and u_{2} are not neighbours (since they are neighbours, along the same direction d, of two vertices at distance 2 in P, and P is a snake). Let P^{\prime} be the path P with the path v_{i-1}, v_{i}, v_{i+1} replaced by the path $v_{i-1}, u_{1}, u, u_{2}, v_{i+1}$. Then, P^{\prime} is a snake in Q_{n} that contains each vertex of A, and both the end points of P^{\prime} are in A.

Case 2 Suppose u is at distance greater than 1 in Q_{n} from P. Since $\langle B\rangle=Q_{n-1}$, there is one bit position that has the same value for the labels on all the vertices in $\langle B\rangle$. Without loss of generality, let bit position 0 for the labels on each vertex in $\langle B\rangle$ be 0 . Let u^{\prime} be the vertex such that $u \stackrel{0}{\longleftrightarrow} u^{\prime}$. Since $u \notin\langle B\rangle, u^{\prime} \in\langle B\rangle$, and $u^{\prime} \notin P$. Then, by Corollary 1 there is a snake ($\left.v_{l}=\right) w_{0}^{\prime}, w_{1}^{\prime}, \ldots w_{m}^{\prime}\left(=u^{\prime}\right)$ in $\langle B\rangle \backslash \hat{P}$. For each $i, 0 \leq i \leq m$, let w_{i} be the vertex such that $w_{i} \stackrel{0}{\longleftrightarrow} w_{i}^{\prime}$. Then, $P^{\prime}=$ $v_{0}, \ldots, v_{l}, w_{0}, w_{1}, \ldots, w_{m}(=u)$ is a snake in Q_{n} that contains each vertex of A, and both the end points of P^{\prime} are in A.

Lemma 4.4. Let $A \subseteq V_{n}$ be a minimal percolating set in Q_{n} such that $A=B \cup C$ where $\langle B\rangle=Q_{n-2}$ and $C=\{u\}$ such that $u \notin\langle B\rangle$, and u is at distance 2 in Q_{n} from $\langle B\rangle$. Suppose P is a snake in $\langle B\rangle$ such that P contains each vertex in B, and both the end points of P are in B. Then, there is a snake P^{\prime} in Q_{n} that contains each vertex in A, and both the end points of P^{\prime} are in A.

Proof. Without loss of generality, let $\langle B\rangle=* * \cdots * * 00$. Then, u is in the subcube $* * \cdots * * 11$. Let v_{0} and v_{l} be the end points of P. Consider the vertices u_{1} and u_{2} such that $v_{l} \stackrel{0}{\longleftrightarrow} u_{1}$ and $u_{1} \stackrel{1}{\longleftrightarrow} u_{2}$. Clearly, u_{1} is in the subcube $* * \cdots * * 01$, and u_{2} is in the subcube $* * \cdots * * 11$. Moreover, since P is a snake, u_{1} is at distance at least 2 from all the vertices in P, except v_{l}, and u_{2} is at distance at least 2 in Q_{n} from each vertex in P. Let P_{u} be a snake in the subcube $* * \cdots * * 11$ from u_{2} to u. Clearly, each vertex of P_{u} is at distance at least 2 from P. Now let P^{\prime} be the path P extended by the edge $\left(v_{l}, u_{1}\right)$, followed by the edge $\left(u_{1}, u_{2}\right)$ and then followed by P_{u}. It can be easily verified that P^{\prime} is a snake in Q_{n}, and both the end points of P^{\prime} are in A.

In what follows, we will use some additional notation: For a set $C \subseteq[\mathbf{n}],\left.Q_{n}\right|_{C}$ denotes the subcube $b_{n-1} \ldots b_{0}$ of Q_{n} where for each $i \notin C, b_{i}$ is an asterisk, and for each $i \in C, b_{i} \in\{0,1\}$.

