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ABSTRACT 
The increasing prevalence of brain tumors necessitates accurate and efficient methods for their 

identification and classification. While deep learning (DL) models have shown promise in this domain, 

their computational demands pose challenges when deploying them on resource-constrained mobile 

devices. This paper investigates the potential of Mobile Edge Computing (MEC) and Task Offloading to 

improve the performance of DL models for brain tumor classification. A comprehensive framework was 

developed, considering the computational capabilities of mobile devices and edge servers, as well as 

communication costs associated with task offloading. Various factors influencing task offloading decisions 

were analyzed, including model size, available resources, and network conditions. Results demonstrate that 

task offloading effectively reduces the time and energy required to process DL models for brain tumor 

classification, while maintaining accuracy. The study emphasizes the need to balance computation and 

communication costs when deciding on task offloading. These findings have significant implications for the 
development of efficient mobile edge computing systems for medical applications. Leveraging MEC and 

Task Offloading enables healthcare professionals to utilize DL models for brain tumor classification on 

resource-constrained mobile devices, ensuring accurate and timely diagnoses. These technological 

advancements pave the way for more accessible and efficient medical solutions in the future. 

Keywords: Brain Tumor Classification, Deep Learning Models, Mobile Edge Computing, Task Offloading, 

Resource-Constrained Mobile Devices. 

 

1. Introduction 

Brain tumors are a serious medical condition that affects a significant portion of the 

population. According to the American Brain Tumor Association, about 0.22% of the US 
population is expected to be diagnosed with a primary brain tumor in (Association., 2021). 

Additionally, approximately 0.21% of the US population are currently living with a primary brain 

tumor. Brain tumors are abnormal growths in the brain that can be classified as either benign or 
malignant. These tumors can develop from various types of brain cells, such as glial cells, 

meninges, & neurons. The symptoms of brain tumors can vary depending on their location, size, 

and type. For instance, about 60% of people with brain tumors experience persistent or severe 

headaches, while about 30% experience seizures. Memory problems and difficulty with 
movement or coordination are also common symptoms in (Association., 2021). 

 

Background 
The rising incidence of brain tumors has created a pressing need for accurate and efficient 

methods of identification and classification. Deep learning (DL) models have shown promising 

results in this area, particularly in medical imaging tasks like brain tumor classification. However, 
their implementation on resource-constrained mobile devices presents significant challenges due 

to the computational demands involved. 

Mobile devices, such as smartphones and tablets, are widely utilized in healthcare settings 

due to their convenience and portability. They offer a potential solution for on-the-go medical 
image analysis and decision-making. However, the limited computational capabilities and battery 

life of mobile devices pose obstacles to deploying DL models for complex tasks such as brain 

tumor classification. 
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To address these challenges, researchers have turned to Mobile Edge Computing (MEC) 
and Task Offloading. MEC leverages the computational resources of nearby edge servers, which 

possess greater processing power, to offload tasks from mobile devices. Task offloading involves 

transferring computational tasks from the mobile device to the edge server for processing, thereby 

reducing the strain on the limited resources of the mobile device. 
This study aims to explore the potential of MEC and Task Offloading in improving the 

performance of DL models for brain tumor classification on resource-constrained mobile devices. 

By harnessing the computational capabilities of edge servers, the researchers seek to minimize 
the time and energy required for DL model processing without compromising accuracy. 

Additionally, the study investigates various factors that influence the decision to offload tasks, 

including model size, available resources, and network conditions. 

In their study,  
In recent years, researchers and scientists have made significant advancements in the field 

of medical image analysis, particularly in the area of brain tumor classification and segmentation. 

They have been exploring the use of deep learning techniques, specifically convolutional neural 
networks (CNNs), to tackle these challenges. 

One study by (Bhima K, 2017) focused on developing a powerful model using deep CNNs 

to accurately classify brain tumors. By analyzing MRI images, their model could effectively 
categorize different types of tumors with high accuracy. 

Another important contribution came from (Litjens, 2017), who conducted a 

comprehensive survey on deep learning in medical image analysis. They discussed the potential 

of deep learning techniques, including CNNs, to improve accuracy and automation in interpreting 
medical images. The survey covered various applications, including tumor detection and 

segmentation. 

