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1. Introduction

Let R be an associative ring with identity. An element a ∈ R is called clean if a = e + u, where
e, u ∈ R, e is an idempotent and u is a unit. We shall call such a representation a clean representation
of a. Further, a is called strongly clean (uniquely clean) if it has a clean representation in which the
idempotent and the unit commute (it has only one clean representation). The ring R is said to be clean
(strongly clean, uniquely clean) if each of its element is. The notion of clean rings was introduced by W.
K. Nicholson [10] while studying rings with exchange property and observed that these rings have the
exchange property. The notions of strongly clean and uniquely clean ring were introduced subsequently.
Ever since, many mathematicians have studied these rings extensively.

In an attempt to unify several variants of strongly clean property A. J. Diesl [7] has introduced the
notion of nil-clean rings. A ring R is nil-clean if each of its elements is the sum of an idempotent and
a nil-potent. The notion of strongly nil-clean (uniquely nil-clean) were defined analogous to those of
strongly clean (uniquely clean). These rings have been studied in great detail in [7]. Among other things,
the author has shown [[7], Prop 3.4] that a nil-clean ring is clean and immediately posed the question:
"Whether or not a nil-clean element in a ring is clean?"
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This question was answered in negative by Andrica Dorin and Calugareanu Grigore in [3]. They
have given an example of a matrix in M2(ZZ) which is nil-clean but not clean. In [2] they have also given
example of a unit regular matrix (matrix which is the product of an idempotent matrix and a unit) which
is not nil-clean and that of a nil-clean matrix which is not unit regular.

To tackle questions as above, characterization of elements having a prescribed decomposition, nil-
clean decomposition in the present context, are essential. As matrices are good sources of examples, it
is nice to have characterization of matrices having nil-clean decomposition. Another motivation to study
nil-clean matrices stems from Lie Theory, as strongly nil-clean decomposition of matrices over fields is
the classical Jordan-Chevalley decomposition which is of central importance in Lie Theory.

The nil-clean (strongly nil-clean) ring theory has application in various branches of mathematics.
For instance in [6] nil-cleanness of endomorphism ring of a group of finite rank and in [12] nil-cleanness
of group rings have been studied.

In [4], the authors have introduced the notion of nil-clean graph of a ring R for which R is the set
of vertices and a, b ∈ R are adjacent if a+ b is nil-clean.

The characterization of nil-clean elements will certainly help understand such applications. In this
paper, we give a characterization of nil-clean 2× 2 matrices over an integral domain. The idempotents,
unipotents (element of the form 1 + n, where n is nil-potent) and nil-potents in any ring R are nil-clean.
By nil-clean we mean, nil-clean elements other than these.

It is well known that when R is an integral domain, an idempotent 2 × 2 matrix other than 0 and

I is of the form
[
x y
w 1− x

]
with x(1 − x) = yw. For the sake of completeness, a proof is given [see:

Lemma 2.1].

Similarly, 2 × 2 nil-potent matrices are of the form
[
a b
c −a

]
with a2 + bc = 0 [see: Lemma 2.2].

Thus a nil-clean matrix A =

[
a b
c d

]
satisfies the conditions

(i) Tr(A) = 1.

(ii) det
[
a− x b− y
c− w d− 1 + x

]
= 0, where x(1− x) = yw.

Expanding the determinant and simplifying gives

(2a− 1)x+ cy + bw = a2 + bc. (1)

Thus, if
[
a b
c d

]
is nil-clean as above, then it has trace 1 and the equation (1) has a solution x, y, w with

x(1− x) = yw.

We shall show these two conditions characterize a nil-clean matrix [see: Theorem 3.1]. In [9],
the authors have characterized nil-clean matrices over UFD. But, our approach is different from their
approach. The authors of [9] have used characterization of rank one 2 × 2 matrices over a UFD R to
arrive at the characterization while we have used solutions of certain Diophantine equation to get the
characterization.