Lemma 4.5. For $n \geq 6$, suppose $C, D, E \subseteq[n \mid$ such that $|C|=2,|D|=s \geq 2,|E|=t \geq 2$, and C, D and E are mutually exclusive. Let $F=I n \backslash(C \cup D \cup E)$. Let $P=v_{0}, \ldots, v_{l}$ be a snake in the $(n-(s+2))$-dimensional subcube $\left.Q_{n}\right|_{C \cup D}$, characterised by the bits c_{i} and d_{i} for $i \in C$ and $i \in D$, respectively. Then, for any vertex u in the subcube $\left.Q_{n}\right|_{C \cup D \cup F}$, characterised by the bits $c_{i}, \overline{d_{i}}$, and $\left(v_{l}\right)_{i}$, for $i \in C, i \in D$ and $i \in F$, respectively, P can be extended to an $(n-2)$-dimensional snake in the subcube $\left.Q_{n}\right|_{C}$, characterised by the bits c_{i} for $i \in C$, with end points v_{0} and u.
(An example may help clarify the statement of the lemma. Let $n=8, C=\{0,1\}, D=\{2,3\}$ and $E=\{4,5,6\}$. Thus, $s=2, t=3$ and $F=\{7\}$. Let $\left.Q_{n}\right|_{C \cup D}$ be the subcube $* * * * 1001$. Suppose P is a snake in this subcube with end points $v_{0}=00001001$ and $v_{l}=10111001$. Then, for any vertex u in the subcube $1 * * * 0101$, say the vertex $11010101, P$ can be extended to an $(n-2)$-snake in the subcube $* * * * * * 01$ such that the end points of this snake are $v_{0}=00001001$ and $u=11010101$.)

Proof. Without loss of generality, let $C=\{0,1\}, D=\{2, \ldots, s+1\}$ and $E=\{s+2, \ldots, s+t+1\}$. Then, $F=\{s+t+2, \ldots, n-1\}$. Let $P=v_{0}, \ldots, v_{l}$ be a snake in the subcube given by

$$
(*)_{n-(s+t+2)}(*)_{t} \quad b_{s+1} \cdots b_{2} \quad b_{1} b_{0}
$$

and let u be a vertex in the subcube given by

$$
\left(v_{l}\right)_{n-1} \cdots\left(v_{l}\right)_{(s+t+2)} \quad(*)_{t} \overline{b_{s+1}} \cdots \overline{b_{2}} \quad b_{1} b_{0}
$$

Now consider the following
where H_{1} is a shortest path between v_{l} and w, and H_{2} is a shortest path between w and u. Since P is a snake in the subcube S, each vertex $v_{i}, i<l$ differs from v_{l} in at least one bit position a_{i} where $a_{i} \notin\{0, \ldots,(s+1)\}$. Each vertex of H_{1}, except the vertex v_{l}, differs from v_{l} in at least one bit position $j \in\{0, \ldots,(s+1)\}$. Since $s \geq 2$, the length of H_{1} is at least 2 , and so each vertex of H_{2}, differs from each vertex of P in at least two bit positions. Moreover, each vertex h of H_{1}, except w, differs from w in at least one bit position $j_{h} \notin\{(s+2), \ldots,(s+t+1)\}$, and each vertex g of H_{2} differs from w in at least one bit position $j_{g} \in\{(s+2), \ldots,(s+t+1)\}$. Thus, P concatenated with H_{1} concatenated with H_{2} is a snake that has end points v_{0} and u, and is contained in the ($n-2$)-dimensional subcube given by

$$
(*)_{(n-(s+t+2))} \quad(*)_{t} \quad(*)_{s} \quad b_{1} b_{0} .
$$

The following lemma follows from the proof of Proposition 9 in [4]. Our proof is essentially the proof from [4]; for completeness we provide the relevant parts of the proof here.

