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ABSTRACT  

In the wake of grid modernization initiatives, such as the integration of renewable energy sources and 

demand response, as well as the increasing popularity of electric vehicles, a greater degree of uncertainty 

has been introduced due to the fact that electricity demand has become more active and less predictable, 

and forecasting load has become increasingly difficult. Since the historical data is irregular, non-linear, 

non-smooth, and noisy, it is difficult to achieve a satisfactory result. The present study overcomes the 

challenges with the help of an improved energy demand forecasting model for load dispatch centers as part 

of an Artificial Intelligence (AI) driven project supported under research grants from the Department of 

Scientific and Industrial Research. A real-time hourly load consumption dataset was collected from 

Regional Load dispatch centers from July 1, 2020, to August 22, 2022. In this paper, 24 regression model-

based day-ahead load forecasting algorithms are developed and evaluated using the load consumption and 

meteorological data collected from NASA Power (https://power.larc.nasa.gov/). MATLAB Regression 

Toolbox offers 24 regression models divided into five families: Linear Regression, Tree Regression, 

Support Vector Machines (SVM), Gaussian Process Regression (GPR), and Ensemble of Trees. Since GPR 

models are nonparametric kernel-based probabilistic models, they show the best load forecasting 

performance. The study recommends two GPR models for load forecasting: Rational Quadratic GPR and 

Exponential GPR 

Keywords: Short-term load forecasting, regression model, Gaussian process regression, probabilistic 

models, Subdivision electricity load 

 

1. Introduction  

As the smart grid continues to evolve and demand from industry and academia for more 

efficient electricity scheduling grows, short-term load forecasting (STLF) has attracted increasing 

interest. In the context of energy providers, short-term load forecasting (STLF) has a significant 

impact on generating energy, processing energy distribution efficiently, and optimizing electricity 

prices (Gochhait et al., 2020; Datar et al, 2021). Load forecasting is a critical component of power 

grids and is necessary for maintaining the balance between supply and demand (Gochhait et 

al.,2022). Accurate load forecasts are essential for power grids to operate effectively, and these 

forecasts must be accurate over a wide range of time periods (Chen et al., 2018). The accuracy of 

electricity demand models is also critical for power system reliability and operating costs. United 

Kingdom (UK) utility, reducing load forecasting errors by just 1% resulted in a £10 million per 

year reduction in operating costs. Therefore, accurate load forecasting is crucial for minimizing 

operating costs and maintaining reliable power grids (Gilanifar et al., 2020). Electric vehicles, 

demand response, and renewable have brought about a modernization of the power grid, resulting 

in increased uncertainty. This transformation has led to more variability in electricity demand, 

making load forecasting more challenging as predictability decreases (Subhasri & Jeyalakshmi, 

2018). A smart distribution grid, which can decentralize demand and generate renewable energy, 

is the future of the power grid (Patil et al., 2019). However, end-user behavior can significantly 

affect load, causing sudden variations that make high-resolution and accurate load forecasting 

crucial for the success of the smart distribution grid. Accurate load forecasting is necessary to 

minimize the impact of increased demand variability on power grids (Okoye & Madueme, 2016).  

Advanced technologies such as smart meters and advanced infrastructure metering have 

led to the development of load forecasting collection systems (Gochhait et al., 2022). With 

advances in data analysis and artificial intelligence techniques, academia and industry are 
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increasingly interested in load forecasting. Load forecasting has three categories: short term, 

medium term, and long term. Short-term load forecasts are made within a period of a few minutes 

to a week, while medium and long-term forecasts require at least two weeks of data, and a short-

term forecast requires at least three years of data. Accurate load forecasting is essential for 

minimizing the impact of increased demand variability on power grids and the success of a smart 

distribution grid, making it a vital area of research and development (Gilanifar et al., 2020; Chang 

et al., 2019). Short-term load forecasting is critical in various planning scenarios such as demand 

response, electricity trading, commitment to units, and inverse dispatch. Several techniques, 

including bidding processes, contingent energy transactions, and clearing processes, can be used 

to forecast future electricity demand on an hourly basis (Caro et al., 2020). Therefore, accurate 

short-term load forecasting is crucial for the reliable and efficient operation of the power grid 

(Feng et al., 2019). Fast restoration methods are essential to minimize the amount of unmet 

demand in the event of a fault for a robust final restoration. To achieve this, it is necessary to 

forecast short-term load ahead of time (Feng et al., 2019). 

Traditional methods such as expert systems, which mimic the expertise of well-trained 

experts, have been used for forecasting load. However, these rules for forecasting load can be 

challenging to translate, and the development of artificial intelligence techniques has led to the 

creation of adaptive data set training methods (Mele, 2019). The use of artificial intelligence 

techniques has made it challenging to distinguish between independent variables and dependent 

variables mathematically (Okoye & & Madueme, 2016). Regression algorithms can be used to 

predict short-term load forecasting. Regression is a mathematical tool that can establish statistical 

correlations between variables and provides information about the relationship between 

parameters that can be explored by examining their magnitude and trend. Regression allows the 

use of multiple predictors and predicts outcomes even when there are multiple interdependent 

predictors, making it superior to simplified analyses based on interrelated variables. Furthermore, 

regression allows the correction of errors resulting from inferences based on previous results, and 

excellent results can be obtained with relatively modest data sets. Therefore, regression 

algorithms are a valuable tool for predicting short-term stress. The literature discusses various 

approaches to load forecasting, including 1) deterministic (point-based) load forecasts (Gilanifar 

et al., 2020), (Cao et al., 2020). 2) probabilistic load forecasting (Yildiz et al., 2017). 3) hybrid 

methods combining point forecasts with probabilistic load forecasts (Massana et al., 2015).  