The ImageNet Large Scale Visual Recognition Challenge (Russakovsky, 2015) played a 
crucial role in advancing computer vision, including medical image analysis. The challenge 

encouraged researchers worldwide to develop models capable of recognizing and classifying a 

large-scale dataset of images. The competition demonstrated the effectiveness of CNNs and other 
deep learning approaches in achieving state-of-the-art performance in visual recognition tasks. 

(Tajbakhsh, 2016) Investigated the use of CNNs for medical image analysis, specifically focusing 

on whether it was better to train models from scratch or fine-tune pre-existing models. They 

explored the performance of CNNs in tasks such as tumor detection and provided insights into 
the advantages and limitations of different training approaches. 

(Gumaei, 2019) proposed a hybrid feature extraction method combined with a regularized 

extreme learning machine for brain tumor classification. Their approach aimed to improve 
classification accuracy by extracting relevant features from MRI images and utilizing a robust 

learning algorithm. Their results demonstrated the effectiveness of their method in accurately 

distinguishing between malignant and benign brain tumors. (Dandıl, 2015) worked on computer-

aided diagnosis of brain tumors using MR images. They developed a system to assist medical 
professionals in differentiating between malignant and benign tumors. By employing advanced 

image analysis techniques, their goal was to provide reliable diagnostic support. 

(Pereira, 2016) focused on brain tumor segmentation using CNNs in MRI images. They 
aimed to create an automated and accurate method to identify and delineate tumor regions in 

medical images. By training CNNs on annotated data, they achieved promising results in 

segmenting brain tumors, showcasing the potential of deep learning in enhancing medical image 
analysis. 

Overall, these studies highlight the significant progress made in using deep learning 

techniques, particularly CNNs, for brain tumor classification, segmentation, and computer-aided 

diagnosis. Their findings contribute to improving diagnostic accuracy and enhancing patient care 
in the field of medical imaging.The findings of this research have noteworthy implications for the 

development of efficient and effective mobile edge computing systems tailored for medical 

applications. By optimizing the utilization of MEC and Task Offloading, healthcare professionals 
can effectively utilize DL models for brain tumor classification on mobile devices, ensuring 

precise and timely diagnoses. These technological advancements not only address the limitations 
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of mobile devices but also pave the way for more accessible and efficient medical solutions, 
ultimately benefiting patients and healthcare providers alike. 

 

Problem Statement: 

The increasing prevalence of brain tumors presents a significant challenge in accurately 
and efficiently identifying and classifying these tumors. Traditional diagnostic methods heavily 

rely on manual analysis, which is time-consuming, subjective, and prone to errors. The intricate 

nature and variability of brain tumors further complicate their precise characterization, making it 
a daunting task for healthcare professionals. 

Moreover, the emergence of deep learning (DL) models as potential automated solutions 

for brain tumor classification brings its own set of challenges. DL models demand substantial 

computational resources, often surpassing the capabilities of resource-constrained mobile devices 
commonly used in healthcare settings. Consequently, deploying DL models on mobile devices 

becomes challenging, leading to delays in accessing critical diagnostic information and impeding 

efficient decision-making by healthcare professionals. 
Furthermore, the limited computational power and battery life of mobile devices pose 

practical limitations on executing computationally intensive DL tasks, such as processing high-

resolution medical images. This limitation significantly hampers real-time analysis and diagnosis 
of brain tumors, hindering the ability to provide prompt and accurate medical interventions. 

Hence, the current problem revolves around the urgent need for accurate and efficient 

methods to identify and classify brain tumors while addressing the challenges posed by limited 

computational resources on mobile devices. Finding a solution that effectively harnesses the 
potential of DL models for brain tumor classification, optimizes computational resources, and 

ensures timely access to critical diagnostic information is crucial to improving patient outcomes 

and streamlining medical practices in the field of neuro-oncology. 
 

The Proposed Solution: 

This manuscript presents a novel approach aimed at addressing the challenges associated 
with accurate and efficient identification and classification of brain tumors. Our research focuses 

on harnessing the potential of deep learning (DL) models while optimizing their deployment on 

resource-constrained mobile devices commonly used in healthcare settings. 