Lemma 4.6. Let $A \subseteq V_{n}$ be a minimal percolating set in Q_{n}. Then, there exists an execution path $\bigcup_{u \in A}\{\{u\}\}=\boldsymbol{A}_{0}, \ldots, \boldsymbol{A}_{k}=\left\{V_{n}\right\}$, where \boldsymbol{A}_{k-1} consists of exactly two subcubes S_{1} and S_{2} such that $\operatorname{dim}\left(S_{1}\right) \geq \operatorname{dim}\left(S_{2}\right)$ and exactly one of the following is true:
$\mathbf{C 1}: \operatorname{dim}\left(S_{1}\right)=n-1, S_{2}=\{v\}$, and $v \notin S_{1}$.
C2 : $\operatorname{dim}\left(S_{1}\right)=n-2$ and $S_{2}=\{v\}$ at distance 2 from S_{1}.
C3: $\operatorname{dim}\left(S_{1}\right) \leq n-4$ and $\operatorname{dim}\left(S_{2}\right) \leq n-4$, and S_{1} and S_{2} are at distance 2 from each other.
Proof. Since A percolates in Q_{n}, for any execution path of the percolation process $\mathbf{A}_{k}=V_{n}$, and so \mathbf{A}_{k-1} must consist of exactly two subcubes, say S_{1} and S_{2}, which together infect Q_{n}. Amongst all execution paths with $\operatorname{dim}\left(S_{1}\right) \geq \operatorname{dim}\left(S_{2}\right)$, choose one where $\operatorname{dim}\left(S_{1}\right)$ is the largest. By minimality of A, $\operatorname{dim}\left(S_{1}\right) \leq n-1$. We consider the cases depending on $\operatorname{dim}\left(S_{1}\right)$.

Case $1 \operatorname{dim}\left(S_{1}\right)=n-1$. Then, by the minimality of A, there must be a single vertex v in $A \cap\left(Q_{n} \backslash S_{1}\right)$ such that A percolates in Q_{n}. Thus, $S_{2}=\{v\}$ in this case.

Case $2 \operatorname{dim}\left(S_{1}\right)=n-2$. By the choice of the execution path that has $\operatorname{dim}\left(S_{1}\right)$ the largest possible, there cannot be a vertex v in $A \cap S_{2}$ such that the distance of v from S_{1} is at most 1 , since otherwise S_{1} could be extended to a subcube of dimension $n-1$. Thus, by the minimality of A, there must be a single vertex v in $A \cap\left(Q_{n} \backslash S_{1}\right)$ such that the distance of v from S_{1} is 2 and A percolates in Q_{n}.

Case $3 \operatorname{dim}\left(S_{1}\right)=n-3$. There cannot be a vertex of $A \cap S_{2}$ within distance 2 of S_{1}, as this contradicts the maximality of $\operatorname{dim}\left(S_{1}\right)$ in our choice of execution path. Hence, $A \cap S_{2}$ is contained in a subcube of Q_{n} at distance 3 from S_{1}, as the set of vertices which are at distance 3 from S_{1} is a subcube of dimension $(n-3)$. Thus S_{1} and S_{2} are at distance (in $\left.Q_{n}\right) 3$ from each other, contradicting the fact that A percolates. Hence, this case cannot occur.

Case $4 \operatorname{dim}\left(S_{1}\right) \leq n-4$. Then, by the maximality of $\operatorname{dim}\left(S_{1}\right)$ in the choice of execution path, $\operatorname{dim}\left(S_{2}\right) \leq$ $n-4$. Moreover, since A percolates in Q_{n}, S_{1} and S_{2} must be at distance 2 from each other.

Theorem 4.7. Every minimal percolating set $A \subseteq V_{n}$ is contained in an n-snake.

Proof. We will use mathematical induction on the dimension n to show that every minimal percolating set $A \subseteq V_{n}$ is contained in an n-snake, and both the end points of the snake are in A.

Base cases $n \leq 3$: We will consider each of the three cases, $n=1, n=2$ and $n=3$, separately.
For $n=1$, it is easy to see that the only minimal percolating set is V_{1}, and that is contained in the unique 1-snake, and both the end points of the snake are in V_{1}.
For $n=2$, the only (up to isomorphism) minimal percolating set in Q_{2} is U^{2}, and by Lemma 4.2, this minimal percolating set is contained in a 2 -snake, and both the end points of the snake are in U^{2}.

For $n=3$, there are two (up to isomorphism) minimal percolating sets: U^{3} and the set $A=\{000,001,111\}$. Lemma 4.2 asserts the existence of a 3 -snake containing U^{3} and the 3 -snake $000,001,011,111$ contains A. Moreover, in each case, both the end points of the snake are in the minimal percolating set.

Induction Hypothesis : For some $m \geq 3$, for all $m^{\prime} \leq m$, every minimal percolating set $A \subseteq V_{m^{\prime}}$ in $Q_{m^{\prime}}$ is contained in an m^{\prime}-snake, and both the end points of the snake are in A.

