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Abstract 
Background: Malaria is a major public health problem and life threatening parasitic vector-borne disease. For the first 

time, we established and report the molecular mechanism responsible for Anopheles gambiae s.l. resistance to pyre-

throids and DDT from Yamaltu Deba, Southern Guinea Savanna, Northern-Nigeria.  

Methods: The susceptibility profile of An. gambiae s.l. to four insecticides (DDT 4%, bendiocarb 0.1%, malathion 5% 

and deltamethrin 0.05%) using 2–3 days old females from larvae collected from study area between August and No-

vember, 2018 was first established. Genomic DNA was then extracted from 318 mosquitoes using Livak DNA extrac-

tion protocol for specie identification and kdr genotyping. The mosquitoes were identified to species level and then 96 

genotyped for L1014F and L1014S kdr target site mutations.  

Results: The mosquitoes were all resistant to DDT, bendiocarb and deltamethrin but fully susceptible to malathion. An. 

coluzzii was found to be the dominant sibling species (97.8%) followed by An. arabiensis (1.9%) and An. gambiae s.s 

(0.3%). The frequency of the L1014F kdr mutation was relatively higher (83.3%) than the L1014S (39%) in the three 

species studied. The L1014F showed a genotypic frequency of 75% resistance (RR), 17% heterozygous (RS) and 8% 

susceptible (SS) with an allelic frequency of 87% RR and 13% SS while the L1014S showed a genotypic frequency of 

RR (16%), RS (38%) and SS (46%) with an allelic frequency of 40% RR and 60% SS, respectively.  

Conclusion: This study reveals that both kdr mutations present simultaneously in Northern-Nigeria, however contribu-

tion of L1014F which is common in West Africa was more than twice of L1014S mutation found in East Africa.  
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Introduction 
 

Insecticide resistance is mainly associated 

with genetic factors that are inherited and can 

be defined as “the ability in a population to tol-

erate doses of insecticide which would prove 

lethal to the majority of individuals in a normal 

population of the same species, developed as 

a result of selection pressure to the insecticide” 

(1, 2). The resistance is mainly acquired through 

two methods which include the target site insen- 

 

 

sitivity and metabolic resistance (3). The target 

site insensitivity is operated through one of the 

following methods (insensitive acetylcholines-

terase (AChE), GABA receptor mutation, or mu-

tations in the voltage-gated sodium channel). The 

nervous system of mosquitoes is been targeted 

by specific insecticide through which it acts, 

though sometimes the sensitivity of the site 

may reduce as a result of mutations leading to 
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resistance (4). The organophosphate and carba-

mates target the acetylcholinesterase (AChE) 

through carbamoylating the active serine site 

thereby stopping it from hydrolyzing the ace-

tylcholine (5-7). Substitution in the GABA re-

ceptor of an Alanine to Serine has been report-

ed in Drosophila melanogaster, D. simulans, 

Aedes aegypti, Anopheles stephensi and An. 

gambiae as the cause of resistance (8). Re-

sistance in the Pyrethroids and DDT is mainly 

due to mutations in the gene that encodes the 

voltage-gated sodium channel called the knock-

down resistance (9). In the An. gambiae and An. 

arabiensis mosquitoes, two different knock-

down resistance have been reported (10). The 

leucine-phenylalanine substitution at position 

1014 of the sodium channel gene (L1014F), 

was the first mutation reported from Burkina 

Faso and Ivory Coast in West Africa (11). 

While a leucine-serine substitution (L1014S) at 

the same position was reported as the second 

mutation from Western Kenya in East Africa 

(12). A study conducted in Northern Nigeria re-

ported high resistance of An. gambiae to per-

methrin and DDT with less resistant to bendi-

ocarb (13). The resistance profile and kdr mu-

tation of An. gambiae s.l. populations was also 

reported from two locations (Auyo and Bunku-

re) in northern Nigeria (14). High presence of 

An. coluzzii has been reported from previous 

studies (13-17). Two different studies conduct-

ed in Northern Nigeria both reported lower kdr 

mutations from both resistant and susceptible 

mosquitoes (18, 19). Similarly, studies conduct-

ed in Kenya reported lower kdr mutations to 

An. gambiae (20, 21). 