Probabilistic load forecasting has been comparatively underexplored compared with 

traditional forecasting. Electricity demand has become more uncertain and variable in smart grids, 

which requires probabilistic load forecasting. A number of factors affect the demand for 

electricity in the residential electricity distribution grid, including demand response programs and 

feed-in changes. Probability-based load forecasts provide interval load forecasts as well as 

scenario projections, functional densities, and probability distributions. They have been used to 

forecast probabilistic prices, plan probability-based lines, or allocate uncertain units (Massana et 

al., 2016). Based on regression, a load analysis has been developed for the entire country and 

specific regions, as well as smaller loads such as community microgrids. Variables related to 

climatic conditions and time can be accounted for in models developed for short, medium, and 

long-term schedules. Due to its significant impact on power security and load stability (Yildiz et 

al., 2017), the prediction of time-limited loads is essential. 

In regression models, Multiple Linear Regression (MLR), Artificial Neural Networks 

(ANN) and Support Vector Fig. 1. Monthly Feeder Input (kWh) Regression (SVR) are compared, 

with Support Vector Machines showing the best performance (Prakash et al., 2018). In this paper, 

the regression models Autoregressive Integrated Moving Average with exogenous variables 

(ARMAX) Approach, ANN Approach, MLR Approach, and SVR Approach (Jiang et al., 2016) 

are examined. The SVR group, Randon Forest (RF), and the Gaussian Process Regression (GPR) 

group are compared (Deng et al., 2019). The effectiveness of machine learning regression models 

in predicting short-term loads has been established to be superior to traditional regression models 

(Khadka et al., 2020). This study aims to compare the effectiveness of different regression models 

(Cao et al., 2020), namely linear regression, support vector machine (SVM), ensemble trees, and 

Gaussian process regression (GPR) algorithms in forecasting load. The models are critical in 

maintaining the integrity and safety of loads, especially short-term loads. To improve the 
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effectiveness of short-term forecasts, robust regression algorithms should be applied to short-term 

model forecasts. Regression models were employed to analyze load forecasts for a given region 

while considering grid microsystem connections to local communities. The models use various 

parameters related to the local climate and time frames, ranging from short to long-term. While 

the models are useful for large loads, predicting short-term loads is critical. Robust regression 

algorithms could be applied to short-term model forecasts to improve the accuracy of empirical 

short-term forecasts (Liang et al., 2016). The study concluded that machine learning regression 

models, such as the GPR method, outperformed traditional regression models, including linear 

regression, SVM, ensemble trees, and neural networks (Hong & Fan, 2019). The weather-

sensitive component is forecasted using a Support Vector Regression (SVR) model based on 

historical load data and meteorological data. Data on the real electricity load is used to test the 

proposed method (Qiuyu et al., 2017). 

The present study proposes the effectiveness of the different models evaluated to identify 

short-term load forecasting. Therefore, regression models based on machine learning are 

recommended for developing models that can identify short-term loads (Hammad et al., 2020). 

The proposed algorithm was adopted to determine the most suitable algorithm for the electricity 

load profile (Liang et al., 2021). The best regression models are identified by Mean absolute 

percentage error (MAPE), MAE, and Root Mean Square Error (RMSE). The most efficient 

regression models were selected from 24 preliminary regression models. This was accomplished 

by using various actual and predicted plots, response plots, and residual plots. Several iterations 

of this process were performed to arrive at the recommended final regression model. In addition, 

this paper presents a viable approach for load forecasting and demonstrates that GPR models are 

more accurate. 

A detailed description of the Load dispatch center (LDC) load is given in Section II, 

followed by an explanation of the proposed load forecasting approach. The results of the 

simulations are presented in Section III, followed by the analytical results obtained by using 24 

regression models. Fig. 2. Feeder Input (kWh) season-wise in section IV, the simulation results 

and data analysis are presented and recommendations are derived 

 

2. Literature Review 

In this section, we describe the data collection approach and forecasting approach that will 

be used to gather data from load dispatch centers. 

 

Maharashtra State Electricity Distribution Company Ltd (MSEDCL) 

The study considered data from MSEDCL in terms of Region(PUNE REGION), 

Zone(PUNE ZONE), Circle (PUNE (R) CIRCLE), Division (MANCHAR O&M DIVISION), 

Subdivision BU(Billing Unit), Substation Name(33/11 KV NETWAD SUBSTATION), Feeder 

Name (Netwad), Feeder Type Description(Single Phasing Feeders), Month(July 2020 to Sept 

2022), Day profile Date(30 Mins Timeframe), Interval(48 Interval), Active Energy (kWh), 

Reactive Energy (KVarch or reactive energy). If the power factor is less than 90%, will be billed 

for KVARH. The actual power consumed by the load is called kilowatt power. All the power 

given to the load is not utilized as useful power. The non-useful power is called reactive power 

KVARH.), File Source (MRI or AMR). 

