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ABSTRACT  

Implementation of waterflooding sometimes cannot increase oil recovery effectively and requires 

additional methods to increase oil recovery. Polymer flooding is a common chemical EOR method that has 

been implemented in the last few decades and provides good effectiveness in increasing oil recovery and 

can reduce the amount of injection fluid injected into the reservoir. Seeing the success of polymer flooding 

in increasing oil recovery, it is necessary to know the parameters that influence the success of polymer 

flooding so that it can be evaluated and taken into consideration in creating a new scheme to increase oil 

recovery with polymer flooding. The parameters tested in this study include Injection Rate, Injection Time, 

Injection Pressure, Adsorption, Inaccessible Pore Volume, Residual Resistance Factor. This research uses 

the X-Gardient Boosting Algorithm to look at the most influential parameters in polymer flooding. These 

results highlight the significance of injection time and injection rate as key factors affecting the 

effectiveness of polymer flooding in the studied case.  

Keywords: Polymer Flooding, Oil Recovery, Water Flooding, X- Gradient Boosting Algorithm 

 

1. Introduction  

The recovery of oil and natural gas in fields that have entered the tertiary recovery stage is 

generally carried out using Enhanced Oil Recovery (EOR) methods. EOR is a technology that has 

gained attention from many oil companies as a solution to increase the recovery of oil and gas 

reserves, and chemical EOR, especially polymer injection/flooding, has been commonly 

implemented in the last decade (Juárez-Morejón et al., 2019; Koh et al., 2016). The mechanism 

of polymer flooding is expected to reduce the mobility ratio of the injection fluid, thus reducing 

fingering and increasing the efficiency of fluid displacement (Gogarty, 1967; Koh et al., 2016; 

Lake, 1989; Needham & Doe, 1987; Saqer & Osama, 2016; Skauge et al., 2014; Wassmuth et al., 

2007).  

To support the smooth implementation of polymer flooding, there are several parameters 

that are considered to contribute to its success, and this study aims to determine the most 

influential parameter in order to provide a good scheme for implementing polymer flooding in 

the field. If the mobility ratio is greater than one, then polymer flooding will be carried out to 

increase the viscosity of the injection fluid and reduce the saturation oil residual in the reservoir 

(Cenk et al., 2017). Saturation oil residual is one of the parameters used to measure the success 

of polymer flooding (Koh et al., 2016), where the value of saturation oil residual obtained after 

polymer flooding can be used as an indicator of the method's success. The success of polymer 

injection/flooding can be influenced by several factors such as reservoir salinity or injected water 

salinity, reservoir temperature or injected water temperature, and reservoir rock properties 

(Hidayat & ALMolhem, 2019). 

Experiments have been conducted on porous media that show the properties of the injected 

polymer can be influenced by polymer adsorption in the reservoir, residual resistance factor, and 

inaccessible pore volume (Hidayat & ALMolhem, 2019). There are several parameters that 

determine the success of polymer flooding, including Pore Volume (PV), Injection Rate, Injection 

Time, and Injection Pressure (Erfando et al., 2019). In order to achieve efficiency in the 

implementation of polymer flooding for economic oil recovery, it is important to study the 

parameters that have a significant impact on polymer flooding. Therefore, this study will perform 

sensitivity analysis using different methods and adding parameters that are considered to have an 
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impact on the success of polymer flooding, using the X-Gradient Boosting Algorithm with Python 

programming language. The parameters added in this study include Adsorption, Residual 

Resistance Factor (RRF), and Inaccessible Pore Volume (IPV). 

 

2. Literature Review 

Polymer flooding is one of the common and efficient Enhanced Oil Recovery (EOR) 

methods applied as an EOR Technology (Koh et al., 2016; Vishnyakov et al., 2020). Many field 

studies have been conducted to prove the effectiveness of this polymer flooding method, where 

an estimated 865 polymer flooding projects have been conducted worldwide (Saleh et al., 2017). 

One country that has published a lot about polymer flooding is China, specifically in the Daqing 

field, resulting in many literatures discussing projects in that field. In their journal, (Guo, 2017; 

Wang et al., 2011) mentioned that there has been an increase in the implementation of polymer 

flooding because it has been proven to increase oil recovery by around 10% - 20% of OOIP in 

tests conducted in the Daqing field, China. In terms of cost, it is more economical compared to 

surfactant-polymer flooding and Alkaline-surfactant-polymer flooding. This indicates that 

polymer flooding is more effective in increasing oil recovery as expected, which is in agreement 

with (AlSofi & Blunt, 2014; Lüftenegger et al., 2016; Sheng et al., 2015; Sieberer et al., 2017). 