The aim of this study was to investigate spe-

cies composition, the insecticide susceptibility 

status, and to explore type of kdr mutations con-

ferring pyrethroids and DDT resistance in mem-

bers of the An. gambiae complex from North-

ern-Nigeria. 

 

Materials and Methods 
 

Study Location 

Yamaltu Deba (10° 13′ 0″ N, 11° 23′ 0″ E)  

is one of the eleven Local Government Areas in 

Gombe State, Nigeria (Fig. 1). It has a popu-

lation of 255,248, an area of 1,981km² and is 

located in the north-eastern part of Nigeria, 

stretching through the Sudan savannah, north-

ern and southern guinea savannah (22, 23).  

 

Study Sample 

Dipping method was used to collect larvae 

samples from different breeding places in the 

study site as described by (13) in order to pro-

vide laboratory stock of mosquitoes. The sam-

ples were transported to the insectary at Bayero 

University Kano with a rearing condition of 

28±2 °C temperature, 65±5% relative humidi-

ty (RH) and 12:12 hrs D: L. Two to three days 

old female sugar fed mosquitoes were used 

for susceptibility tests (24).  

 

WHO susceptibility tests 

Adult susceptibility test was conducted ac-

cording to the recent WHO bioassay guideline 

(25). Twenty five female mosquitoes of 2–3 days 

old fed on 10% sugar solution, were exposed to 

malathion 5%, bendiocarb 0.1%, DDT 4.0% and 

deltamethrin 0.05% impregnated papers for 60 

minutes in the standard WHO test kit. Oil-im-

pregnated papers were used for the control 

group. There were four replicates for the treat-

ed and two replicates for the control group. At 

the end of the exposure time, both the treated 

and control mosquito groups were allowed to 

recover in holding tubes with cotton pads con-

taining 10% sucrose solution on the top for 24 

hours and then the number of dead and alive 

mosquitoes were recorded. A mosquito is con-

sidered alive if it is able to fly, regardless of 

the number of legs remaining. 

 

DNA Extraction 
Genomic DNA was extracted from 318 in-

dividual mosquitoes using Livak DNA extrac-

tion protocol template preparation kit (26, 27). 
 

Specie Identification 

The mosquitoes were first identified mor-

phologically using morphological identification 

http://jad.tums.ac.ir/
http://jad.tums.ac.ir/


J Arthropod-Borne Dis, September 2020, 14(3): 228–238                                               M Ahmed-Yusuf et al.: First Report of … 

230 
 

http://jad.tums.ac.ir 
Published Online: September 30, 2020 

 

 

keys (28, 29). Molecular species identification 

was performed by PCR-SINE200 technique as 

previously described (14). Sine PCR reagents 

were carried out in 15ul master mix contain-

ing amplification reaction of 0.51mol of each 

primer sine 200F and sine 200R, 0.12mM of 

each dNTP, 0.75mM of MgCl2, 1.5U Taq DNA 

polymerase, PCR Buffer 10x [200mM Tris HCl 

(pH 8.4), 500mM KCl], 1.0µl of template DNA 

extracted from each mosquito. The primer se-

quence and thermal cycling conditions are 

shown in (Table 1).   
 

PCR for kdr west (L1014F) and kdr East 

(L1014S) 

The amplification protocol used for the de-

tection of 1014F and 1014S mutations was per-

formed using allele specific PCR in a 12.5µl 

reaction containing 1µl of template DNA, 1x 

Qiagen PCR buffer, 0.5mM MgCl2, 0.5nM of 

each primer, 0.5µM of dNTPs, and 1U of Taq 

DNA polymerase revised from the protocols 

previously established by Martinez-Torres et al. 