In this study, data from substation Ale Phata was reviewed and active power (kWh) was 

calculated according to the daily day profile over a period of 30 minutes on a monthly, yearly, 

and seasonal basis. We can observe the Feeder input for particular months of 2020 and their 

seasons respectively in Table 1. 
Table 1. Monthly feeder input in kilowatt hours (kWh) from 2020 to 2022. 

Months Feeder Input (kWh) Season 

Jan2020 17097659.18 Winter Season 
Feb2020 14409569.88 Winter Season 

Mar2020 17453211.60 Spring Season 

Apr2020 18040410.80 Spring Season 

May2020 17628819.60 Spring Season 
Jun2020 11651796.40 Summer Season 

Jul2020 11209917.20 Summer Season 
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Aug2020 10498156.40 Summer Season 
Sep2020 10402455.60 Autumn Season 

Oct2020 11952921.00 Autumn Season 

Nov2020 14611530.00 Autumn Season 

Dec2020 15634406.20 Winter Season 
Jan2021 10578076.80 Winter Season 

Feb2021 11638474.80 Winter Season 

Mar2021 14621277.20 Spring Season 

Apr2021 12040741.28 Spring Season 

May2021 10860208.00 Spring Season 

Jun2021 8067561.20 Summer Season 

Jul2021 8114217.60 Summer Season 

Aug2021 9725654.00 Summer Season 
Sep2021 8010404.00 Autumn Season 

Oct2021 9678877.00 Autumn Season 

Nov2021 10483703.40 Autumn Season 

Dec2021 11051949.60 Winter Season 
Jan2022 12464362.00 Winter Season 

Feb2022 9960312.00 Winter Season 

Mar2022 14967082.00 Spring Season 

Apr2022 14233508.00 Spring Season 
May2022 18968646.00 Spring Season 

Jun2022 9619716.00 Summer Season 

Jul2022 7517852.00 Summer Season 

 

 

Fig. 1. Monthly Feeder Input (kWh) 

 

Table 2 -  Feeder Input (kWh) seasonal change from July 2020 to August 2022.  
Year Seasons Feeder Input (kWh) 

2020 Winter Season 47141635.26 

2020 Spring Season 53122442.00 

2020 Summer Season 33359870.00 

2020 Autumn Season 36966906.60 

2021 Winter Season 33268501.20 

2021 Spring Season 37522226.40 

2021 Summer Season 25907432.80 

2021 Autumn Season 28172984.40 

2022 Winter Season 22424674.00 

2022 Spring Season 48169236.00 

2022 Summer Season 17137568.00 
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Fig. 2. Feeder Input (kWh) season wise 

 

The seasonal periods are defined as follows: 

1) Spring (March to May); 2) Summer (June to August); 3) Fall (September to November); and 

4) Winter (December and February). Table 2 and Fig. 2 illustrate the seasonal feeder inputs. 

 

Proposed Load Forecasting Approach and Model Creation 

This paper proposes an effective load forecasting method using regression models. Six 

steps are required to implement the proposed approach 

Step 1: Data collection. The two datasets required are historical load demand data and historical 

meteorological data. 

Step 2: In the proposed method, regression models are used to forecast load, and suitable 

regression models are selected for load forecasting purposes. This paper presents 24 regression 

models. 

Step 3: Input parameters selection. A variety of important input parameters are evaluated and 

selected, including weather parameters. 

Step 4: A regression model was created and a load forecast was conducted based on it. The 

regression models selected in Step 2 will be trained and tested and then used to forecast load. 

Step 5: Regression models are compared in terms of performance. Regression models are 

evaluated using statistical error matrices in order to compare their performance with actual 

measured loads. 

Step 6: Provide recommendations for regression models that are most accurate. Using the results 

from the previous steps, the best regression models will be selected. 

 

Data Collection and Preprocessing 

As input-output datasets are required to train the model, Step 1 on data collection and pre-

processing is crucial. In order for the model to effectively learn the input-output relationship, the 

raw data must be pre-processed before transforming it. Pre-processing operations include 

normalization, ranking, and correlation (Olagoke et al., 2016). 

   

Data Collection 

Climate data, calendar data, and load demand data are included in the dataset collection process 

 

3. Research Methods 

The meteorological dataset was obtained from the NASA Power website 

(https://power.larc.nasa.gov/data-access-viewer/). The raw data must be pre-processed before 

being transformed in order for the model to effectively learn the input-output relationship. The 

pre-processing operations include normalization, ranking, and correlation (Chane et al., 2021). In 

order to minimize operational costs, load forecasting models use weather forecasts and other 

elements to predict the future load (Chane et al., 2021). 

The weather plays an important role in load forecasting. Weather effects are most prevalent 

among domestic and agricultural customers, as well as affecting their load profiles. 
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1) Wet Bulb Temperature at 2 Meters (C)(T2MWET): -The adiabatic saturation temperature 

which can be measured by a thermometer covered in a water-soaked cloth over which air is 

passed at 2 meters above the surface of the earth. 

2) Dew/Frost Point at 2 Meters (C)(T2MDEW): -The dew/frost point temperature at 2 meters 

above the surface of the earth. 

3) Temperature at 2 Meters (C)(T2M): The average air (dry bulb) temperature at 2 meters above 

the surface of the earth. 