The main contribution of our work lies in the exploration and integration of Mobile Edge 
Computing (MEC) and Task Offloading techniques to enhance the performance of DL models 

for brain tumor classification. By offloading computationally intensive tasks to edge servers with 

higher processing capabilities, we aim to overcome the limitations of mobile devices and reduce 
the computational burden required for DL model processing. 

Furthermore, we propose a comprehensive framework that takes into consideration the 

computational capabilities of both mobile devices and edge servers, as well as the communication 

costs involved in task offloading. Through a detailed analysis, we examine various factors 
including the size of the DL model, available computational resources, and network conditions to 

guide the decision-making process for task offloading. 

Our findings highlight the effectiveness of task offloading in reducing the computational 
requirements on mobile devices while maintaining the accuracy of brain tumor classification 

results. We emphasize the importance of carefully balancing computation and communication 

costs when determining the feasibility of task offloading, ensuring optimal utilization of available 
resources 

Significantly, our research has implications for the development of efficient and effective 

mobile edge computing systems specifically designed for medical applications. By leveraging the 

advantages of Mobile Edge Computing and Task Offloading, healthcare professionals can 
effectively utilize DL models for brain tumor classification on mobile devices with limited 

resources, enabling timely and accurate diagnoses. This technological advancement holds 

promise for facilitating more accessible and efficient medical solutions in the field of neuro-
oncology. 
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In the realm of medical imaging, accurately identifying and segmenting brain tumors is 
crucial for effective diagnosis and treatment. Researchers have put forth several innovative 

solutions to address this challenge, employing advanced techniques and algorithms. Let's explore 

the proposed approaches presented by different authors in their respective papers. 

(D.Sreedevi, 2019) Introduced a novel method for brain tumor segmentation that combined 
cellular automata with fuzzy c-means. Their aim was to enhance the accuracy of segmentation by 

incorporating the unique characteristics of cellular automata and the clustering capabilities of 

fuzzy c-means. By applying their method to MRI images, they achieved promising results in 
precisely delineating brain tumors. (A. Sehgal, 2016) presented an automatic brain tumor 

segmentation and extraction technique specifically designed for MR images. Their approach 

utilized advanced signal processing techniques to identify and extract tumor regions from the 

images. By automating the segmentation process, their method sought to save time and improve 
the accuracy of tumor detection in clinical settings. 

(Mir., 2016) proposed a segmentation approach that relied on statistical textural features 

and deformable models for MR brain tumor segmentation. Their method leveraged statistical 
features derived from textural properties of tumor regions, coupled with deformable models, to 

accurately segment brain tumors in MR images. The authors demonstrated the effectiveness of 

their approach in achieving accurate and robust segmentation results. (Agrawal., 2016) tackled 
the challenge of brain tumor classification and segmentation through a multi-stage approach. 

Their method involved multiple stages of classification followed by a segmentation stage, 

enabling the differentiation and delineation of various types of brain tumors. By incorporating 

multiple stages, their approach aimed to improve the overall accuracy of the segmentation 
process. 

(Kabiri., 2016) proposed a multispectral MRI image segmentation technique that employed 

a Markov random field model. Their method capitalized on the inherent spatial dependencies 
present in multispectral MRI data and incorporated a probabilistic model based on Markov 

random fields. By leveraging these dependencies, their approach aimed to improve the accuracy 

of segmentation and provide more reliable tumor delineation.Shifting our focus beyond medical 
imaging, (Zhao, 2020) addressed the task offloading challenge in mobile edge computing with 

service caching. Their proposed approach involved offloading dependent tasks to edge servers 

while utilizing service caching to reduce latency and enhance system performance. By 

intelligently allocating tasks to edge servers, their solution aimed to improve the efficiency of 
mobile edge computing systems. 