When the entries are integers, the equation (1) is a linear Diophantine equation in 3 variables which
has a solution if and only if gcd(2a − 1, c, b) divides (a2 + bc) and this forces gcd(2a − 1, b, c) = 1. The
condition that equation (1) has a solution satisfying x(1 − x) = yw yields a second degree Diophantine
equation in two variables. This equation has been analyzed for its solutions in section 4. Discussion in
the sections 3 and 4 has been summarized in section 5 along with illustrations.

It has been shown [[7], Cor. 5.4] that central idempotents and central nil-potents in a ring are uniquely
nil-clean. In section 6, we let R be a Principal Ideal Domain (PID) and show using the characterization of
section 3 that if an idempotent in M2(R) is not central then it is not uniquely nil-clean. Thus in M2(R),
the only uniquely nil-clean idempotents are central idempotents i.e., the zero matrix and the identity
matrix. We observe that nilpotents in M2(R) are uniquely nil-clean.

118



K. N. Rajeswari, U. Gupta / J. Algebra Comb. Discrete Appl. 5(3) (2018) 117–127

Throughout the paper R is an integral domain, Mn(R) is the ring of n × n matrices over R. For
A ∈ Mn(R), Tr(A) denotes the trace of A, R(A) denotes its rank and |A| its determinant. Let Rn be
the free R-module of n tuples of elements of R.

2. Preliminaries

Let R be an integral domain. In this section we recall some results and facts.

Lemma 2.1. E =

[
x y
w z

]
∈ M2(R) (E 6= I, E 6= 0) is idempotent if and only if it is of the form[

x y
w 1− x

]
with x(1− x) = yw.

Proof. Let E =

[
x y
w z

]
(E 6= I, E 6= 0) be an idempotent matrix. As idempotent matrix, which is

not identity is singular, we have xz = yw and as Tr(E) = R(E) = 1, x + z = 1 i.e., z = 1 − x. Hence

the matrix is
[
x y
w 1− x

]
with x(1− x) = yw.

Converse can be checked by direct calculation.

Lemma 2.2. N =

[
a b
c d

]
∈M2(R) is nil-potent if and only if it is of the form

[
a b
c −a

]
with a2+bc = 0.

Proof. Let N =

[
a b
c d

]
be a nil-potent matrix. Since trace and determinant of a nil-potent matrix

are always zero, a + d = 0 and bc − ad = 0 i.e., d = −a and bc + a2 = 0. Hence the matrix is
[
a b
c −a

]
with bc+ a2 = 0.

Converse is easy to check.

Proposition 2.3. The equation x2 − y2 = c admits integer solutions if and only if c belongs to 4ZZ or it
is odd.

Proof. (See [[13], Property 1]).

Proposition 2.4. The equation x2−dy2 = c2 (where d is not a perfect square) admits an infinite number
of solutions in IN .

Proof. (See [[13], Property 2]).

Theorem 2.5. Let R be a PID and A ∈ Mn(R) be an idempotent matrix. Then A is similar to the

matrix
[
Ir 0

0 0

]
where Ir is the identity matrix of order r and r = R(A).

Proof. Let B be a basis of Rn, the free R-module of rank n. Then A determines a module homomor-
phism T : Rn → Rn which is idempotent and whose matrix with respect to B is A. Let I be the identity
transformation, N(T ) and N(I − T ) be the null spaces of T and I − T respectively. As R is a PID,
N(T ) and N(I − T ) are free. As T is idempotent, for x ∈ Rn, Tx ∈ N(I − T ) and (I − T )x ∈ N(T ).
Hence Rn = N(I − T ) + N(T ). Clearly, N(I − T ) ∩ N(T ) = 0. Thus Rn = N(I − T )

⊕
N(T ). Let

{v1, ....vr} be a basis of N(I−T ) and {vr+1, ....vn} be a basis of N(T ). Then B′ = {v1, ....vr, vr+1, ....vn}
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is a basis of Rn and the matrix of T with respect to B′ is

[
Ir 0

0 0

]
. Therefore, A is similar to

[
Ir 0

0 0

]
and r = R(A).