4) Relative Humidity at 2 Meters (%) (RH2M): -The ratio of actual partial pressure of water 

vapor to the partial pressure at saturation, expressed in percent. 

5) 5). Specific Humidity at 2 Meters (g/kg) (QV2M): -The ratio of the mass of water vapor to the 

total mass of air at 2 meters (kg water/kg total air). 

6) Wind Speed at 10 Meters (m/s) (WS10M): -The average wind speed at 10 meters above the 

surface of the earth. 

There is a greater impact of temperature and humidity on load variations than other weather 

parameters, although all have a direct impact on load requirements. 

 

Time Indicator 

In short-term load forecasting, time plays a critical role since it has the greatest impact on 

the customer's load demand. Time indicators used in this study include the date, weekday, and 

time (Chane et al., 2021). 

 

Load Parameters 

The following load parameters are used for the load demand data in this study: previous 

Half Hour Active Power in kWh; previous Half Hour Reactive Energy (Rkvah). 
Table 3 - Correlation Analysis of Parameters 

SN Parameter Relation Coefficient 

1 T2MWETr -0.062563795 

2 T2MDEW -0.42138371 

3 T2M 0.383244621 

4 RH2M -0.475503209 

5 QV2M -0.555256085 

6 WS10M -0.07992978 

7 Reactive Energy (Rkvah) 0.557622633 

 

Correlation analysis has been conducted in order to investigate the relationship between the 

selected weather parameters and the electrical load. Correlation values close to 1 indicate a strong 

relationship. Positive signs indicate a proportional relationship, while negative signs indicate an 

inversely proportional relationship. As a result of the correlation analysis, the following results 

have been presented in Table 3. 

Data Preprocessing: Real-life measurements are susceptible to various degrees of discrepancies 

including incomplete data, noise, missing values, outliers, redundant data, and inappropriate 

formatting, which influence the performance of the regressors. Therefore, the data must be pre-

processed to ensure data reliability (Garcia et al., 2015; Wahyudi & Arroufu, 2022). 

Data Cleaning: It includes filling in the missing values, noise removal, outlier detection, and 

resolving discrepancies within the dataset. So, the study used the auto-fill feature to fill cells with 

data that follows a pattern or is based on data in other cells. the partial missing weather data (Han 

et al., 2016; Wahyudi, T., & Silfia, 2022). 

Data transformation: The process of data transformation involves integrating multiple files into a 

single usable format and scaling the attribute in accordance with specific properties. We created 

the final predictor's dataset after finding the correlations between data sets and cleaning the data 

(Han et al., 2016). 

Data Reduction: By reducing the number of attributes or by sampling, data reduction attempts to 

capture most of the properties of the data while removing redundancies 
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4. Results and Discussions  

Initially, a training dataset is used to train a model, and then the results are analysed by 

varying its parameters until the most effective parameters are identified, resulting in an optimized 

model for all regression models. The linear Model represents a fitted linear regression model. 

Regression models describe the relationship between a response and its predictors. Linearity in a 

linear regression model refers to the linearity of the predictor coefficients. A linear model object 

can be used to investigate the properties of a fitted linear regression model. A property of an object 

contains information about coefficient estimates, summary statistics, fitting methods, and input 

data. Modify, evaluate, and visualize the linear regression model by using the object functions. 

Training regression models using Regression Learner includes linear regression models, 

regression trees, Gaussian process regression models, support vector machines, kernel 

approximations, ensembles of regression trees, and neural network regression models. In addition 

to training models, explored data, selected features, specified validation schemes, and evaluated 

the results. MATLAB code was generated to learn about programmatic regression after exporting 

a model to the workspace. 

 

In Regression Learner, a model is trained in two stages: 

A validated model is one that has been trained using a validation scheme. As a default, the 

application employs Hold out Validation to prevent overfitting. As an alternative, holdout 

validation may be chosen. In the application, the validated model can be viewed. The full model 

is trained on all the data, excluding the test data. This model is trained simultaneously with the 

validated model by the application. It is, however, not possible to view the model that has been 

trained on full data in the application. Regression Learner exports the full regression model when 

you select a regression model to export to the workspace. In the Regression, the results of the 

validated model are displayed. Diagnostic measures, such as the model accuracy, and response 

plot or residual plot, reflect the results of the validated model.  

A regression model was trained, validation results were compared, and the best model was 

selected. Regression Learner exported the full model from the chosen model to the workspace. 

Since Regression Learner created a model object of the full model during training, there was no 

lag time when we exported the model. The exported model can be used to make predictions based 

on new data. 

Holdout Validation: - This is the simplest form of cross-validation. As opposed to simple 

or degenerate cross-validation, this method is often classified as a "simple validation". Our data 

is randomly divided into two sets: Training and Test/Validation, or hold-out data. The model was 

then trained on the training dataset and evaluated on the test/validation dataset. In order to 

compute the error on the validation dataset, we use a variety of model evaluation techniques 

depending on the problem we are solving, such as MSE for regression problems and a number of 

metrics that indicate the misclassification rate for classification problems in order to find the error. 

It is a typical method in which the training dataset is larger than the hold-out dataset, so an 80:20 

ratio for the training and testing datasets was applied. 

