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ABSTRACT  

This research paper presents a novel approach to classifying microscopic images of desmids using transfer 

learning and convolutional neural networks (CNNs). The purpose of this study was to automate the tedious 

task of manually classifying microscopic algae and improve our understanding of water quality in aquatic 

ecosystems. To accomplish this, we utilized transfer learning to fine-tune 13 pre-trained CNN models on a 

dataset of five categories of desmids. We evaluated the performance of our models using several metrics, 

including accuracy, precision, recall, and F1-score. Our results show that transfer learning can 

significantly improve the classification accuracy of microscopic images of desmids, and efficient CNN 

models can further enhance performance. The practical implications of this research include a more 

efficient and accurate method for classifying microscopic algae and assessing water quality. The 

theoretical implications include a better understanding of the application of transfer learning and CNNs 

in image classification. This research contributes to both theory and practice by providing a new method 

for automating the classification of microscopic algae and improving our understanding of aquatic 

ecosystems. 

Keywords: Deep Learning, Transfer Learning, Algae Classification, Desmids Classification, CNN 

Comparative study  

 

1. Introduction  

Freshwater wetlands constitute vital ecosystems, where benthic, attached microbial 

communities, such as desmids, function as key habitats that contribute to primary productivity, 

nutrient cycling, and substrate stabilization (Domozych & Domozych, 2008). Desmids are 

unicellular, photosynthetic algae found in freshwater environments. The complex group of 

microorganisms called desmids, which thrive in aquatic ecosystems worldwide, have long 

intrigued biologists (Prescott et al., 1948). These microorganisms display an extensive variety of 

forms and hold potential applications across numerous sectors. Researchers continue to 

investigate ways to leverage these microscopic organisms to benefit human welfare, including 

alternative fuel sources, food, and more. 

The traditional taxonomy of desmids, based on morphology, suffers from an 

overabundance of synonyms and a high rate of splitting. Unfortunately, sexual reproduction, 

essential for applying the biological species concept, is a relatively rare phenomenon in this algal 

group, and for many species, no sexual stages have been observed (Coesel et al.,1996). 

Several methods are employed to monitor algal blooms, including using aircraft, satellites, 

or drones to acquire hyperspectral or multispectral images, which facilitate the identification of 

algal bloom events over expansive areas (Park et al., 2019, Goldberg et al, 2016, Kudela et al., 

2015,  Lekki et al., 2019). Continuous surveillance of undesirable algal blooms in ponds, water 

channels, or freshwater reservoirs is crucial to ensure timely and appropriate actions are taken to 

maintain drinking water quality. The conventional method of visually analyzing algal blooms via 

a microscope is labor-intensive, economically impractical, and cumbersome. An automated 

system leveraging state-of-the-art object detection algorithms provides a more efficient solution 

for real-time monitoring of algal blooms in water bodies (Ali et al., 2022). 

In recent years, computer vision techniques, especially those grounded in deep learning, 

have been applied to image classification and object detection problems  (LeCun et al., 2015). 
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Deep learning approaches often require large datasets to train classifiers, but acquiring sufficient 

data is not always possible. In such instances, transfer learning can be utilized to apply knowledge 

gained from one task to solve another (George Karimpanal & Bouffanais, 2018). A significant 

number of studies in the literature have focused on assessing individual CNN architectures. 

Considering the rapid development of various variants, a comparative study of these CNN 

architectures is both timely and essential. This paper presents a comparative analysis of 13 state-

of-the-art CNN architectures for desmid classification. These initial findings aim to guide 

emerging researchers in devising innovative algorithms, thereby fostering research and 

development in the domain of automated microscopic algae classification, including desmids 

 

2. Literature Review 

A comprehensive search of scientific databases, including PubMed, ScienceDirect, and 

Google Scholar, was performed to identify relevant articles published between 2020 and 2023. 

The search was conducted using various keywords such as algae, classification, machine learning, 

image processing, and deep learning. The inclusion criteria were articles published in English, 

focused on the classification of algae using various techniques, including machine learning and 

image processing. Exclusion criteria included articles that were not relevant to the research 

question, articles not published in English and not given the authentic data sources.  