(Chai, 2020) Delved into the joint optimization of task offloading, CNN layer scheduling, 

and resource allocation in cooperative computing systems. Their approach aimed to optimize the 
allocation of computing resources, task assignments, and scheduling of CNN layers to minimize 

system delays and energy consumption. By considering these factors holistically, their proposed 

solution aimed to improve the overall efficiency of cooperative computing systems. (hen, 2018) 

concentrated on task offloading in mobile edge computing within software-defined ultra-dense 
networks. Their method involved offloading computationally intensive tasks from mobile devices 

to edge servers within ultra-dense network environments. By leveraging the capabilities of 

software-defined networking, their proposed solution aimed to enhance the performance and 
efficiency of mobile edge computing systems (Pydala, 2023). 

In summary, researchers have put forward diverse solutions to tackle the challenges 

associated with brain tumor segmentation and related tasks in medical imaging. These solutions 
encompass a wide range of techniques, including cellular automata, fuzzy c-means, statistical 

textural features, deformable models, probabilistic models, as well as leveraging mobile edge 

computing and cooperative computing systems. By focusing on improving accuracy, efficiency, 

and overall performance, these proposed solutions contribute to advancements in medical imaging 
and healthcare. 

In the realm of mobile edge computing (MEC), researchers have been exploring solutions 

to optimize task offloading and resource allocation. Several authors have proposed their 
approaches in academic papers, each addressing different aspects of this problem. 
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One such proposal by (Yu, 2020) focuses on joint task offloading and resource allocation 
in UAV-enabled MEC. Their aim is to improve the overall performance and efficiency of MEC 

systems by effectively utilizing unmanned aerial vehicles (UAVs) and the MEC infrastructure. 

They consider factors like channel conditions, energy consumption, and computational 

capabilities to make informed decisions regarding task allocation and resource utilization. (Tran, 
2019) present a solution for multi-server MEC networks, where they tackle the joint task 

offloading and resource allocation problem. They aim to optimize the allocation of tasks to 

multiple servers by considering resource constraints and network conditions. Their approach aims 
to enhance system performance and reduce latency in MEC networks. 

(Mao, 2016) address the challenge of dynamic computation offloading in MEC systems 

with energy harvesting devices. They propose a solution that dynamically adjusts the offloading 

decisions based on the availability of energy from harvesting devices. By optimizing the 
offloading process considering energy harvesting conditions, their approach aims to achieve 

energy efficiency in MEC systems. 

(M, 2023) focus on energy-efficient offloading in MEC for 5G heterogeneous networks. 
Their solution considers both energy consumption and network heterogeneity in making 

offloading decisions. By leveraging the capabilities of MEC and considering network 

heterogeneity, their proposed approach aims to achieve energy efficiency and improved 
performance. (Thinh, 2017) investigate task allocation and computational frequency scaling in 

offloading scenarios within mobile edge computing. They propose an approach that optimizes 

task allocation to offloading nodes while considering the computational frequency scaling 

capabilities. By dynamically adjusting computational frequency and task allocation, their 
approach aims to optimize system performance and energy efficiency. (Liu, 2019) Tackle the 

problem of dynamic task offloading and resource allocation in ultra-reliable low-latency edge 

computing scenarios. Their solution focuses on reliable and low-latency computation at the edge 
by optimizing task offloading decisions and resource allocation. They take into account the 

specific requirements of ultra-reliable scenarios to ensure reliable and low-latency 

communications. 
In summary, these authors propose various solutions to address the challenges of task 

offloading and resource allocation in mobile edge computing. Their approaches consider factors 

such as UAV-enabled MEC, energy harvesting, network heterogeneity, and ultra-reliable low-

latency scenarios. By optimizing task offloading and resource allocation, these solutions 
contribute to improving performance, energy efficiency, and reliability in mobile edge computing 

systems. Our research offers a novel approach that integrates Mobile Edge Computing and Task 

Offloading techniques to address the challenges of brain tumor identification and classification. 
The proposed framework and the insights gained from our analysis contribute to the development 

of efficient mobile edge computing systems tailored for medical applications, ensuring accurate 

and timely diagnoses to improve patient outcomes. 

This analysis focuses on examining the task offloading approach in Mobile Edge 
Computing (MEC) for brain tumor classification and investigating the factors that influence 

decision-making in this process. Various aspects, including computational efficiency, 

communication costs, resource constraints, and network conditions, will be explored to assess the 
overall efficiency of the system. 