The Daqing Field has around 55 polymer flooding blocks in reservoir 1, where 36 blocks have 

entered the waterflooding stage, and after polymer flooding, an oil recovery factor of about 53.2% 

was obtained, meaning there is still half of the reserves in the reservoir. In the same field, but a 

different area, block B2D was also studied by (Gao et al., 2016) using high concentration polymer 

to obtain optimum mobility control where the injected polymer concentration in the B2D block 

area was 2500 mg/L. The results of the test conducted can increase oil recovery by 5%, and with 

the available technology, it can provide a performance prediction scheme of the polymer using 

the numerical simulation method. 

Apart from the Daqing field, several other fields have implemented polymer flooding 

through laboratory testing and full-field scale. These fields include East Bodo Reservoir and 

Pelican Lake in Canada, Marmul Field in Oman, Tambaredjo Field in Suriname, and Vacuum 

Field in Mexico (Gbadamosi et al., 2019; Sheng, 2013). In 2006, polymer flooding was 

implemented in the East Bodo reservoir to provide an overview of polymer performance for 

widespread application in the field. The East Bodo reservoir has characteristics such as 

permeability of 1000 mD, porosity ranging from 27% to 30%, viscosity of 600-2000 cP, oil zone 

water saturation of at least 26%, and an initial reservoir pressure of around 6800 kPa. After 

conducting coreflood testing, it was found that polymer flooding could increase recovery 

efficiency in the East Bodo reservoir by an additional 20% of OOIP (Wassmuth et al., 2009). In 

2008, a pilot project was conducted in the Tambaredjo Field, which contains heavy oil in 

Suriname (Moe Soe Let et al., 2012). The field is estimated to have reserves of 525 MMSTB 

STOOIP with an API of 16° and viscosity ranging from 300-600 cP. Polymer injection was 

carried out gradually using polymers with different viscosities, starting with 45 cP, then 85 cP, 

and finally 125 cP, to increase sweep efficiency in the pilot project. After conducting polymer 

flooding, recovery was estimated to have increased by around 11% STOOIP (Delamaide et al., 

2016). In the Marmul Field in Oman, a pilot project has been conducted since 1986, but due to 

the impact of oil prices, the project was halted in 2010 (Sheng, 2013). The Marmul Field is one 

of Oman's largest oil fields, with sandstone reservoirs with porosity ranging from 26-34%, 

permeability of around 8-25 Darcy, reservoir salinity of 7404 ppm, and viscosity of around 40-

120 mPa.s (Teeuw et al., 1983). In 2010, (Al-Saadi et al., 2012) reviewed the performance of 

polymer flooding and found that the results were good, but the project lasted only about 2 years. 

Previously, sensitivity and optimization studies were conducted using CMG-STARS on 

several injection parameters, where it was found that injection concentration is a critical parameter 

in polymer flooding as it can increase SOR, raise formation pressure, and provide maximum 

sweep efficiency (Erfando et al., 2019). Meanwhile, (Hidayat & ALMolhem, 2019) conducted a 

similar study with the same reservoir characteristics but different parameters, and found that 

injection duration and permeability were the most influential parameters in polymer flooding. 

One year earlier, an analysis of the impact of parameters and optimization on ASP (Alkaline 

Surfactant Polymer) was also conducted using the CMG-STARS simulator on a limestone 
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reservoir with oil-wet rock characteristics. The parameters used for this study were rock 

properties, and the most influential result was connate water saturation, which had a significant 

impact on increasing oil recovery in the field (Firozjaii & S, 2018).  

In 2014, oil recovery prediction was also carried out for Surfactant Polymer Flooding using 

the Response Surface Modeling (RSM) method with varying random parameter values in order 

to obtain the best scheme for the Surfactant Polymer Flooding process (Douarche et al., 2014). 