It is well known that a polynomial equation with integral coefficients for which integral solutions are
desired is called a Diophantine equation. In the later part we will use two types of Diophantine equations,
one linear Diophantine equation in three variables and other is quadratic Diophantine equation in two
variables. A linear Diophantine equation with three variables is of the form

ax+ by + cz = d (2)

where a, b, c and d are integers. This equation has a solution if and only if gcd(a, b, c) divides d (see [11]).
It is also that once it has a solution, it has infinite number of solutions. Solution to the equation (2) is
obtained as follows (see [8]):

Let gcd(a, b) = p, a′ = a/p and b′ = b/p. Let (u0, v0) be any one solution of a′u + b′v = c, (z0, t0)
be any one solution of cz + pt = d and (x0, y0) be any one solution of a′x + b′y = t0, then the general
solution of ax+ by + cz = d is

x = x0 + b′k − u0m

y = y0 − a′k − v0m

z = z0 + pm k,m ∈ ZZ

We shall denote quadratic Diophantine equation in two variables by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (3)

where A,B,C,D,E and F are integers. We shall use the notations of [3] and follow the method of
solution given there. Let D = B2 − 4AC, g = gcd(B2 − 4AC, 2AE − BD) and 4 = 4ACF + BDE −
AE2 − CD2 − FB2. Then the equation reduces to

gX2 − D

g
Y 2 = −4A4

g
(4)

where X = D
g y +

2AE−BD
g and Y = 2Ax+By +D.

Now, we have the following cases:

If D > 0 and perfect square, the equation (4) admits finite number of integer solutions provided
right hand side of (4) is non zero [see: Proposition 2.3].

If D > 0 and not a perfect square, the equation (4) admits an infinite number of solutions in IN [see:
Proposition 2.4]

If D < 0 i.e., B2 − 4AC < 0. (see [1]) Since the ellipse is a closed figure, the number of solutions
will be finite(if a solution exists). The equation is

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (5)

⇒ Cy2 + (Bx+ E)y + (Ax2 +Dx+ F ) = 0

⇒ y =
−(Bx+ E)±

√
(Bx+ E)2 − 4C(Ax2 +Dx+ F )

2C
(6)

120



K. N. Rajeswari, U. Gupta / J. Algebra Comb. Discrete Appl. 5(3) (2018) 117–127

for a value of x there will be two values of y except at the left and right extremes of the ellipse. In this
case there will be only one value of y. To determine the location of the left and right extremes we should
equal the square root to zero. i.e.,

(Bx+ E)2 − 4C(Ax2 +Dx+ F ) = 0

⇒ (B2 − 4AC)x2 + 2(BE − 2CD)x+ (E2 − 4CF ) = 0

so the value of x should be between the roots of this equation. If the roots are not real, there will be no
solution to the equation (5), all integer values of x should be replaced in equation (6) in order to find an
integer value of y.

3. Main result

Let R be an integral domain. It is clear that idempotent matrices, nil-potent matrices and unit
matrices of the form I +N , where I is the identity matrix and N is a nil-potent matrix are nil-clean. We
shall call these trivially nil-clean. So from now onwards, nil-clean means non-trivially nil-clean. In this
section, we shall discuss necessary and sufficient conditions for a matrix A ∈M2(R) to be nil-clean.

Theorem 3.1. Let A =

[
a b

c d

]
be any matrix in M2(R). Then A is nil-clean if and only if Tr(A) = 1

and (2a− 1)x+ cy + bw = a2 + bc has a solution satisfying x(1− x) = yw.

Proof. Let A be nil-clean. Say A = E +N , where E 6= 0, E 6= Id, is an idempotent matrix and N is a

nil-potent matrix. Then A− E =

[
a− x b− y

c− w d− 1 + x

]
is nil-potent. Hence

(A− E)2 =

[
a− x b− y

c− w d− 1 + x

]2
= 0.