To show that : Every minimal percolating set $A \subseteq V_{m+1}$ in Q_{m+1} is contained in an $(m+1)$-snake, and both the end points of the snake are in A.
By Lemma 4.6, there exists an execution path $\bigcup_{u \in A}\{u\}=\mathbf{A}_{0}, \ldots, \mathbf{A}_{k}=V_{m+1}$, where \mathbf{A}_{k-1} consists of exactly two subcubes S_{1} and S_{2} such that $\operatorname{dim}\left(S_{1}\right) \geq \operatorname{dim}\left(S_{2}\right)$, satisfying one of the three mutually exclusive cases listed in the lemma. We show that in each case, A is contained in an ($m+1$)-snake. (C1, C2 and C3 refer to the three cases listed in the statement of Lemma 4.6.)

C1 In this case, by the induction hypothesis there is an m-snake in S_{1} that contains each vertex in $S_{1} \cap A$, and both the end points of the snake are in $S_{1} \cap A$. Lemma 4.3 applies and asserts that A is contained in an $(m+1)$-snake, and both the end points of this snake are in A.
C2 In this case, by the induction hypothesis there is an $(m-1)$-snake in S_{1} that contains each vertex in $S_{1} \cap A$, and both the end points of the snake are in $S_{1} \cap A$. Lemma 4.4 applies and asserts that A is contained in an $(m+1)$-snake, and both the end points of this snake are in A.

C3 In this case, there exist integers s and t such that

$$
\begin{aligned}
& \operatorname{dim}\left(S_{1}\right)=((m+1)-s) \leq((m+1)-4) \text { and } \\
& \operatorname{dim}\left(S_{2}\right)=((m+1)-t) \leq((m+1)-4)
\end{aligned}
$$

Then, $s \geq 4$ and $t \geq 4$. Let $D^{\prime}, E^{\prime} \subseteq[(\mathbf{m}+\mathbf{1})]$ such that S_{1} is the subcube $\left.Q_{n}\right|_{D^{\prime}}$, characterised by p_{i} for each $i \in D^{\prime}$, and S_{2} is the subcube $\left.Q_{n}\right|_{E^{\prime}}$, characterised by r_{i} for each $i \in E^{\prime}$. Since S_{1} and S_{2} are at distance 2 from each other, $\left|D^{\prime} \cap E^{\prime}\right|=2$ and $p_{i} \neq r_{i}$ for $i \in\left(D^{\prime} \cap E^{\prime}\right)$. Let $C=D^{\prime} \cap E^{\prime}, D=D^{\prime} \backslash C, E=E^{\prime} \backslash C$ and $F=[(\mathbf{m}+\mathbf{1})] \backslash(C \cup D \cup E)$. Clearly, then $|C|=2$, $|D|=s \geq 2,|E|=t \geq 2$, and $|F|=(m+1)-(s+t+2)$. Without loss of generality, let $C=\{0,1\}, D=\{2, \ldots, s+1\}$, and $E=\{s+2, \ldots, s+t+1\}$, and let $p_{0}=p_{1}=0$ and $r_{0}=r_{1}=1$, i.e.,

$$
\begin{array}{cccl}
S_{1}=(*)_{(m+1)-(s+t+2)} & (*) t & p_{s+1} \cdots p_{2} & 00, \text { and } \\
S_{2}=(*)_{(m+1)-(s+t+2)} & r_{s+t+1} \cdots r_{s+2} & (*)_{s} & 11 .
\end{array}
$$

By the induction hypothesis, there is an $(m+1)-(s+2)$-snake, P_{1} in S_{1} that contains each vertex in $S_{1} \cap A$, and both the end points, say v_{0} and v_{a}, of P_{1} are in $S_{1} \cap A$, and there is an $(m+1)-(t+2)$-snake, P_{2} in S_{2} that contains each vertex in $S_{2} \cap A$, and both the end points, say w_{0} and w_{b}, of P_{2} are in $S_{2} \cap A$.
By Lemma 4.5 P_{1} can be extended to a snake P_{1}^{*} with end points v_{0} and the vertex u_{1} given by

$$
u_{1}=\left(v_{a}\right)_{m} \ldots\left(v_{a}\right)_{(s+t+2)} \overline{r_{s+t+1}} \cdots \overline{r_{s+2}} \overline{p_{s+1}} \cdots \overline{p_{2}} 00 .
$$