There have been many methods used to analyze the performance of chemical EOR, particularly 

for sensitivity analysis. Since the 1990s, the application of artificial intelligence in analyzing EOR 

operations has been an interesting subject for researchers, and recently, approaches such as 

machine learning have also been widely used in the oil industry (Larestani et al., 2022). Machine 

learning implementation has also been widely used in the polymer flooding process, such as by 

(Tadjer et al., 2021), where they evaluated and compared various types of machine learning 

algorithms located in the Approximate Dynamic Programming (ADP) domain to obtain optimal 

Value of Information (VOI) in determining the appropriate scheme for polymer flooding. 

One of the machine learning algorithms, X-Gradient Boosting Algorithm, is considered the 

most powerful algorithm for building prediction models (Freund & Schapire, 1997). This 

algorithm has been used in several studies related to polymer flooding to develop prediction 

models and provide a good scheme for polymer flooding projects. (Phankokkruad & 

Wacharawichanant, 2019) predicted the mechanical properties of high molecular weight polymers 

using the X-Gradient Boosting Algorithm. The obtained results were compared with laboratory 

testing to validate the model accuracy. The application of the X-Gradient Boosting Algorithm 

resulted in a good level of efficiency and saved time in method development.  

In the same year, (Shaik et al., 2019) conducted a study on the prediction of the response 

produced by monovalent and divalent ions on polymer properties. The testing was conducted to 

examine the effects of concentration, temperature, shear rate, and salinity on the rheology of the 

polymer. Recently, (Larestani et al., 2022) compared two algorithms, the cascade neural network 

and gradient boosting decision tree, to predict the performance of surfactant-polymer flooding. A 

sensitivity analysis was also conducted on the input parameters used. The sensitivity analysis 

results showed that surfactant concentration and surfactant slug size were the most influential 

factors in predicting the Recovery Factor (RF). The use of the X-Gradint Boosting algorithm to 

determine the sensitivity factor is a breakthrough to obtain fast, accurate and easy results, 

especially for polymer flooding. 

 

3. Research Methods 

This research used the CMG (Computer Modelling Group) software with the STARS 

simulator for modelling the base case and CMOST to assist in iterative modelling. Then, a 

machine learning analysis was performed using the X-Gradient Boosting Algorithm to build a 

predictive model and determine feature importance in determining the influential parameters in 

polymer flooding. 
Table 1 - Reservoir Fluid and Rock Characteristics (Erfando et al., 2019) 

Parameter Value Unit 

Density 0.835 - 

Viscosity 1.13 cP 

Formation Volume Factor 1.14 Rb/stb 

API Gravity 40.3 °API 

Specific Gravity 0.82 - 

Oil Type Light Oil - 

Bubble Point Pressure 993 Psig 

Thickness 20 Ft 

Rock Compressibility 5.10-6 Psi-1 

 

Table 2 - Polymer Flooding Parameters (Erfando et al., 2019; Hidayat & ALMolhem, 2019) 

Parameter Min Value Max Unit 

Injection Rate 400 670 1000 Bpd 

Injection Time 182 916 2920 Days 

Injection Pressure 1800 2000 2200 Psi 

Adsorption 0.15 0.3 0.55 g/l 

Innacessible Pore Volume 0.05 0.2 0.35 - 
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Residual Resistance Factor 1.55 3 5 - 

The following are rock and reservoir fluid characteristic data obtained from the journals 

(Erfando et al., 2019) and (Hidayat & ALMolhem, 2019) as the base case model. The rock 

characteristic used in this research is conglomerate rock originating from the Barito Basin, 

Borneo. This reservoir model will be assumed as a heterogeneous reservoir with varied porosity 

and permeability values. Porosity heterogeneity will be conducted in the range of 5% - 40% values 

and permeability in the range of 30 mD – 400 mD based on the criteria of conglomerate rock in 

the journal published by (Huggett, 2006). 
Table 3 - Reservoir and Grid Properties 

Parameters Value 

Grid System Inverted 5-Spot, Nx : 15, Ny : 15, Nk : 4 

Pattern Area 11.4555 acres 

Pattern Dimensions X : 706.4 ft, Y : 706.4 ft 

Top Reservoir 3045 ft 

Injector – Producer Spacing 499.5 ft / 150 m  

Residual Resistance Factor 1.55 

 

 

Fig. 1. Reservoir Simulation Model 

 

4. Results and Discussions  

Initiation and model simulation have been carried out using CMG-STARS, where the 

simulation model was run for a period of 5 years from 2022 to 2027, and the results obtained for 

OOIP can be seen in Table 4 below. 