Since, the trace of a nil-potent matrix is zero, a− x+ d− 1 + x = 0 ⇒ a+ d = 1 i.e. Tr(A) = 1. Also,
determinant of a nil-potent matrix is zero,

Hence (a− x)(d− 1 + x)− (b− y)(c− w) = 0

⇒ (a− x)(x− a)− (b− y)(c− w) = 0

⇒ (a− x)2 + (b− y)(c− w) = 0

⇒ x2 − 2ax+ a2 + bc− yc− bw + yw = 0

⇒ x2 − 2ax+ a2 + bc− yc− bw + x− x2 = 0

⇒ x(1− 2a)− yc− wb+ a2 + bc = 0

⇒ (2a− 1)x+ cy + bw = a2 + bc.

Conversely, let Tr(A) = 1 and (2a− 1)x+ cy + bw = a2 + bc have a solution x, y, w with x(1− x) = yw.

Let E =

[
x y

w 1− x

]
. Then A− E =

[
a− x b− y

c− w d− 1 + x

]
. Now,

Tr(A− E) = (a− x) + (d− 1 + x)

= a+ d− 1

= 0 (∵ Tr(A) = 1)
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And

|A− E| =

∣∣∣∣∣ a− x b− y

c− w d− 1 + x

∣∣∣∣∣
= (a− x)(d− 1 + x)− (b− y)(c− w)

= (a− x)(x− a)− (b− y)(c− w)

= −x2 − a2 + 2ax− bc+ yc+ bw − yw

= −x2 − a2 + 2ax− bc+ yc+ bw − (x− x2) (∵ yw = x(1− x))

= (2a− 1)x+ cy + bw − (a2 + bc)

= 0 [∵ (2a− 1)x+ cy + bw = a2 + bc]

Hence A− E is nil-potent, which proves A is nil-clean.

4. Analysis on main result when R = ZZ

In this section, we shall analyze the linear Diophantine equation (2a − 1)x + cy + bw = a2 + bc as
to when it has a solution satisfying x(1− x) = yw. Let a1 = 2a− 1 and d1 = a2 + bc, then the equation
becomes a1x + cy + bw = d1. Let gcd(a1, c) = p, a′1 = a1/p and c′ = c/p. Let (u0, v0) be any one
solution of a′1u+ c′v = b, (w0, t0) be any one solution of bw+ pt = d1 and (x0, y0) be any one solution of
a′1x+ c′y = t0, then the general solution of a1x+ cy + bw = d1 is

x = x0 + c′k − u0m

y = y0 − a′1k − v0m

w = w0 + pm

The condition

x− x2 = yw

⇒(x0 + c′k − u0m)− (x0 + c′k − u0m)2 = (y0 − a′1k − v0m)(w0 + pm)

⇒(x0 + c′k − u0m)− (x2
0 + c′2k2 + u2

0m
2 + 2x0c

′k − 2x0u0m−
2c′ku0m) = y0w0 − a′1kw0 − v0mw0 + y0pm− a′1kpm− v0m

2p

⇒c′2k2 − (2c′u0 + a′1p)km+ (u2
0 − v0p)m

2 + (2x0c
′ − c′ − a′1w0)k

+ (u0 − 2x0u0 − v0w0 + y0p)m+ (x2
0 − x0 + y0w0) = 0

⇒Ak2 +Bkm+ Cm2 +Dk + Em+ F = 0 (7)

where A = c′2, B = −(2c′u0 + a′1p), C = (u2
0 − v0p), D = (2x0c

′ − c′

− a′1w0), E = (u0 − 2x0u0 − v0w0 + y0p), and F = (x2
0 − x0 + y0w0)

Now,

D = B2 − 4AC

= (2c′u0 + a′1p)
2 − 4c′2(u2

0 − v0p)

= 4c′2u2
0 + a′21 p

2 + 4c′u0a
′
1p− 4c′2u2

0 + 4c′2v0p

= a21 + 4c′u0a
′
1p+ 4c′2v0p

= a21 + 4c′u0a
′
1p+ 4c′p(b− a′1u0) (∵ a′1u0 + c′v0 = b)

= a21 + 4cb.