 

Regression Models 

In this paper, six families of regression model algorithms provided in the MATLAB 

Regression are selected to construct the short-term load forecasting model for the Ale Phata 

Subdivision of Manchar O&M division. They are Linear Regression, Regression Trees, Support 

Vector Machines (SVM), Gaussian Process Regression (GPR), Ensemble of Trees, and Neural 

Networks. Table 1V depicts the regression models used in this study. 

Linear Regression: Modeling the relationship between the independent variable and the 

dependent variable, it is one of the simplest regression models used to forecast outcomes. The 

model attempts to determine the relationship between two or more explanatory variables and a 

response variable since there are several independent and dependent variables (Jawad et al., 

2020). 

Regression Trees: All regression models utilize a single output variable (response) and 

multiple input variables (predictors). There is a numerical output associated with the variable. A 

combination of continuous and categorical variables may be used as input variables in the general 
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regression tree structure method. Binary recursive partitioning is the process by which regression 

trees are constructed. By dividing the data into partitions or branches, and then dividing each 

section into smaller groups as each upper branch is reached, this method determines the groups 

for each section of the data. Initially, all training sets are grouped together. A binary split is 

performed on each field in the first two partitions, or branches, of the algorithm to assign the data. 

Based on the algorithm, the division that minimizes the sum of the squared variances in the two 

different partitions from the mean is selected. The new branches are then added to this dividing 

guideline. The process continues until all nodes exceed the user's minimum node size and become 

terminal nodes. 
Table 4 - Families of Regression Models. 

SN Families of Regression 

model 

Regression Model 

1 Linear Regression 

Models 

Linear Interactions Linear Robust Linear Step-wise Linear 

2 Regression Trees Fine Tree Medium Tree Coarse Tree 
3 Support Vector 

Machines 

Linear SVM Quadratic SVM Cubic SVM Fine Gaussian SVM 

Medium Gaussian SVM Coarse Gaussian SVM 

4 Gaussian Process 

Regression 
Models 

Squared Exponential GPR Matern 5/2 GPR Exponential GPR 

Rational Quadratic GPR 

5 Ensembles of Trees Boosted Trees Bagged Trees 

6 Neural Networks Narrow Neural Network Medium Neural Network Wide Neural 

Network Bilayered Neural Network Trilayered Neural Network 

 

Support Vector Machines: In SVM, kernel functions are used for nonlinear 

transformations. In this study, standard kernel functions are used, such as linear kernels, 

polynomial kernels, Gaussian kernels, and radial basis functions. The results of polynomial 

functions of the lower degree tend to be inadequate because they underfit the model. It is more 

appropriate for the curve to be fitted as the degree of the polynomial increases. 

Gaussian Process Regression: A Gaussian Process Regression (GPR) model is a 

nonparametric kernel-based probabilistic model with a finite set of random variables with a 

multivariate distribution. The distribution of any linear combination is equal. As a generalization 

of multivariate normal distributions, the Gaussian distribution is named after Carl Friedrich 

Gauss. In statistical modeling, regression to multiple target values, and mapping in higher 

dimensions, Gaussian processes are used (Semero et al., 2018).  

Ensemble of Trees: Ensembles use a variety of algorithms in order to increase their 

efficiency and predictability egression Model-Based Short-Term Load Forecasting technique that 

is designed to improve the accuracy and stability of machine learning algorithms. It is used to 

create a linear combination of model fitting instead of using a single-fit method. Rather than using 

a single fit method, multiple predictors are constructed and intertwining the best regression 

models for forecasting short-term load, we performed the following: 1) Training a data set with 

cross-validation of 5 folds for each regression model; 2) Plotting the behavior of regression 

models using RMSE, R-Squared Value, MSE, MAE, and 3) analyzing the results to determine 

whether there is any similarity or difference between the data (Pirbazari et al., 2016). 

Neural Networks: Regression Neural Network is a fully connected, feedforward, and 

trained neural network for regression. There is a connection between the first fully connected 

layer of the neural network and the network input, and each subsequent layer has a connection 

from the previous layer. 

The proposed method has been shown to be feasible and effective based on application 

results. The application of neural network prediction shows the efficiency and capability of the 

proposed techniques for predicting load demand (Badran & Abouelatta, 2012). 

In order to identify the best regression model for short-term load forecasting, we performed the 

following steps: 

 Training a data set with a holdout validation ratio of 80:20 for all models; 

 Plotting the behavior of regression models with RMSE, R-Squared Value, MSE, and MAE 

 Analyzing the data to determine similarities and differences 
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Datasets Description 

The proposed work uses half-hour interval data from July 2020 to July 2022 as the 

simulation dataset. The columns with completely missing weather data were eliminated. 

 

Validation Data 

From the dataset from July 2020 to July 2022, we take out the data from March 2022 to 

July 2022, forming a new dataset that serves as the validation dataset for the created model. 7,547 

rows and 10 columns make up the validation dataset. 

 

Training and Testing Data  

After the validation dataset is created, from the rest of the historically recorded dataset, 

80% of the data is used for training, and the remaining 20% of data is used for testing. The training 

data for the regression models are Hold out -validation. The testing data are treated as unseen by 

the trained model and used to optimize the load forecasting model’s control parameters, which 

helps to optimize and evaluate the performance of the model created. 