Table 4 - Initiation Reservoir Simulation Model 
No Parameter Value Unit 

1 Total Bulk Reservoir 3.9920E+07 Ft3 

2 Total Pore Volume 6.7501E+06 Ft3 

3 Original Oil in Place 5.1639E+06 bbl 

From the results of the model simulation, a graph of oil recovery vs time was obtained with 

the aim of examining the effect of polymer injection on the case or field under study. The graph 

can be seen in Figure 2. 
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Fig. 2. Oil Recovery Factor (Model) 

After initializing the reservoir model, modeling iterations were performed in CMOST for 

500 datasets. Six independent parameters were set as input values, and oil recovery was set as the 

output value. The upper and lower limits were based on the actual values from the model, which 

are listed in Table 2. The distribution patterns used for the iterations were continuous real and 

discrete real. In this study, the continuous real distribution pattern was used for subsurface 

parameters such as adsorption, IPV (Innacessible pore volume), and RRF (Residual Resistance 

Factor), where the parameter values are infinite or uncertain. The discrete real distribution pattern 

was used for surface parameters such as injection pressure, injection time, and injection rate, 

where the parameter values are more measurable and limited according to the specified limits (Fu 

et al., 1991; Johnson, 2020; Mortimer, 2013). 

In conducting sensitivity analysis of the effect of polymer on oil recovery using x-gradient 

boosting algorithm, several steps are required, such as EDA (Exploratory Data Analysis) and Data 

Processing, normalization of data, machine learning modeling, features importance, and 

parameter ranking. In the EDA stage, the main objective is to examine the distribution and ensure 

that the dataset does not suffer from multicollinearity (Komorowski et al., 2016). Multicollinearity 

refers to a condition where there is a correlation between variables, including the correlation 

between independent parameters and dependent parameters, as well as among independent 

parameters themselves (Daoud, 2018; Davino et al., 2022; Farrar & Glauber, 1964; Kim, 2019; 

Shrestha, 2020). Low multicollinearity values can sometimes cause issues with data correlation, 

and values that are too high can also create problems that need to be addressed, such as an increase 

in standard error, algorithm inaccuracy in prediction, and the presence of several variables that 

are not statistically significant (Liang & Zhao, 2019). One method for identifying 

multicollinearity values is the VIF (Variance Inflation Factor), where a VIF value of 1 represents 

a good distribution, according to the VIF interpretation (Miles, 2014; Thompson et al., 2017) in 

Table 5. 
Table 5 - VIF Interpretation 

VIF Value Interpretation 

VIF = 1 Not correlated 

1 < VIF ≤ 5 Moderately correlated 

VIF > 5 Highly correlated 

Based on this, EDA (Exploratory Data Analysis) and data processing have been conducted 

on 500 datasets or design of parameters in this research, resulting in a VIF value of 1, indicating 

that the parameters used do not have correlation among independent parameters or there is no 

multicollinearity present in Figure 3. 

 

Fig. 3. Heatmap Correlation Parameters 
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Data normalization is performed with the aim of scaling the parameter values used so that 

they can be processed more easily, quickly, and without causing a heavy workload during data 

processing, thereby reducing memory and power requirements for classification processes in 

machine learning modeling (S. Jain et al., 2018; Patro & sahu, 2015). In this study, the min-max 

normalization method is used, where the parameter values are scaled within the range of 0 to 1, 

and this is a commonly used method for normalizing datasets (Ekenel & Stiefelhagen, 2006; A. 

Jain et al., 2005; Khan et al., 2020; Wu et al., 2005). 

Machine learning modeling was performed using hyper-parameter tuning XGBoost 

algorithm with the aim of obtaining the best predictive model, where tuning was done by dividing 

the data into 3 parts namely training data, validation data, and test data to find the best model and 

prevent overfitting in making predictions (Gupta et al., 2019; Han et al., 2020; Kirori, 2019). 