Machine Learning Approaches for Microalgae Classification: Several studies have 

employed machine learning approaches for microalgae classification. (Agarwal et al., 2023) used 

morphological features extracted from blobs with a Random Forest Classifier to classify two 

species of microalgae using imaging flow cytometry, achieving an accuracy of 95%. (Adejimi et 

al., 2023) used hyperspectral signature-based features with a Support Vector Machine (SVM) 

classifier to classify seven genera of algae. (Gerdan Koc et al., 2023) utilized cultivation 

parameters for the classification of three algae types, achieving an accuracy of 93.11%. (Pardeshi 

et al. 2021) classified Scenedesmus of four classes based on coenobium, obtaining an accuracy 

of 96%. 

Deep Learning Approaches for Microalgae Classification: In recent years, deep 

learning techniques, particularly Convolutional Neural Networks (CNN), have gained popularity 

in microalgae classification due to their ability to learn complex features from image data. (Gaur 

et al., 2023) compared CNN architectures, including MobileNet, VGG, AlexNet, and ResNext, 

for the classification of 15 categories of microalgae, achieving accuracies ranging from 40% to 

99%. (Yuan et al.,2023) developed the Algal Morphology Deep Neural Network (AMDNN) 

model to classify 25 algal species, obtaining an accuracy of 99.87%. Several studies have 

employed the YOLO (You Only Look Once) framework for algae classification, with accuracies 

ranging from 41% (Park et al., 2021) to 91% (Tangsuksant, & Sarakon.,2023), (Ali et al., 2022). 

Comparisons and Evaluations of Techniques: Various studies have conducted 

comparative evaluations of different classification techniques. (Chong et al.,2023) provided a 

review of various techniques for microalgae classification, while (Yang et al.,2021) evaluated 

different CNN models for harmful versus harmless algae classification, achieving an accuracy of 

94.8%. (Gong et al.,2023) compared various YOLO architectures for the detection of 54 genera 

of algae, reporting a Mean Average Precision (MAP) score of 50.5%. (Khan et al.,2022) detected 

harmful algal blooms with VGG-16, AlexNet, GoogleNet, and ResNet-18 CNN architectures, 

achieving an accuracy of 97.10%. 

Review Studies and Other Techniques: Some studies have focused on reviewing existing 

methods and techniques for microalgae classification. (Barsanti et al.,2021) provided a review on 

water monitoring using digital microscopy identification and classification of microalgae. (Chong 

et al.,2022) reviewed image processing algorithms for automatic micro-algae classification. 

(Guterres et al.,2022) developed an image data integration pipeline for phytoplankton 

classification. Other studies have explored different techniques, such as the use of Inception V3 

for categorizing eight bloom-forming algae species (Gauret al., 2021), obtaining an accuracy of 

99%. (Liu et al., 2021) classified red tide algae images of eight different types with a reported 

accuracy of 99%. (Guo et al., 2021) used Imaging FlowCytobot (IFCB) images of 15 categories 

of harmful algal blooms for classification, achieving an accuracy of 98%. 
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Additional studies have focused on specific applications and techniques: (Piazza et al., 

2021) classified marine coralline algae using scanning electron microscopy (SEM) images with 

CNN, obtaining an accuracy of 80%. (Liao et al.,2022) analyzed Scenedesmus quadricauda 

culture using the Internet of Things (IoT) method. (Reimann et al., 2020) used fluorescent image 

features to classify living or dead microalgae of Chlorella sp., achieving an accuracy of 95%. 

(Pant et al., 2020) classified seven Pediastrum species based on the ResNext model, obtaining an 

accuracy of 98.45%. (Qian et al.,2020) employed a Faster R-CNN-based detection technique for 

nine genera of algae, reporting a MAP score of 74.64%. (Sonmez et al.,2022) compared AlexNet 

and other architectures for the classification of two species of microalgae, achieving an accuracy 

of 99.66%. (Gaur et al.,2022) focused on the classification of blue-green algae, obtaining an 

accuracy of 99.16%. (Xu et al.,2022) applied a CNN architecture for the classification of 13 

categories of algae, achieving an accuracy of 93%. (Luo et al.,2023) developed a new technique 

using Landsat imagery for the classification of algal blooms in eutrophic shallow lakes, obtaining 

an accuracy of 84.49%. 