The validation and training data can be viewed as a matrix with 37733 rows and 10 

columns. The rows represent each hour of a day from July 1, 2020, to July 31, 2022, including 

the validation dataset. The first 9 columns are the predictors or input, and the last column is the 

training target data, i.e., the load in kWh. 

 

Performance Evaluation Dataset  

For performance evaluation after training and testing the model, a random day (one Month 

data) from the validation dataset which falls in the month of Aug 2022 was selected representing 

season of the year. 

 

Performance Evaluation Indices 

Each regression model is compared with the forecasted load and the actual measured load. 

Therefore, load forecasting capacity and model accuracy are assessed by calculating three 

different statistical evaluations, the Root Mean Square Error (RMSE), the Mean Absolute Error 

(MAE), and the Mean Absolute Percentage Error (MAPE) (Chen et al., 2004; Massanaet al., 

2015). There is a difference between RMSE and MAE if RMSE > MAE, it means that there is a 

variation in errors. 

 

Mean Absolute Error (MAE) 

The MAE measures the average magnitude of the errors, which can be calculated by 

 

MAE = ∑ |𝑦𝑡−�̂�𝑡|
𝑛
𝑡=1

𝑛
              

                

where Yˆt is the prediction, Yt is the true value from field recording, and n is the number of 

measurement points (Madhukumar et al., 2022). 

 

Mean Absolute Percentage Error (MAPE) 

This error percentage is a measure of the prediction accuracy of a forecasting method in statistics, 

it produces a measure of the relative overall fit, which can be calculated by 

MAPE = 𝜮𝒙=𝟏
𝒏 |𝒚𝒕−�̂�𝒕|

𝒚𝒕
𝒏

 

Where Yˆt is the prediction, Yt is the true value from field recording, and n is the number of 

measurement points (Ceperic et al., 2013). 

 

Root Mean Square Error 
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RMSE = 

√𝜮𝒙=𝟏
𝒏 (𝒚𝒕−𝒚𝒕)

𝟐

𝒏

                             

                         

where Yˆt is the prediction, Yt is the true value from field recording, and n is the number of 

measurement points (Ceperic et al., 2013).  
Table 5 - Validation Results of the Regression Models 

SN Model/Approach RMSE of 

Validation 

R² of 

Validation 

MSE of 

Validation 

MAE of 

Validation 

Time of training 

(Sec) 

1 Linear 1.8802 0.81 3.5351 1.5055 7.2304 

2 Interactions 

Linear 

1.7624 0.83 3.1061 1.3942 7.7953 

3 Robust Linear 1.8871 0.81 3.5613 1.4963 4.2474 

4 Stepwise Linear 1.7626 0.83 3.1068 1.3944 91.245 

5 Fine Tree 1.0073 0.95 1.0147 0.6424 7.6129 

6 Medium Tree 0.97901 0.95 0.95846 0.6453 4.7358 

7 Coarse Tree 1.0313 0.94 1.0635 0.68931 4.4082 

8 Linear SVM 1.9006 0.8 3.6122 1.4903 185.51 

9 Quadratic SVM 1.6384 0.85 2.6842 1.2051 346.17 

10 Cubic SVM 1.3695 0.9 1.8756 0.99412 1272.6 

11 Fine Gaussian 

SVM 

0.82484 0.96 0.68037 0.53716 337.14 

12 Medium Gaus- 
sian SVM 

1.1515 0.93 1.326 0.82051 291.12 

13 Coarse 

Gaussian SVM 

1.6497 0.85 2.7214 1.2274 403.47 

14 Boosted Trees 1.3153 0.91 1.7299 0.961 345.16 
15 Bagged Trees 0.83982 0.96 0.70529 0.56594 358.67 

16 Squared Expo- 

nential GPR 

0.91284 0.95 0.83328 0.64339 1617.2 

17 Matern 5/2 GPR 0.7596 0.97 0.57699 0.51619 2126.8 

18 Exponential 

GPR 

0.62887 0.98 0.39548 0.38161 2211.7 

19 Rational 

Quadratic GPR 

0.64517 0.98 0.41625 0.3913 7383.8 

20 Narrow Neural 

Network 

1.1138 0.93 1.2405 0.80984 1643.8 

21 Medium Neural 

Network 

1.052 0.94 1.1066 0.74989 1700.3 

22 Wide Neural 

Network 

0.91351 0.95 0.8345 0.62238 1918.1 

23 Bilayered Neu- 

ral Network 

1.0006 0.95 1.0012 0.69425 1966.3 

24 Trilayered Neu- 

ral Network 

0.99506 0.95 0.99014 0.68916 2036.5 

 
Table 6 - Error Parameters for Half Hourly for Validation and Testing. 