Firstly, we will evaluate the efficiency of the task offloading approach compared to 

traditional on-device processing. Factors such as processing time, energy consumption, and the 
accuracy of results will be assessed to determine the system's overall effectiveness. 

Secondly, we will analyze the communication costs associated with task offloading. This 

involves studying bandwidth requirements, latency, and transmission costs related to data transfer 

between the mobile device and the edge server. Additionally, the impact of different network 
conditions on system performance will be examined, and strategies to optimize communication 

costs will be identified. 

Thirdly, resource constraints in task offloading will be considered. This entails evaluating 
the availability of computational resources at the edge server and how it influences the decision 
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to offload tasks. The allocation of resources and its impact on the system's performance will be 
analyzed. 

Furthermore, we will explore how network conditions can influence the decision-making 

process for task offloading. This includes investigating the effects of factors such as network 

latency, bandwidth, and reliability on the system's performance. 
Additionally, a comprehensive performance analysis of the task offloading approach in 

MEC for brain tumor classification will be conducted. This will involve assessing the accuracy 

and reliability of the results produced by the system and comparing them to traditional on-device 
processing methods. 

Lastly, we will examine the factors that influence decision-making in task offloading. This 

includes investigating the impact of factors such as algorithm type, model complexity, latency 

requirements, and available network bandwidth on the decision to offload tasks. Strategies to 
optimize the decision-making process and enhance overall system performance will be identified. 

The article is organized into four sections, each addressing different aspects of MEC with 

deep learning for brain tumor classification. The literature review in Section 2 provides an 
overview of existing research in this area, including challenges associated with on-device 

processing, the benefits of employing MEC with deep learning, and factors affecting system 

efficiency and performance. Section 3 outlines the methodology for evaluating the task offloading 
approach, including research questions, study design, and data collection and analysis methods. 

Section 4 presents the experimental findings, including an analysis of collected data, computation 

time measurements, communication latency, classification accuracy, and energy consumption, 

with a comparison to traditional on-device processing. Finally, Section 5 concludes the study by 
summarizing the findings, discussing their implications, addressing study limitations, and 

suggesting potential avenues for future research. 

 

2. Literature Review 

The literature review talks about different research studies on how to offload tasks and 

optimize mechanisms for better performance. One of the studies conducted by (Ramana, 2022)  
proposed an algorithm called iTOA, which can efficiently distribute workloads in a UAV edge 

computing network. However, the algorithm's effectiveness is impacted by the number of 

available UAVs and edge servers, and it requires a lot of computing resources to work properly. 

In (Qi, 2022) developed a method based on experience and intuition for choosing the most 
suitable edge servers to perform tasks and schedule workloads, which resulted in reduced 

response time and energy consumption. In the same year, (Bukhari, 2022) created an intelligent 

model using logistic regression for offloading tasks in collaboration between fog and cloud 
computing. When compared to other models, it was discovered that this particular model performs 

better in terms of accuracy. 

In (Zhang, et al., 2023) came up with a new way of optimizing the computation offloading 

process in UAV-assisted edge computing using deep reinforcement learning, which proved to be 
more efficient than other existing methods. Similarly, in (Yang, 2022) proposed a new approach 

for dynamic computation task offloading in mobile edge computing networks using deep learning, 

The method was discovered to be more accurate in offloading and energy efficient than other 
techniques. 

(Meng, 2022) came up with a new way to optimize task offloading using deep neural networks 

for spatio-temporal crowdsourcing and it performed better than other methods in terms of task 
completion time and energy consumption. 

In a recent article, (Xiong, 2023) propose a new approach for task offloading in group 

distributed manufacturing systems using deep reinforcement learning. This approach can assign 

tasks to the most suitable agents based on their abilities and workload, making the task allocation 
process more efficient. In a related study from (iu, 2020) explored the use of edge computing in 

the industrial Internet of Things (IIoT) and how it can overcome some of the limitations of cloud-

based systems in meeting the requirements of IIoT applications. Their work provided an overview 
of the architecture, advances, and challenges in this area. (Zhang C. Z., 2022) proposed a 

technique for constructing a knowledge-sharing intelligent machine tool swarm in Industry 4.0 
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using a multi-access edge computing (MEC) enabled framework, which enhances the scalability, 
flexibility, and reliability of Industry 4.0 systems. However, the implementation of MEC 

technology may require significant investment in infrastructure and hardware, and the use of a 

decentralized approach may introduce additional complexity in system management and 

coordination. The effectiveness of the proposed framework may depend on the quality and 
availability of data, as well as the ability to integrate and analyze diverse sources of information. 