(11) and Ranson et al. (30). The primer se-

quences and thermal cycling conditions are 

shown in (Table 2). The primers Agd1, Agd2, 

Agd4 and Agd5 were used to detect the 1014S 

mutation whereas primers Agd1, Agd2, Agd3 

and Agd4 were used to detect the 1014F mu-

tation.   

 

Data analysis  

The 24hrs mortality was accessed manual-

ly, while the susceptibility was defined as; 98–

100% mortality indicates susceptibility, 90–97 

% mortality requires confirmation of resistance 

and between 0–89% suggests resistance (25). 

The Hardy-weinberg equilibrium equation was 

used to calculate the genotypic and allelic fre-

quencies. Microsoft office excel, version 2003 

was used to create charts, calculate the stand-

ard deviation, sort and clean the data. Abbott’s 

formula (30) was used to correct for natural 

mortality, if the control mortality was between 

5 and 20%. The results of the tests with >20% 

mortality in controls, were discarded and the 

test repeated (25). 

Results 
 

Female mosquitoes exposed to deltamethrin, 

DDT and bendiocarb showed 74% (95%, CI: 

68–79); 53% (CI: 49–56) and 44% (CI: 38–

49) mortalities after 24 hours, respectively (Fig. 

2). Whereas, malathion was found to be sus-

ceptible (Fig. 2).  

 

Molecular specie identification  
A total of 318 mosquitoes composing of 

138 alive (45 exposed to deltamethrin, DDT, 

bendiocarb and 3 exposed to malathion) and 

180 dead (45 exposed to deltamethrin, DDT, 

bendiocarb and malathion) were identified to 

specie level. All the dead mosquitoes identi-

fied were An. culluzzi, the alive mosquitoes ex-

posed to DDT, malathion and bendiocarb also 

were An. culluzzi while for deltamethrin ex-

posed, 53.3% were An. culluzzi, 40% An. ara-

biensis and 6.7% An. gambiae s.s (Table 3). 

 

Genotyping kdr west (L1014F) 

A total of 96 mosquitoes: 76 alive (69 An. 

coluzzii, 6 An. arabiensis, 1 An. gambiae s.s) 

and 20 dead (13 An. coluzzii, 6 An. arabiensis, 

1 An. gambiae s.s) were used for kdr genotyp-

ing. The following result was recorded: alive 

mosquitoes, the only An. gambiae s.s 1/1 (100 

%) was homozygote resistant (RR); An. ara-

biensis 4/6 (67%) RR, 2/6 (33%) heterozygote 

resistant (RS); An. coluzzii 55/69 (80%) RR, 

9/69 (13%) RS, 5/69 (7%) homozygote sus-

ceptible (SS). Dead mosquitoes, the only An. 

gambiae s.s 1/1 (100%) RR; An. arabiensis 

3/6 (50%) RR, 2/6 (33%) RS, 1/6 (17%) SS; 

An. coluzzii 8/13 (62%) RR, 3/13 (23%) RS, 

2/13 (15%) SS (Table 4).  

 

Genotypic and allelic frequencies of L1014F 

The Hardy-weinberg equilibrium equation 

was used to calculate the genotypic and allelic 

frequencies. The result was found to be 72 

(75%) RR, 16 (17%) RS and 8 (8%) SS; 87% 

RR and 13% SS (Table 5). 
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Genotyping kdr west (L1014S) 

A total of 96 mosquitoes were used, 

L1014S mutation was only found in 37 (39%) 

mosquitoes distributed as follows: 24 alive 

(15 An. coluzzii, 8 An. arabiensis, 1 An. gam-

biae s.s) and 13 dead (8 An. coluzzii, 4 An. 

arabiensis, 1 An. gambiae s.s) were used for 

kdr genotyping. The following result was rec 

orded: alive mosquitoes, the only An. gambiae 

s.s 1/1 (100 %) RS; An. arabiensis 2/8 (33%) 

RR, 5/8 (56%) RS, 1/8 (11%) SS; An. coluzzii 

4/15 (27%) RR, 3/15 (20%) RS, 8/15 (53%)  

 

SS. Dead mosquitoes: the only An. gambiae 

s.s 1/1 (100%) RS; An. arabiensis 3/4 (75%) 

SS, 1/4 (25%) RS; An. coluzzii 3/8 (38%) RS, 

5/8 (62%) SS (Table 4). 