2AE −BD = 2c′2(u0 − 2x0u0 − v0w0 + y0p) + (2c′u0 + a′1p)(2x0c
′ − c′

−a′1w0)
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= 2c′2u0 − 4c′2x0u0 − 2c′2v0w0 + 2c′2y0p+ 4c′2u0x0 − 2c′2u0

−2c′u0a
′
1w0 + 2a′1px0c

′ − a′1pc
′ − a′21 pw0

= −2c′w0(a
′
1u0 + c′v0) + 2c′p(a′1x0 + c′y0)− a′1pc

′ − a′21 pw0

= −2c′w0b+ 2c′pt0 − a′1pc
′ − a′21 pw0

(
∵

a′1x0 + c′y0 = t0
a′1u0 + c′v0 = b

)
= −2c′w0b+ 2c′(d1 − bw0)− a′1pc

′ − a′21 pw0

= 2c′d1 − 4c′w0b− a′1pc
′ − a′21 pw0

= 1
p (2cd1 − 4cw0b− a1c− a21w0)

Let g = gcd(D , 2AE −BD).

4 = 4ACF +BDE −AE2 − CD2 − FB2

= 4c′2(u2
0 − v0p)(x

2
0 − x0 + y0w0)− (2c′u0 + a′1p)(2x0c

′ − c′ − a′1w0)

(u0 − 2x0u0 − v0w0 + y0p)− c′2(u0 − 2x0u0 − v0w0 + y0p)
2 − (u2

0

−v0p)(2x0c
′ − c′ − a′1w0)

2 − (x2
0 − x0 + y0w0)(2c

′u0 + a′1p)
2

= 4c′2u2
0x

2
0 − 4c′2u2

0x0 + 4c′2u2
0y0w0 − 4c′2v0px

2
0 + 4c′2v0px0 − 4c′2v0py0w0

−4c′2x0u
2
0 + 2c′2u2

0 + 2c′a′1w0u
2
0 + 8c′2u2

0x
2
0 − 4c′2u2

0x0 − 4c′u2
0a
′
1w0x0

+4c′2u0v0w0x0 − 2c′2u0v0w0 − 2c′u0a
′
1w

2
0v0 − 4c′2u0y0px0 + 2c′2u0y0p

+2c′u0a
′
1y0pw0 − 2a′1px0c

′u0 + a′1pc
′u0 + a′21 pw0u0 + 4a′1x

2
0c
′u0p

−2a′1pc′x0u0 − 2a′21 pw0x0u0 + 2a′1pv0w0x0c
′ − a′1pc

′v0w0 − a′21 w
2
0v0p

−2a′1p2y0x0c
′ + a′1p

2c′y0 + a′21 p
2y0w0 − c′2u2

0 − 4c′2x2
0u

2
0 − c′2v20w

2
0

−c′2y20p2 + 4c′2x0u
2
0 + 2c′2u0v0w0 − 2c′2u0y0p− 4c′2x0u0v0w0

+4c′2x0u0y0p+ 2c′2v0w0y0p− 4u2
0x

2
0c
′2 − u2

0c
′2 − u2

0a
′2
1 w

2
0 + 4u2

0x0c
′2

+4u2
0x0c

′a′1w0 − 2u2
0c
′a′1w0 + 4v0px

2
0c
′2 + c′2v0p+ a′21 w

2
0pv0 − 4c′2x0v0p

−4c′a′1w0x0v0p+ 2c′a′1w0v0p− 4x2
0c
′2u2

0 − x2
0a
′2
1 p

2 − 4c′a′1x
2
0u0p+ 4c′2u2

0x0

+a′21 p
2x0 + 4c′a′1u0x0p− 4c′2u2

0y0w0 − a′21 p
2y0w0 − 4c′a′1u0y0w0p

= (4c′2u2
0x

2
0 + 8c′2u2

0x
2
0 − 4c′2u2

0x
2
0 − 4c′2u2

0x
2
0 − 4c′2u2

0x
2
0) + (−4c′2u2

0x0

−4c′2u2
0x0 − 4c′2u2

0x0 + 4c′2u2
0x0 + 4c′2u2

0x0 + 4c′2u2
0x0) + (4c′2u2

0y0w0

−4c′2u2
0y0w0) + (4c′2v0px

2
0 − 4c′2v0px

2
0) + (4c′2v0px0 − 4c′2v0px0)