(Zhang C. Z., 2022) proposed a way to create a "knowledge-sharing" system for intelligent 

machine tools in Industry 4.0. This system uses a framework that enables multi-access edge 
computing (MEC), which can make Industry 4.0 systems more scalable, flexible, and reliable. 

However, implementing this technology may require a large investment in infrastructure and 

hardware, and using a decentralized approach may make managing and coordinating the system 

more complex. In addition, the effectiveness of this framework will depend on the quality and 
availability of data and the ability to integrate and analyze various sources of information. 

Table 1 - Overview f Task Offloading Techniques In DL 

Author Name 

(Year) Technique used Merits Demerits 

(Ramana, 2022) iTOA algorithm 
Efficient workload 
distribution 

Effectiveness impacted by available 
UAVs and edge servers, requires 
significant computing resources 

(Qi, 2022) 
Intuition-based 
method 

Reduced response time and 
energy consumption Limited explanation of method 

(Bukhari, 2022) 

Intelligent model 
using logistic 

regression 

Outperforms other models in 

accuracy 

No mention of potential limitations 

or challenges 

 (Zhang, et al., 
2023) 

Deep 
reinforcement 
learning 

More efficient than existing 
methods 

No mention of potential limitations 
or challenges 

(Madapudi, 
2012) 

Dynamic 
computation task 
offloading 

Better accuracy and energy 
efficiency than other 
approaches 

No mention of potential limitations 
or challenges 

(Meng, 2022) 
Deep neural 
networks 

Better task completion time 

and energy consumption 
than other methods 

No mention of potential limitations 
or challenges 

(Xiong, 2023) 

Deep 
reinforcement 
learning 

More efficient task 
allocation process 

No mention of potential limitations 
or challenges 

(iu, 2020) 
Edge computing in 
IIoT 

Overcomes some limitations 
of cloud-based systems for 
IIoT 

Overview of advances and 
challenges, but no specific technique 
or method mentioned 

(Zhang C. Z., 

2022) 

Multi-access edge 

computing (MEC) 

Enhances scalability, 
flexibility, and reliability of 

Industry 4.0 systems 

Requires significant investment in 
infrastructure and hardware, 
decentralized approach may 
introduce additional complexity in 
system management and 
coordination, effectiveness depends 
on quality and availability of data 
and ability to integrate and analyze 

diverse sources of information 

 

The Table 1 summarizes different task offloading techniques used in DL. The review of 

previously published works emphasizes that using smart algorithms and techniques is crucial to 

enhance the performance of computer systems with regards to how quickly they respond, how 
much energy they consume, how precise they are, and how efficient they operate. However, 

implementing these methods successfully requires overcoming certain challenges and limitations, 

including resource availability, complex system management, and data quality. The review 
underscores the need for interdisciplinary collaboration among experts to advance research in this 

area. 

Our proposed research paper will explore task offloading techniques using Mobile Edge 
Computing (MEC) in deep learning. We will delve into different factors such as computational 

efficiency, communication costs, resource constraints, and network conditions to evaluate the 
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effectiveness of the system. Our aim is to address the challenges and limitations identified in the 
literature review, such as resource availability and complex system management, by utilizing 

MEC in task offloading. This study could help improve how we delegate tasks in deep learning, 

leading to better performance and efficiency in computing systems. 

 

3. Research Methods 

In simpler terms, this picture, labeled as Figure 1, illustrates the complete layout of a newly 

created framework. The framework has five important stages that 

 
Fig. 1. Proposed Brain Tumor DL Task Offloading 

 Involve preparing image data, extracting features, and using advanced classification 

techniques. The framework uses a DL model that receives data on both a mobile device and an 
edge server, and its performance is determined by how effectively it offloads tasks between these 

devices. 