SN Model 
/Approach 

RMSE 
(Val- 

idation) 

R-Squared 
(Validation) 

MSE 
(Vali- 

dation) 

MAE 
(Vali- 

dation) 

Prediction 
speed (Obs/ 

sec) 

RMSE 
(Test) 

R- 
Squared 

(Test) 

MSE 
(Test) 

MAE 
(Test) 

1 Exponential 

GPR 

0.6105 0.98 0.373 0. 3541 5600 0.9218 0.82 0.8497 0.692 

2 Rational 

Quadratic 
GPR 

0.62392 0.98 0.3893 0.36345 2600 0.97756 0.8 0.95563 0.728 

3 Matern 5 and2 

GPR 

0.72907 0.97 0.5315 0.47448 4400 0.90906 0.83 0.82639 0.683 

4 Bagged Trees 0.83648 0.96 0.6997 0.55738 32000 0.87062 0.84 0.75799 0.64 
5 Squared 

Exponential GPR 

0.86667 0.96 0.7511 0.59589 6100 0.93926 0.81 0.88221 0.673 

6 Fine 

Gaussian 
SVM 

0.90178 0.95 0.8132 0.53527 5600 0.91452 0.82 0.83635 0.684 
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Table 7 - Error Parameters for Hourly Time Duration for Validation and Testing 

SN Model 

/Approach 

RMSE (Val- 

idation) 

R-Squared 

(Validation) 

MSE (Vali- 

dation) 

MAE (Vali- 

dation) 

Prediction 

speed (obs/ 
sec) 

RMSE 

(Test) 

R- 

Squared 
(Test) 

MSE 

(Test) 

MAE 

(Test) 

1 Exponential 
GPR 

3.0048 0.87 9.0288 2.0062 4800 7.9833 -0.9 63.732 0.692 

2 Rational 

Quadratic 

GPR 

3.034 0.87 9.205 2.0355 2800 8.054 -0.94 64.868 6.3881 

3 Matern 5/2 

GPR 

3.1618 0.86 9.997 2.2094 3000 7.7889 -0.81 60.668 6.0174 

4 Bagged Trees 3.2381 0.85 10.485 2.2553 32000 7.7823 -0.81 60.564 6.2896 

5 Squared 
Exponential 

GPR 

3.2995 0.84 10.887 2.3724 3700 8.8359 -1.33 78.074 6.7843 

6 Fine 

Gaussian 
SVM 

3.2087 0.85 10.296 2.1074 8300 8.347 -1.08 69.673 7.1238 

 

R-Squared 

R-Squared is a statistical measure of how close the fitted regression line is to the results. R-

squared lies between 0 and 1. Generally, a higher R-squared value implies that the model matches 

the data better. The following criteria is used to evaluate load forecasting performance using the 

error indices:  

 The RMSE is always positive, and a smaller RMSE value indicates a good model (Madhukumar 

et al., 2022). 

 The R-squared lies between 0 and 1. R-Squared indicates a good model near 1.  

 The MSE is the square of the RMSE, and a smaller MSE value indicates a successful model 

 The MAE is positive, similar to RMSE, a smaller MAE value suggests a successful model. 

 An error percentage very close to zero means the predicted values are very relative to actual 

values. 

 

Predicted versus actual response plots 

An actual vs. predicted response plot is a way to compare the actual values of a dependent 

variable to the predicted values obtained from a regression model. This plot helps to visualize the 

performance of the model by showing how well the predicted values match the actual values. 

 

Fig. 3. Predicted Vs Actual Response Plotting of Validation Exponential GPR 
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Fig. 4. Predicted Vs Actual Response Plotting of Testing Exponential GPR 

 

Plotting of Residues of Regression 

In order for a model to perform well, the following requirements must be met: Residuals 

are asymmetrically distributed in the vicinity of zero, As seen in the diagram, residuals have a 

significant impact on size when viewed from the right. As shown in the residual plot, active energy 

(kWh) is analyzed for the interval (48), along with validation and testing in fig. 5 and 6. 

 

Fig. 5. Residual plot of validation exponential GPR 

 

 

Fig. 6. Residual Plot of Testing Exponential GPR 
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Response Plots of Regression 

Plotting the predicted response against the actual response is shown in the Fig.7 of the 

response plot. It indicates good performance of a model if the true response and predicted response 

are identical. 

 

Fig. 7. Response plot of exponential GPR 

 

 

Fig. 8. Comparative analysis Graph of best-performing Regression models Active Energy (kWh) for Hourly time 

duration 

 

 

Fig. 9. Comparative analysis Graph of best performing Regression models Active Energy(kWh) for Hourly time 

duration 
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Fig. 10. Comparative analysis graph of validation and testing error rates hourly time interval 

 

 

Fig. 11. Comparative analysis graph of validation and testing error rates Half hourly time interval 

 

Simulation Results 

The simulations are performed using MATLAB R2021b Regression Toolbox with the Hold 

out-validation. The outcome of the regression analysis is tabulated in Table 5. 

 

Benchmark Model 

Support Vector Machine (SVM) or Support Vector Regressor (SVR) is a widely adopted 

regressor for developing short-term load forecasting models. Therefore, while proposing 

improved regressors for short-term load forecasting, SVR is mostly chosen 

as the benchmark model (Prakash et al., 2018). Similarly, SVM is chosen as the benchmark model 

in this paper (Prakash et al., 2018). 

 

Top Six Performance Models 

The comparison of the 24 regression models-based forecasted loads with the actual loads 

for the selected days. Among the regression models, exponential GPR, Rational Quadratic GPR, 

Maternal 5/2 GPR, Fine Gaussian SVM, Bagged Trees, and Squared Exponential GPR were able 

to better reproduce the load. 