+(2c′2v0py0w0 − 4c′2v0py0w0) + (2c′2u2
0 − c′2u2

0 − c′2u2
0) + (2c′a′1w0u

2
0

−2c′a′1w0u
2
0) + (4c′u2

0a
′
1w0x0 − 4c′u2

0a
′
1w0x0) + (4c′2u0v0w0x0

−4c′2u0v0w0x0) + (2c′2u0v0w0 − 2c′2u0v0w0)− 2c′u0a
′
1w

2
0v0 + (4c′2u0y0px0

−4c′2u0y0px0) + (2c′2u0y0p− 2c′2u0y0p) + (2c′u0a
′
1y0pw0 − 4c′u0a

′
1y0pw0)

+(4a′1px0c
′u0 − 2a′1px0c

′u0 − 2a′1px0c
′u0) + a′1pc

′u0 + a′21 pw0u0

+(4a′1x
2
0c
′u0p− 4a′1x

2
0c
′u0p)− 2a′21 pw0x0u0 + (2a′1pv0w0x0c

′−
4a′1pv0w0x0c

′)− a′1pc
′v0w0 + (a′21 w

2
0v0p− a′21 w

2
0v0p)− 2a′1p

2y0x0c
′
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+a′1p
2c′y0 + (a′21 p

2y0w0 − a′21 p
2y0w0)− c′2v20w

2
0 − c′2y20p

2 − u2
0a
′2
1 w

2
0

+c′2v0p+ 2c′a′1w0v0p− x2
0p

2a′21 + a′21 p
2x0

= −2c′2v0py0w0 − 2c′u0a
′
1w

2
0v0 − 2c′a′1u0y0w0p+ a′1pc

′u0 + a′21 pw0u0

−2a′21 pw0x0u0 − 2c′a′1pw0v0x0 − a′1pc
′v0w0 − 2a′1p

2y0x0c
′ + a′1p

2c′y0

−c′2v20w2
0 − c′2y20p

2 − u2
0a
′2
1 w

2
0 + c′2v0p+ 2c′a′1w0v0p− x2

0p
2a′21 + a′21 p

2x0

= −(c′2y20p2 + c′2v20w
2
0 + 2c′2v0py0w0)− (x2

0p
2a′21 + u2

0a
′2
1 w

2
0 + 2a′21 px0u0w0)

−2(a′1p2y0x0c
′ + c′a′1y0u0w0p+ c′v0w0x0pa

′
1 + c′u0w

2
0v0a

′
1) + a′1pc

′u0

+a′21 pw0u0 + a′1p
2c′y0 + c′2v0p+ c′a′1w0v0p+ a′21 p

2x0.

= −(c′y0p+ c′v0w0 + x0pa
′
1 + u0a

′
1w0)

2 + c′p(a′1u0 + c′v0) + a′1pw0

(a′1u0 + c′v0) + a′1p
2(a′1x0 + c′y0)

= −[p(a′1x0 + c′y0) + w0(c
′v0 + a′1u0)]

2 + c′pb+ a′1pw0b

+a′1p
2t0

[
∵ a′1u0 + c′v0 = b

a′1x0 + c′y0 = t0

]
= −(pt0 + bw0)

2 + cb+ a′1p(bw0 + pt0)

= −d21 + cb+ a1d1 (∵ pt0 + bw0 = d1)

= −(a2 + bc)2 + (2a− 1)(a2 + bc) + bc

= −(a2 + bc)2 + 2a(a2 + bc)− a2 − bc+ bc

= −(a2 + bc− a)2

= −(d1 − a)2

The equation (7) reduces to gX2 − D
g Y

2 = −4A4g

Or X2
1 −DY 2 = [2c′(d1 − a)]2 (8)

Where X1 = gX = Dm + (2AE − BD) = (a21 + 4bc)m + 1
p (2cd1 − 4cw0b − a1c − a21w0) and Y =

2Ak + Bm +D = 2c′2k − (2c′u0 + a1)m + (2x0c
′ − c′ − a′1w0). The general methods of solutions of (8)

have already been discussed in section 2.