Similarly, by Lemma 4.5 P_{2} can be extended to a snake P_{2}^{*} with end points w_{0} and the vertex u_{2} given by

$$
u_{2}=\left(w_{b}\right)_{m} \ldots\left(w_{b}\right)_{(s+t+2)} \overline{r_{s+t+1}} \cdots \overline{r_{s+2}} \quad \overline{p_{s+1}} \cdots \overline{p_{2}} 11
$$

Now consider

$$
\begin{aligned}
& u_{1}=\left(v_{a}\right)_{m} \ldots\left(v_{a}\right)_{(s+t+2)} \quad \overline{r_{s+t+1}} \cdots \overline{r_{s+2}} \quad \overline{p_{s+1}} \cdots \overline{p_{2}} 00
\end{aligned}
$$

$$
\begin{aligned}
& u_{2}=\left(w_{b}\right)_{m} \ldots\left(w_{b}\right)_{(s+t+2)} \stackrel{\downarrow}{r_{s+t+1}} \cdots \overline{r_{s+2}} \overline{p_{s+1}} \cdots \overline{p_{2}} 11
\end{aligned}
$$

where P_{3} is a shortest path in the subcube

$$
(*)_{(m+1)-(s+t+2)} \quad \overline{r_{s+t+1}} \cdots \overline{r_{s+2}} \quad \overline{p_{s+1}} \cdots \overline{p_{2}} \quad 01
$$

Each vertex of this subcube differs from P_{1} in at least $s \geq 2$ bit positions, and differs from P_{2} in at least $t \geq 2$ bit positions. By the reasoning of Lemma 4.5, P_{3} differs from P_{1}^{*} and P_{2}^{*} in at least two bit positions. Thus, the concatenation of P_{1}^{*} with the edge $\left(u_{1}, u_{x}\right)$ followed by P_{3} is a snake. Similarly, the concatenation of P_{2}^{*} with the edge $\left(u_{2}, u_{y}\right)$ is a snake. Moreover, these two snakes concatenated together is a snake with end points v_{0} and w_{0}, both of which are in A.

5. Conclusions and open questions

As noted earlier, our interest in maximal snakes derives from properties of maximal snakes in lower dimensions that are useful heuristics in generating long maximal snakes in higher dimensions. The heuristics essentially seed the exhaustive search with an initial segment of the snake. Our hope is that minimal percolating sets can prove to be better seeds and will speed up the exhaustive search somewhat. Our intuition comes from the observation that 1) minimal pecolating set vertices are sprinkled throughout the hypercube, and 2) at each step of the proofs above where we use a shortest path or any snake between two vertices, we could use a suitable longest path instead.

We would also like to explore the possibility of stronger results that may characterize longest maximal snakes in terms of minimal percolating sets. For example, we would like to consider questions such as

1. Is there a difference in the set of minimal percolating sets contained in a maximal, but not longest, snake, and the set of minimal percolating sets contained in a longest snake?
2. In some dimensions, notably 4 and 6 of the known ones, there is a unique (up to isomorphism) longest snake. Is there a stronger relationship between the longest snake and minimal percolating sets in these dimensions?

References

[1] D. Kinny. A new approach to the snake-in-the-box problem., in Proceedings of the 20th European Conference on Artificial Intelligence, ECAI-2012, 462-467, 2012.
[2] Dayanand S. Rajan and Anil M. Shende. Maximal and reversible snakes in hypercubes, in 24th Annual Australasian Conference on Combinatorial Mathematics and Combinatorial Computing, 1999.
[3] Eric Riedl. Largest and smallest minimal percolating sets in trees, The Electronic Journal of Combinatorics, 19, 2010.
[4] Eric Riedl. Largest minimal percolating sets in hypercubes under 2-bootstrap percolation, The Electronic Journal of Combinatorics, 17, 2010.
[5] W. H. Kautz, Unit distance error checking codes, in IRE Transaction on Electronic Computers, 7, 179-180, 1958.

[^0]: * E-mail: shende@roanoke.edu