Therefore, based on the above, this study also used RSCV (Randomized Search Cross Validation) 

with the aim of speeding up the computation of the XGBoost algorithm and being more efficient 

when compared to grid search (Bergstra & Bengio, 2012; Putatunda & Rama, 2018). For machine 

learning modeling in this study, 3 variations of the training and testing data ratio were used, 

namely 0.7:0.3, 0.8:0.2, 0.9:0.1, and 3 cross validations were performed with 50 combinations of 

RSCV hyper-parameters, resulting in 150 fitting models. The best R2 values for the various 

models obtained are as follows. 
Table 6 - R2 training and testing 

No Parameter R2 Train R2 Testing 

1 Training (0.7) : Testing (0.3) 0.9886 0.9645 

2 Training (0.8) : Testing (0.2) 0.9891 0.9579 

3 Training (0.9) : Testing (0.1) 0.9890 0.9660 

 

 

Fig 4. Plot Actual and Residual R2 Training 0.7 : Testing 0.3 

 

 

Fig. 5. Plot Actual and Residual R2 Training 0.8 : Testing 0.2 
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Fig. 6. Plot Actual and Residual R2 Training 0.9 : Testing 0.1 

Based on Table 4 and Figures 4 - 6, it can be interpreted that X-Gradient Boosting has 

successfully performed predictive modelling due to the value of R2 approaching 1, which is 

sufficient to indicate that the built model is successful and good, thus further analysis such as 

features importance and parameter ranking can be carried out (Mousavi et al., 2020). It can also 

be seen from the training and testing residual plots that the results are well-fitted as the points are 

randomly scattered around the linear line on the plot (Fox & Weisberg, 2018). Validation of actual 

oil recovery data (model CMG) versus XGBoost oil recovery predictions was carried out to see 

the matching data from the XGBoost oil recovery predictions that correspond to the actual data 

and indicate that the results have achieved good prediction. Based on this, predictions were made 

and the results obtained can be seen in Figure 7. Which shows that the predictions made resulted 

in an RMSE (Root Mean Squared Error) of 0.56 and MAPE (Mean Absolute Percentage Error) 

of 2.03%, indicating good prediction according to the standard range where MAPE < 10% is 

categorized as good prediction (Chang et al., 2007). 

 

Fig. 7. Oil Recovery (Model CMG) vs Oil Recovery (XGBoost) 

The feature importance was conducted on the X-gradient boosting algorithm with the 

decrease of Mean Squared Error (MSE) value as a crucial point of a parameter, meaning that the 

larger the decrease of the MSE value, the more it will affect the output parameter value (oil 

recovery) (Liang & Zhao, 2019; Yang & Guan, 2022). From this feature importance, parameter 

ranking will be given, where parameters with significant MSE decrease will be categorized as 

crucial or most influential parameters in this study. The ranking of input parameters used in the 

study has been obtained and presented in Table 7 and Figure 7. 
Table 7 - Ranking Parameter Polymer Flooding 

Ranking Features Importance 

1 Injection_Time 0.452632 

2 Injection_Rate 0.430075 

3 Injection_Pressure 0.064662 

4 Adsorption 0.025564 

5 RRF 0.021053 

6 IPV 0.006014 
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Fig. 8. Ranking Parameter Polymer Flooding 

Based on Table 7 and Figure 7, X-Gradient Boosting Algorithm has successfully ranked 

the polymer flooding parameters according to their influence on the oil recovery value. The results 

showed that Injection Time and Injection Rate were the most significant parameters compared to 

the other 4 parameters such as Injection Pressure, Adsorption, RRF (Residual Resistance Factor), 

and IPV (Inaccessible Pore Volume). This is in line with the study conducted by (Hidayat & 

ALMolhem, 2019) which stated that injection duration or injection time is a parameter that has 

an influence on increasing oil recovery 

 

5. Conclusion  

Based on the results and discussion provided, the conclusion drawn from this study is that 

the injection time and injection rate parameters are the most influential parameters on the 

performance of polymer flooding in terms of oil recovery, with importance levels of 0.452632 

and 0.430075, respectively. The focus on both factors is expected to optimize the recovery factor 

in polymer flooding during implementation in the field. Injection pressure has an importance level 

of 0.064662, while adsorption, RRF, and IPV have importance levels of 0.025564, 0.021053, and 

0.006014, respectively. The study also produced an accurate predictive model using X-gradient 

boosting, with three variations of the training and testing data ratios. The ratio of 0.7:0.3 resulted 

in a train R2 of 0.9886 and a test R2 of 0.9645, the ratio of 0.8:0.2 resulted in a train R2 of 0.9891 

and a test R2 of 0.9579, while the ratio of 0.9:0.1 resulted in a train R2 of 0.9890 and a test R2 of 

0.9660. In this case, the X-gradient boosting algorithm proves to be a robust and accurate method 

for conducting sensitivity analysis in polymer flooding. 
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