5. Examples

In this section, we shall briefly summarize the discussion in section 3 and 4. For a given matrix

A =

[
a b

c d

]
to be nil-clean the following conditions are necessary and sufficient :

(1) Tr(A) = 1
(2) gcd(2a− 1, b, c) = 1
(3) The equation (8) of section 4 has a solution.

The existence of solutions and the number of solutions is determined by the discriminant D of the
equation (8) which is (2a− 1)2 + bc.
(i) If D > 0, a perfect square and right hand side of (8) is non zero, then it has finitely many solutions
(see Example 5.1 below).
(ii) If D > 0 and not a perfect square (8) has infinitely many solutions (see Example 5.2 below).
(iii) If D < 0, equation (8) may or may not have a solution. If (8) has a solution then it has finitely many
(see Example 5.3 below). Finally, Example 5.4 illustrates the case where (8) does not have a solution.
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Example 5.1. Consider the matrix A =

[
1 3

2 0

]
. The linear Diophantine equation (2a−1)x+cy+bw =

a2 + bc for A is x + 2y + 3w = 7. The solutions are x = 1 + 2k − m, y = 3 − k − m,w = m where
k and m are integers. Using condition x(1 − x) = yw, we get the quadratic Diophantine equation
4k2− 5km+2k+2m = 0. Here D = 25 which is square of 5 and solutions are (4, 4), (-2, -1), (0, 0) and
(1, 2). For the solution (4, 4), we get the solution of linear Diophantine equation x = 5, y = −5, w = 4.

Let E =

[
5 −5
4 −4

]
. Then A− E is nil-potent.

Example 5.2. Consider the matrix A =

[
2 3

2 −1

]
. The linear Diophantine equation (2a − 1)x + cy +

bw = a2 + bc for A is 3x + 2y + 3w = 10. The solutions are x = 2k − m, y = 5 − 3k,w = m where
k and m are integers. Using condition x(1 − x) = yw, we get the quadratic Diophantine equation
4k2− 7km+m2− 2k+6m = 0. Here D = 33 which is not a perfect square and this equation has infinite
number of solutions, one of the solution is (2, 2) for which, we get the solution of linear Diophantine

equation x = 2, y = −1, w = 2. Let E =

[
2 −1
2 −1

]
. Then A− E is nil-potent.

Example 5.3. Consider the matrix A =

[
2 3

−1 −1

]
The linear Diophantine equation (2a−1)x+cy+bw =

a2 + bc for A is 3x − y + 3w = 1. The solutions are x = −k, y = −1 − 3k + 3m,w = m where
k and m are integers. Using condition x(1 − x) = yw, we get the quadratic Diophantine equation
k2 − 3km + 3m2 + k − m = 0. Here D = −3 < 0 and solutions are (-2, -1), (-1, 0) and (0, 0). For
the solution (-2, -1), we get the solution of linear Diophantine equation x = 2, y = 2, w = −1. Let

E =

[
2 2

−1 −1

]
. Then A− E is nil-potent.

Example 5.4. Consider the matrix A =

[
2 3

−5 −1

]
. The linear Diophantine equation (2a− 1)x+ cy+

bw = a2 + bc for A is 3x − 5y + 3w = −11. The solutions are x = 3 − 5k − m, y = 4 − 3k,w = m
where k and m are integers. Using condition x(1− x) = yw, we get the quadratic Diophantine equation
25k2 + 7km+m2 − 25k −m+ 6 = 0. Here D = −51 < 0. This equation has no solution as the equation
(B2− 4AC)k2 +2(BE− 2CD)k+(E2− 4CF ) = 0 i.e., 51k2− 86k+23 = 0 has roots 0.33 and 1.35 and
the integer k = 1 does not yield integer value for m. Hence 3x− 5y+3w = −11 does not have a solution
satisfying x(1− x) = yw.