 

Genotypic and allelic frequencies (L1014S) 

The Hardy-weinberg equilibrium equation 

was used to calculate the genotypic and allelic 

frequencies. The result was found to be 6 (16 

%) RR, 14 (38%) RS and 17 (46%) SS: 40% 

RR and 60% SS (Table 5). 

 
Table 1. (A) PCR primer sequences and (B) thermal cycling conditions used for specie identification of the Anopheles 

gambiae complex from Yamaltu Deba (Gombe state), Northern Nigeria, 2018 

A 

Primer name sequence (5′ to 3′) Identified species Size of the PCR product (bp) 

sine200F 

sine200R 

TCG-CCT TAG ACC TTG CGT TA 

CGC TTC AAG AAT TCG AGA TAC 

An. gambiae s.s. 

An. coluzzii 

An. arabiensis 

240 

470 

220 
 

                                        B 

Step Temperature  °C Time Cycle 

Initial Denaturation   95 5Mins 1 

Denaturation  

Annealing 

Extension 

94 

54 

72 

30Sec 

1Min 

1Min 

35 

Final Extension  72 10Mins 1 

 
Table 2. (A) PCR primer sequences and (B) thermal cycling conditions used for detection knockdown resistance muta-

tions (L1014F and L1014S) in the Anopheles gambiae complex from Yamaltu Deba (Gombe state), Northern Nigeria, 

2018 
A 

Primer 

name 

sequence (5′ to 3′) Primer type Combination and Size of  

PCR product (bp) 

Agd1 ATAGATTCCCCGACCATG Common forward Agd1+Agd2=293 

Agd2 AGACAAGGATGATGAACC Common reverse 

Agd3 AATTTGCATTACTTACGACA Specific reverse for L1014F Agd1+Agd3=195 

Agd4 CTGTAGTGATAGGAAATTTA Specific forward for susceptible L1014L Agd2+Agd4=137 

Agd5 ATTTGCATTACTTACGACTG Specific reverse for L1014S Agd1+Agd5=195 

 

                                            B 

Step Temperature  °C Time Cycle 

Initial Denaturation   95 3Mins 1 

Denaturation  

Annealing 

Extension 

94 

60 

72 

30Sec 

1Min 

1Min 

35 

Final Extension  72 5Mins 1 
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Table 3. Molecular species identification Anopheles gambiae s.l. specimens (A: alive, B: dead) following exposure to 

the insecticides from Yamaltu Deba (Gombe state), in Northern Nigeria, 2018 
 

        A 

Insecticide No. Exposed An. coluzzii (%) An. arabiensis (%) An. gambiae s.s (%) 

Deltamethrin 0.05% 45 53.3 40 6.7 

DDT 4% 45 100 0 0 

Malathion 5% 3 100 0 0 

Bendiocarb 0.1% 45 100 0 0 
 

B 

Insecticide No Exposed An. coluzzii (%) An. arabiensis (%) An. gambiae s.s (%) 

Deltamethrin 0.05% 45 100 0 0 

DDT 4% 45 100 0 0 

Malathion 5% 45 100 0 0 

Bendiocarb 0.1% 45 100 0 0 

 
Table 4. Genotyping of kdr west (L1014F) and east (L1014S) mutations of Anopheles gambiae s.l. from Northern Ni-

geria, 2018 
 

kdr Mutation (L1014F) 

  Alive Dead 

Species An. gambiae 

s.s. 