The classification of microalgae has evolved significantly in recent years, with machine 

learning and deep learning techniques showing great potential in achieving high classification 

accuracies. While CNN architectures, particularly YOLO, have demonstrated promising results, 

there is still room for improvement and exploration of other techniques. Further research is 

required to optimize and compare these approaches for different microalgae classification tasks, 

particularly in addressing the challenges of varying image quality and the vast diversity of 

microalgae species. Additionally, the integration of different data types, such as hyperspectral 

signatures and cultivation parameters, could further enhance classification performance. Future 

research should continue investigating novel techniques and refining existing methods to advance 

the field of microalgae classification.  

In this paper, we conducted a comparative analysis of 13 different CNN architectures for the 

classification of desmids into five categories. This study contributes to the growing body of 

research on microalgae classification by specifically targeting desmids, a group of microalgae 

known for their intricate cell shapes and unique morphological features. By evaluating the 

performance of various CNN architectures in classifying desmids, this study provides valuable 

insights into the effectiveness of deep learning techniques in addressing the challenges posed by 

the morphological diversity of desmids. The results of this study can serve as a reference point 

for future research aimed at improving classification performance and developing more robust 

techniques for the analysis of desmids and other microalgae species 

 

3. Research Methods 

Convolutional neural networks (CNNs): Convolutional Neural Networks (CNNs) are a 

class of deep neural networks that have become popular for image recognition and classification 

tasks. CNNs consist of convolutional layers, pooling layers, and fully connected layers that work 

together to extract relevant features from input images. The convolutional layers use filters to 

extract features from the input images, while the pooling layers downsample the feature maps and 

reduce computational complexity. Fully connected layers are used to classify the images based 

on the features extracted by the convolutional and pooling layers. CNNs are known for their 

ability to learn complex feature representations from raw image data, and have achieved state-of-

the-art results on several benchmark datasets for image recognition. Examples of CNN 

architectures include AlexNet, VGG-16, and ResNet. However, We chose transfer learning for 

desmids image classification because it improves performance with limited data, accelerates 

training, enhances generalization, and reduces overfitting, making it a highly effective and 

efficient approach for our research. 

Transfer learning (Yang et al. 2022) is a widely-employed machine learning technique that 

utilizes the knowledge acquired from a pre-trained Convolutional Neural Network (CNN) model 

to enhance the performance of a novel model for a related task, such as the classification of 

microscopic images of desmids. In this process, the features learned from the pre-trained model 

are reused and fine-tuned on a new dataset to adapt the model to a new task. The mathematical 

formulation for transfer learning is concisely presented in the following paragraph to facilitate a 

more comprehensive understanding. 
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Let M be a pre-trained model with parameters θ, trained on a source task Ts. The model M 

comprises a feature extractor f(.) and a classifier g(.), such that for an input x, the output produced 

by the pre-trained model M is given by: 

M(x;θ) = g(f(x;θ_f);θ_g) 

 

where θ_f and θ_g represent the parameters of the feature extractor and the classifier, 

respectively. 

Consider a new target task Tt, which is the classification of a desmids dataset. Although 

different from the source task Ts, Tt shares certain common features with it. The objective is to 

train a new model M′ with parameters θ′ that performs well on the target task Tt. Transfer learning 

initializes the new model M′ with the pre-trained model M and fine-tunes it on the target task Tt, 

as follows: 

M′(x; θ′) = g′(f′(x; θ_f′); θ_g′) 

 

Here, θ_f′ and θ_g′ denote the parameters of the feature extractor and the classifier of the 

new model M′, respectively. Transfer learning initializes the parameters of M′ with those of the 

pre-trained model M, i.e., θ_f′ = θ_f and θ_g′ = θ_g. Subsequently, the new model M′ is fine-

tuned on the target task Tt using the desmids dataset. The process can be visualized through Fig. 

1.  

The procedure for classification of Microscopic Images of Desmids using transfer learning 

involves the following steps: 

• Preprocessing: In our research, we first preprocess the image data by resizing, cropping, and 

normalizing the images to enhance the quality and consistency of the data. This step is crucial 

for training a transfer learning model, as it necessitates input images in a specific format. 