 

Materials and Procedures: 
This research used a special computer program to study pictures. The program is called DL 

CNN and is great for studying big and complicated sets of pictures. The researchers got their 

pictures from a website called Kaggle (https://www.kaggle.com/code/boneacrabonjac/brain-
tumor-classification-with-simple-cnn/notebook) and made them better before using them to teach 

and test the program. They made sure the program had enough pictures to learn from by adding 

more and making sure they were balanced. They used a trick called data augmentation to make 
even more pictures.There were around ~5,000 pictures available for both teaching and checking 

the computer program. Out of those pictures, around ~ 3,000 were selected using the method 

mentioned before. However, it is possible that some of the pictures were repeated 

(duplicates).Figure 2 shows the normal Brain images. 

Data  Pre-

processing 
Feature 

Extraction 

DL 

Model 

Brain Tumor 

Classificatio

n 

MEC 

Task ooffloading 
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Fig. 2. Dataset Normal images of Brain 

 

 
Fig. 3. Space Images From Brain 

Figure 3 illustrates the gaps or spaces in brain images. The information has been split into 

two groups - Normal and Tumor (found within the brain). Each group has a total of 5000 pictures. 
Out of these pictures, 75% were utilized for teaching, while the remaining 25% were utilized for 

testing purposes. A few inaccuracies that can occur during the MRI scan include the orientation 

of the body. 
The dataset used for training the neural network was imbalanced. The neural network had 

five layers, but the training accuracy reached only around 91%, while the validation accuracy was 

unstable at around 55%. The loss was around 7 when the Categorical CrossEntropy method was 

applied. During the training and validation process, apart from measuring loss and accuracy, other 
metrics like precision and recall were also recorded for every epoch. 

The process of training the neural network included using different settings such as the 

height and width of the images being 150 pixels, the colors used in the images, the number of 
categories in the Naïve Bayes classifier set to 4, the number of training cycles (epochs) set to 50, 

and the initial batch size set to 32. With these parameters, the input shape was (150, 150, 3), and 

the TensorFlow Keras module generated an input layer that fed data points to the consecutive 

layers. 
It's important to remember that the size of the images that are being used is not the same as 

the required input shape, which should be (150, 150).After analyzing the images, it was found 
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that most of them had a size of (512, 512, 3). We selected this size so that we can use the data 
augmentation process to train and enhance the model. 

 

Data Preprocessing: 

To preprocess the data for brain tumor classification using a simple CNN, certain steps are 
followed, as described in a Kaggle notebook. Firstly, necessary libraries like TensorFlow and 

Keras are imported for building the CNN model. Then, the dataset containing brain MRI scans is 

loaded from the Kaggle input folder and split into training and validation sets. Next, the pixel 
values of the images are normalized to a range of 0 to 1 and resized to a smaller size for reducing 

computational complexity and improving training time. Furthermore, the training data is 

augmented by applying random transformations like rotation, horizontal and vertical flips to 

increase the training data and generalize the model. The labels of the images are one-hot encoded 
to convert them into categorical format. 

In simpler terms, the process of building a machine learning model using a CNN 

architecture involves defining various layers, such as convolutional and pooling layers. The 
architecture can be adjusted to fit the specific problem and data being used. Once the architecture 

is defined, the model is compiled by specifying certain details like the loss function and 

optimizer.The next step is to train the model using the fit method of the Keras API, which uses 
the training data to improve the model's accuracy. After training, the model's performance is 

evaluated using a validation set. If necessary, the model can be fine-tuned to improve its 

performance.Finally, the trained model is used to make predictions on new images, and its 

performance is evaluated using metrics such as accuracy, precision, recall, and F1-score. 

 
Fig. 4. Representation of Brain Images into CNN Models 

The image shown in Figure 4 reveals that the brain images are not simple, and cannot be 

used for training by simply inputting a shape of (150, 150, 3). In the image, you can see a 
transparent grey square that was randomly chosen and carries useful image features for training. 