An. arabiensis An. coluzzii An. gambiae 

s.s. 

An. arabiensis An. coluzzii 

Homozygote resistance 100% 67% 80% 100% 50% 62% 

Heterozygote resistance 0 33% 13% 0 33% 23% 

Homozygote susceptible 0 0 7% 0 17% 15% 

 n=1 n=6 n=69 n=1 n=6 n=13 

kdr Mutation (L1014S) 

  Alive Dead 

Species An. gambiae 

s.s 

An. arabiensis An. coluzzii An. gambiae 

s.s 

An. arabiensis An. coluzzii 

Homozygote resistance 0 33% 27% 0% 0% 0% 

Heterozygote resistance 100% 56% 20% 100% 25% 38% 

Homozygote susceptible 0 11% 53% 0 75% 62% 

 n=1 n=8 n=15 n=1 n=4 n=8 

 
Table 5. The allelic and genotypic frequencies of the L1014F and L1014S, mutations of Anopheles gambiae s.l. from 

Northern Nigeria, 2018 
 

Genotypic frequencies (L1014F) 

Homozygote resistance Heterozygote resistance Homozygote susceptible  

75% 17% 8.00%   

 n=96 

Allelic frequencies (L1014F) 

Homozygote resistance  Homozygote susceptible  

87%  13%   

Genotypic frequencies (L1014S) 

Homozygote resistance Heterozygote resistance Homozygote susceptible  

16% 38% 46%   

 n=96 

Allelic frequencies (L1014S) 

Homozygote resistance  Homozygote susceptible  

40%  60%   
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Fig. 1. Map (adapted from google earth) showing the geographical location of the study site, Gombe state (red circle) 

in Northern Nigeria, 2018 

 

 
 

Fig. 2. Susceptibility (24hrs) profile of Anopheles gambiae s.l. to four insecticides from Yamaltu Deba (Gombe state), 

Northern Nigeria, 2018 

 
Discussion 
 

Susceptibility test 

Bendiocarb showed very high level of re-

sistance. This finding agrees with previous study 

(32), where they reported a percentage mortal-

ity range of 2.3–100%. Similarly, a study from 

Kumasi in Ghana, reported 38–56% mortality 

to bendiocarb (33). This study reports moderate  

 

 

 
level of resistance to deltamethrin from the study 

site. This finding is in agreement with study con-

ducted in the northern guinea savanna of Nige-

ria (34) where they reported percentage mor-

tality of 83%, and from north western part of 

Nigeria where they reported 78% mortality to 
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deltamethrin (14). However, a study conducted 

around the study location disagrees with our 

finding where they reported a very high re-

sistance of 38% mortality to deltamethrin (35). 

DDT was found to be resistant and this finding 

is in agreement with previous studies from Su-

dan, Guinea and Sahel savanna of Nigeria (13, 

14, 19, 30, 36, 37). Malathion was found to be 

susceptible and agrees with studies from dif-

ferent regions within and outside Nigeria (14, 

19, 33, 34, 37).  

 

Species identification 

Anopheles coluzzii was found to be the domi-

nant sibling species followed by the An. ara-

biensis and An. gambiae s.s (Table 3). This is 

in agreement with a study conducted in north-

ern Nigeria, where they reported An. coluzzii 

as the dominant specie 86.8% followed by An. 

arabiensis 77% (14). Also, the high presence 

of An. coluzzii reported is supported by previ-

ous studies (13, 15, 17). However, a study con-

ducted on molecular identification of An. gam-

biae s.l mosquitoes in Kamuli District of Ugan-

da, disagrees with our finding where they re-

ported 98% of the mosquitoes to be An. gam-

biae s.s (38). Another study conducted in Ni-

geria by Oyewole and colleagues (2011), re-

ported An. gambiae s.s as the dominant spe-

cies (74.6%) followed by An. arabiensis 26.4% 

in contrast to our finding (39).  