• Feature Extraction: In the second step, we utilize a pre-trained convolutional neural network 

(CNN) model to extract high-level features from the preprocessed images of Desmids. Having 

already learned to extract relevant features from microscopic images of Desmids in a general 

context, the pre-trained model's features can be employed for the new classification task. The 

CNN model's output consists of feature maps that represent the crucial features of each 

microscopic image of Desmids. 

• Fine-tuning: In the third, we fine-tune the pre-trained CNN model for the specific image 

classification task at hand, which is the classification of microscopic images of desmids. We 

use the feature maps obtained from the pre-trained model as input to a new classifier, which is 

trained to classify the images into different categories of desmids. In our case, we employ a 

fully connected neural network as the classifier. 

• Evaluation:In the final step, after fine-tuning the pre-trained model on the new dataset of 

microscopic images of desmids, we evaluate the performance of the transfer learning model 

using a test dataset. To determine the model's accuracy, we compare thepredicted class labels 

to the true class labels of the test images in the desmids dataset. 

 
Fig. 1. Transfer Learning Applied to Desmids Classification 

 

4. Results and Discussions 

Dataset: We have used five types of desmids genus with total 88 microscopic images with 

varied angels, sizes and shapes for automatic classification desmids namely Closteriaceae (27) 

Desmidiaceae(23), Gonatozygon(13) ,Mesotaeniaceae(33), Peniaceae(19). This is one of the most 



Perdeshi & Deshmukh …                            Vol 4(2) 2023 : 885-894 

889 

 

versatile data of microscopic image is considered for the experiments and evaluation of our 

method from [http://www.digicodes.info/]. The samples of microscopic images are shown in 

figure1. Further to enhance the size of dataset we have applied the various techniques of image 

augmentation given in (Wang et. al. 2022) 

     

(a) (b) (c) (d) (e) 
Fig. 2. Samples of microscopic images of desmids from our dataset a) Closteriaceae b) Desmidiaceae c) Gonatozygon 

d) Mesotaeniaceae e) Peniaceae 

Experiments: In this study, we evaluated the performance of 13 different deep learning 

models on the Desmids Dataset, a collection of images featuring desmids, a group of single-celled 

algae. The models assessed include Alexnet (Krizhevsky et al, 2017.), Densenet (Huang, et al., 

2017), Efficientnet (Tan et al., 2019).,Googlenet (Szegedy et al., 2015), Mnasnet (Tan et al., 2019) 

, Regnet (Radosavovic et al., 2020), Resnet (He et al., 2016), Resnext (Xie et al., 2017), Shufflenet 

(Zhang et al., 2018),Squeezenet (Iandola et al.,2016) SwinNet (Z. Liu et al., 2022), Vggnet 

(Simonyan et al, 2014), and ViTnet (Kim et al, 2022). Our goal was to determine the effectiveness 

of each model for classifying desmids based on their morphological features. We trained each 

model using the same dataset and calculated their performance metrics, including precision, 

recall, F1-score, accuracy, and training time. The results obtained are given in Table 1. This paper 

provides a comprehensive evaluation of all major convolutional neural network (CNN) models 

presented in the literature up to 2022.  
Table 1 - Results based on transfer learning for classification of microscopic images of desmids 

Sl.No Model Name Precision Recall F1-Score Accuracy Training time in 

Minutes and 

Seconds 

01 Alexnet 100% 99% 99% 100% 14M 41S 

02 Densenet 100% 100% 100% 100% 38M 15S 

03 Efficientnet 97% 97% 97% 97% 16M 2S 

04 Googlenet 97% 97% 97% 97% 15M 56S 

05 Mnasnet 96% 94% 94% 95% 15M 38S 

06 Regnet 99% 99% 99% 99% 38M 32S 

07 Resnet 96% 96% 96% 97% 40M 2S 

08 Resnext 92% 87% 89% 91% 43M 49S 

09 Shufflenet 97% 96% 97% 97% 24M 11S 

10 Sqeezenet 100% 100% 100% 100% 39M 44S 

11 SwinNet 98% 98% 98% 99% 25M 38S 

12 Vggnet 99% 98% 98% 99% 33M 32S 

13 ViTnet 100% 99% 99% 100% 46M 11S 

The contribution of this work lies in its thorough analysis and comparison of the 

performance of these models on desmids dataset, which allows for an informed understanding of 

their strengths and weaknesses. Overall, this study serves as a valuable resource for researchers 

and practitioners in the field of deep learning, providing insights into the state-of-the-art CNN 

models and their potential applications. The results presented in Table 1 demonstrate the 

accuracies of various convolutional neural network (CNN) models in classifying microscopic 

images of desmids. ViTnet, Squiznet, and AlexNet achieved perfect accuracy of 100%, while 