6. Uniquely nil-clean matrices

In [7], it has been shown that central idempotents and central nilpotents are uniquely nil-clean. When
R is a PID, we show that only uniquely nil-clean idempotent elements of M2(R) are central idempotents
and observe that all nilpotents in M2(R) are uniquely nil-clean.

Remark 6.1. Nil-clean property is preserved under similarity.

Proof. Let A be nil-clean and A = E+N , where E, an idempotent matrix and N , a nilpotent matrix.
Say Nk = 0 . Let B be similar to A. Then B = CAC−1 for some invertible matrix C. Therefore,
B = CEC−1 + CNC−1, where (CEC−1)2 = CE2C−1 = CEC−1 and (CNC−1)k = CNkC−1 = 0.
Hence B is nil-clean.

Lemma 6.2. Let R be a PID and E ∈ M2(R) be an idempotent which is not central. Then E is not
uniquely nil-clean.
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Proof. Since E is not central, E 6= 0 and E 6= I. Then E =

[
x y

w 1− x

]
, where yw = x(1 − x). As

every idempotent matrix of rank r over a PID is similar to the matrix of the form

[
Ir 0

0 0

]
(By Theorem

2.5), E is similar to

[
1 0

0 0

]
. Let CEC−1 =

[
1 0

0 0

]
. The equation (2a − 1)x + cy + bw = a2 + bc of

section 3, for

[
1 0

0 0

]
reduces to x = 1. As we are interested in the solution x, y, w with yw = x(1− x),

we have yw = 0. Hence either y = 0 and w is arbitrary or y is arbitrary and w = 0. Hence all the

nil-clean decomposition of

[
1 0

0 0

]
are[

1 0

0 0

]
=

[
1 0

w 0

]
+

[
0 0

−w 0

]
, w is arbitrary

and

[
1 0

0 0

]
=

[
1 y

0 0

]
+

[
0 −y
0 0

]
, y is arbitrary.

Therefore, E = C−1

[
1 0

w 0

]
C + C−1

[
0 0

−w 0

]
C, w is arbitrary

and E = C−1

[
1 y

0 0

]
C + C−1

[
0 −y
0 0

]
C, y is arbitrary.

Hence E is not uniquely nil-clean.

Example 6.3. Let R = ZZ and let A =

[
9 −6
12 −8

]
and C =

[
3 −2
−4 3

]
then C−1AC =

[
1 0

0 0

]
. The

nil-clean decomposition of

[
1 0

0 0

]
is

[
1 0

0 0

]
=

[
1 0

w 0

]
+

[
0 0

−w 0

]
where w is arbitrary. Therefore,

[
9 −6
12 −8

]
=

[
3 2

4 3

]([
1 0

w 0

]
+

[
0 0

−w 0

])[
3 −2
−4 3

]

=

([
3 + 2w 0

4 + 3w 0

]
+

[
−2w 0

−3w 0

])[
3 −2
−4 3

]

=

[
9 + 6w −6− 4w

12 + 9w −8− 6w

]
+

[
−6w 4w

−9w 6w

]
where w ∈ ZZis arbitrary

Hence A is not uniquely nil-clean.

Lemma 6.4. If A ∈M2(R) is nilpotent, then it is uniquely nil-clean.

Proof. Let A ∈ M2(R) be nilpotent. Suppose A = E + N , where E, an idempotent matrix and
N , a nilpotent matrix, is a nil-clean representation of A. Comparing the traces on both sides, we have
Tr(E) = 0. Therefore, E = 0 and A = N .

In [5], the notion of nil-clean elements has been generalized to ideals of a ring R. An ideal I of R is
nil-clean if I = E+N , where E and N are ideals of R, E2 = E and N is a nil ideal(i.e., all elements of N
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are nil-potent). While the ideals generated by idempotents are idempotent, those generated by nilpotent
elements need not be nil or nil-potent when the ring R is non-commutative.

In view of the results of the paper, we ask the following:

Question 6.4. If I is the principal ideal generated by a nil-clean element in M2(R), R an integral
domain, when is I nil-clean?

Acknowledgment: The authors thank the referees immensely for their suggestions which have
improved the earlier version of the paper.
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