Based on the simulation results and performance evaluation indices among the 24 regression 

models, the six top-performing models are determined to be: 

 Exponential GPR 

 

 Rational Quadratic GPR 

 

 Matern 5/2 GPR 

 

 Fine Gaussian SVM 

 

 Bagged Trees 
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 Squared Exponential GPR 

 

We evaluated the best models for a particular dataset consisting of 2000 thousand rows and 

10 columns (1st July 2020 to 22nd August 2021) data for training 80% (16000 rows from 1st July 

to 30 May 2121) and validation 20% rows 4000 and 10 columns (30 May to 22nd Aug) and then 

1124 rows and 10 columns (23 Aug 2021 to 15 Sep 2021) for testing. 

The figures illustrate the performance of the six best-performing models using R-squared 

plots, residual plots of the predicted model, and response plots of the trained model. 

 

Recommended Final Mode 

To be a good model, true and predicted responses should be identical. Comparing the six 

top-performing models, the analysis confirms that Rational Quadratic GPR and Exponential GPR 

algorithms are the two recommended final models. They are more accurate and reliable for 

predicting the load demand throughout every season than other models. The Rational Quadratic 

model showed excellent results in RMSE, R-Squared, MSE, and MAE values when it came to the 

validation dataset.  

The errors of the predicted model were analyzed for four months out of all the six top-

performing models, Exponential GPR can produce more accurate results with less error 

percentage. Compared to other models, Rational Quadratic GPR and Exponential GPR were able 

to mimic the actual load pattern more effectively. We have chosen the SVM model as a 

benchmark in this paper, the two GPR models, Rational Quadratic and Exponential GPR are 

nonparametric kernel-based probabilistic models and they have outperformed the SVM models. 

 

Hyperparameter setting of the proposed models 
Table 8 - Hyperparameter parameters of the proposed models. 

SN Preset Optimizable GPR 

1 Sigma 1.5612 

2 Basis functions Linear 

3 Kernel function Isotropic Matern 3/2 
4 Kernel scales 66.3197 

5 Optimizer Bayesian optimization 

6 Acquisition function Expected improvement per second plus 
7 Iterations Iterations 30 

8 Signal deviation 2.9663 

 

Adapting a machine learning model to different problems requires tuning its 

hyperparameters. In machine learning models, selecting the best hyper-parameter configuration 

has a direct impact on the model's performance. The process often requires a deep understanding 

of machine learning algorithms and appropriate techniques for optimizing hyperparameters (Yang 

& Shami, 2020). There are several parameters or hyperparameters that may have a significant 

impact on the performance of the model. Using an optimization scheme that attempts to minimize 

the mean squared error (MSE) of a given model type, the approach tries different combinations 

of hyperparameter values and returns a model with the optimized parameters. For Optimized GPR 

Hyperparameter is Shown in Table 8.  

Using a dataset of 2000 thousand rows and 10 columns (1st July 2020 to 22nd August 

2021), we evaluated the best models based on training 80% (16000 rows from 1st July to 30 May 

2021) and validation 20% rows 4000 and 10 columns (30 May to 22nd Aug) and testing 1124 

rows and 10 columns (23 August 2021 to 15 Sep 2021). Error Parameters are shown in Tables 6 

and 7 for validation and testing. There are several parameters or hyperparameters that may have 

a significant impact on the performance of the model. Using an optimization scheme that attempts 

to minimize the mean squared error (MSE) of a given model type, the approach tries different 

combinations of hyperparameter values and returns a model with the optimized parameters. Using 

a dataset of 2000 thousand rows and 10 columns (1st July 2020 to 22nd August 2021), we 

evaluated the best models based on training 80% (16000 rows from 1st July to 30 May 2021) and 

validation. 
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When load forecasting is considered, there are several components of error, including 

modeling errors (errors introduced through regression), errors caused by system disturbances like 

load shedding and irregular events, and errors caused by temperature forecasting. As a result of 

this model's sensitivity to temperature fluctuations, it requires a highly accurate forecast of 

temperature. This model needs a very accurate forecast of temperature because even a minor 

change in temperature will result in a significant change in the prediction of load. This forecasting 

model uses the next-day temperature forecast as an input which will introduce further errors, as 

there was not enough data available for temperature forecasting to be included in this regression 

analysis. Considering the fact that there is no data on temperature forecasting, this was not 

included in this regression analysis. In addition to the temperature, other weather factors such as 

humidity, cloud cover, and brightness of the day also affect the load characteristic, so it is very 

important to include this in future studies with one- dimensional convolutional neural network-

long short-term memory (1D CNN-LSTM) model. 

 

Fig. 12.  Optimizable GPR 

 

5. Conclusion  

The paper proposes a load forecasting model by combining 24 regression models, with six 

of the highest-performing models to be evaluated further. According to the study, nonparametric 

kernel-based probabilistic models such as Gaussian Process Regression (GPR) are viable methods 

for forecasting load demand. By combining the parameters of all admissible functions, GPR can 

provide information about consumption trends and do statistical interpolation, which is unlike 

other models with functional form constraints. The study recommends using exponential GPR 

algorithms for optimal load forecasting efficiency because GPR is computationally inexpensive, 

generates a pattern based on the average and standard deviation of the value, and is 

computationally inexpensive. As part of its evaluation, the paper also uses mean absolute 

percentage errors (MAPE) and R-squared validation techniques to determine the accuracy of the 

model. 
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