 

Knockdown resistance (kdr) West (L1014F) 

and East (L1014S) 
The kdr mutations were observed in the 

study location with high frequency of the 

L1014F in the An. coluzzii species (Table 4). 

This agrees with study conducted by Ibrahim 

et al. (2014) where they found the kdr muta-

tions in 80.1% of the An. coluzzii and 13.5% 

in An. arabiensis mosquitoes (12). Oyewole et 

al. (2011), in their study from south-western Ni-

geria reported that 87% of the mosquitoes re-

sistant to deltamethrin carried the kdr mutations 

and 80% of the DDT resistant mosquitoes as 

well (36). Furthermore, increase L1014F was 

reported from Ghana by Lynd et al. (2010) 

Niger, by Czeher et al. (2008) and sharp et al. 

(2007) from Equatorial Guinea (40-42). A study 

by Awolola et al. (2003) contradicts our find-

ing, where they reported high frequency of 

L1014F in An. gambiae s.s compared to An. 

coluzzii (43). Derrick et al. (2011) from Ken-

yan, also reported increased presence of kdr in 

An. gambiae s.s compared to the An. coluzzii. 

Also, increased presence of L1014S was re-

ported by Protopopoff et al. (2008), from Bu-

rundi and Verhaeghen et al. (2010), from Ugan-

da (44, 45).  

 

Genotypic and allelic frequencies 

This study reports high genotypic frequency 

particularly in the L1014F kdr compared to 

the L1014S gene from the study location (Ta-

ble 5). This is in agreement with previous study 

where they reported homozygous resistant of 

74.1%, heterozygous resistant of 19.7% and ho-

mozygous susceptible of 6.2% for the L1014F 

in the An. coluzzii. While from the An. ara-

biensis; 69.2% were homozygous susceptible, 

23.1% heterozygous and 7.7% homozygous re-

sistance (14). A study by Habibu and colleagues 

(2017), contradicts our finding, where they re-

ported 65.6% homozygous susceptible, 10% ho-

mozygous resistance and 24.4% as heterozy-

gous resistance in the L1014S (36). While the 

L1014F showed 54.4% as homozygous suscep-

tible, 21.6% as homozygous resistance and 24% 

as heterozygous resistance. The L1014S was 

seen both in the An. coluzzii and An. arabiensis 

(36). Our study also reports a very high allelic 

frequency in the L1014F compared to the 

L1014S (Table 5). This agrees with the results 

of Habibu et al. (2017) where they reported an 

allelic frequency of 48.9% and 65.9% in An. 

gambiae s.s and 20% and 61.8% in An. ara-

biensis in the L1014F (13). While the L1014S 

mutation recorded an allelic frequency of 40% 

and 55.3% in An. coluzzii; 20% and 30.8% in 

An. arabiensis. The L1014F has higher asso-

ciation with An. coluzzii (36). Studies by Der-

rick (2011) and Stump (2004) from Kenyan re-
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ported lower allelic frequency compared to our 

findings (20, 21). The high level of insecticide 

resistance observed may be associated with in-

creased use of pyrethroids treated bed nets and 

carbamate for indoor residual spraying (IRS) in 

public health and agricultural applications (35, 

46). Farmers in the study location use a wide 

range of pesticides and herbicides to protect 

their crops and these pesticides marketed un-

der different trade names belong to all the 

chemical classes including organophosphates, 

organochlorine, pyrethroids and carbamates 

(36). The high presence of kdr gene seen in this 

population of mosquitoes could be explained 

by the increase usage and abuse of insecticides 

by farmers and the increase coverage of LLIN 

distribution. 

 
Conclusion 
 

This study reveals the co-occurrence of 

L1014F and L1014S mutations with dominance 

of An. coluzzii and high genotypic and allelic 

frequencies in the L1014F over L1014S-kdr. 

Very high level of resistance to DDT, deltame-

thrin and bendiocarb was also observed. 
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