RegNet and EfficientNet performed very well with an accuracy of 99%. ResNet, GoogleNet, 

ShuffleNet, and SwimNet achieved an accuracy of 97%, and ResNext had an accuracy of 91%. 

MnasNet achieved an accuracy of 95%, while VGGNet had an accuracy of 99%. 

Based on these results, we can conclude that Squiznet, ViTnet, and Alexnet are the top-

performing models with accuracies above 99%. These models use various techniques such as 

attention mechanisms, advanced activation functions, and depth wise convolutions to improve 

their performance. The middle-performing models, including Regnet, Resnet, Googlenet, and 

Shufflenet, achieved accuracies between 95-99% and are widely used due to their good 

performance and relatively simple architecture. Resnext and Mnasnet were lower-performing 

models, achieving accuracies between 90-95%, but they can still be useful in certain scenarios or 

when combined with other models. To facilitate comprehension of our results, we have provided 
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Fig. 2, which displays the Confusion Matrix Obtained by AlexNet which is the best performing 

model in all aspects including accuracy and time complexity. Additionally, we have included Fig. 

3 and Fig. 4, which depict the accuracy and loss graphs, respectively, for both the training and 

validation, from this it can be clearly depicted that model avoids the overfitting.  

ViTnet and SwimNet are relatively new models that have shown promising results in their 

respective fields. ViTnet achieves high accuracy with fewer parameters, while SwimNet is 

specifically designed for RGBD image classification. Overall, these results provide valuable 

insights into the performance of different CNN models for the classification of microscopic 

images of desmids, which can be useful for researchers in this field.  

 

Fig. 3. Confusion Matrix given by AlexNet model for classification of desmids 

In summary, the CNN models described in this study exhibit varying accuracies and are 

optimized to perform well in diverse contexts. Some of these models are designed to be highly 

efficient, performing well on mobile devices, while others prioritize accuracy, necessitating 

greater computational resources. The selection of the most appropriate model for a given use case 

is contingent upon specific requirements and available resources. Based on considerations such 

as simplicity of architecture, required time for training, and computational resources, our findings 

suggest that AlexNet may represent the optimal choice for microscopic image classification. 

 

5. Conclusion  

In conclusion, we have analyzed the performance of several popular CNN models based 

on their accuracy scores for the task of automatic desmids classification. ViTnet, Squiznet, and 

AlexNet are the top-performing models with perfect accuracy, while RegNet and EfficientNet 

also perform very well with an accuracy of 99%. ResNet, GoogleNet, ShuffleNet, and SwimNet 

have an accuracy of 97%, and MnasNet has an accuracy of 95%. ResNext has an accuracy of 

91%, which is comparatively lower than other models on the list. It's important to note that 

accuracy is not the only metric to consider when selecting a CNN model for a particular task, and 

other factors such as speed, memory usage, and ease of training are also important. Nonetheless, 

the performance of these models in terms of accuracy provides a useful benchmark for evaluating 

their effectiveness in a given task and will be useful for the growth of research and development 

in the field of microscopic image analysis in general and classification of algae in particular. The 

performance of these CNN models could be further improved by exploring new training 

techniques and regularization methods. For example, recent research has shown that techniques 

such as mixup, cutout, and stochastic depth can improve the performance of CNN models on 

algae classification tasks. 

Overall, the comparative analysis of CNN models provides a useful starting point for future 

research, and there are many opportunities to improve the performance of these models and 

develop new architectures that better meet the needs of microscopic algae classification 

applications. 



Perdeshi & Deshmukh …                            Vol 4(2) 2023 : 885-894 

891 

 

 

Fig. 4. Graph Showing the Training Vs. Validation Accuracy for Desmids Classification  

  

 

Fig. 5. Graph Showing the Training Vs. Validation Loss for Desmids Classification. 
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