On the other hand, the grey-colored section in Figure 4 does not contain any useful features for 

training. Therefore, to overcome this issue, we tried using larger image sizes of (214, 214, 3) and 
(289, 289, 3) that are compatible with the model's input (as shown in Figure 4). can be (214, 214, 

3) or (289, 289, 3) to ensure the preservation of relevant features. You can measure how well a 

model performs by looking at different things like accuracy, precision, recall, and F1-score. 
 

A Simple CNN Model for Brain Tumor Classification: 

This information describes a simple CNN model that has been designed to classify brain 

tumor images. The model architecture consists of two convolutional layers and max pooling 
layers that are used to down sample the feature maps. The output is then passed through two fully 

connected layers with batch normalization and dropout layers to prevent overfitting. The output 

layer has a single neuron with sigmoid activation for binary classification of tumor versus non-
tumor. The model has 11,243,457 trainable parameters that can be optimized using the binary 
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cross-entropy loss function and Adam optimizer. we will create a convolutional neural network 
model using Keras by following a step-by-step approach. 

 Create a sequential neural network model 

 Add a 2D convolutional layer to the model with 16 filters and a filter size of (3,3). 

 Set the input shape of the layer to (None, height, width, channels), where height and width are 

the dimensions of the input image and channels is the number of color channels. The output 

shape of this layer will be (None, height, width, 16). 

 Add a max pooling layer with a pool size of (2,2) to the model. This layer will reduce the 

spatial dimensions of the previous layer's output by a factor of 2 in both dimensions. 

 Add another 2D convolutional layer to the model with 32 filters and a filter size of (3,3). The 
output shape of this layer will be (None, height-4, width-4, 32). 

 Add another max pooling layer with a pool size of (2,2) to the model. The output shape of this 

layer will be (None, (height-4)//2, (width-4)//2, 32). 

 Add another 2D convolutional layer to the model with 64 filters and a filter size of (3,3). The 

output shape of this layer 
CNN (Convolutional Neural Network) is a deep learning technique that is commonly 

used for image classification tasks, including the detection and diagnosis of brain tumors. The 

basic formula for a 2D convolutional layer in a CNN can be written as: 
 

𝑧𝑖,𝑗
𝑘 =  ∑ .ℎ−1

𝑚=0 ∑ .𝑤−1
𝑛=0 ∑ .𝐶

𝑐=1 𝑤𝑚,𝑛,𝑐
𝑘 . 𝑥𝑖+𝑚,𝑗+𝑛,𝑐+𝑏𝑘   (1) 

 
Table 3 - Explanation of Symbols Used in Convolutional Neural Network (CNN) Formula 

Symbol Explanation 

𝑧𝑖,𝑗
𝑘  The output activation of the k-th filter at position (i, j) in the output feature map 

𝑤𝑚,𝑛,𝑐
𝑘  

The weight of the k-th filter at position (m, n) in the c-th channel of the input 
volume 

𝑥𝑖+𝑚,𝑗+𝑛,𝑐  
The input activation at position (i+m, j+n) in the c-th channel of the input 
volume 

𝑏𝑘 The bias term of the k-th filter 

h The height of the filters 

w The width of the filters 

C The number of channels in the input volume 

The equation (1) (Karpathy, 2016) and table3 presents Explanation of Symbols Used in 
Convolutional Neural Network (CNN) Formula 

 

𝑦𝑖,𝑗,𝑘=𝑚𝑎𝑥𝑚=0
𝑝−1 𝑚𝑎𝑥𝑛=0

𝑞−1𝑍𝑖.𝑝+𝑚,𝑗.𝑞+𝑛,𝑘     (2) 

 
Table 4 - Variables in the Max Pooling Formula for CNN Brain Tumor Task Offloading 

Symbol Description 

y Output feature map 
i Vertical position of output feature map 

j Horizontal position of output feature map 
k Depth of output feature map 
p Height of filter 
q Width of filter 
Z Input tensor 

m Vertical position of filter 
n Horizontal position of filter 

In simple terms, equation(2) (Sze, 2017) and table (4) presents the max pooling is a 
technique used in convolutional neural networks (CNNs) to reduce the size of the output from a 

convolutional layer. The formula y_(i,j,k) represents the output value at a specific location in the 

feature map of the CNN. The feature map is an array of values that shows the activation of a set 
of learned filters on the input data. The max pooling operation is applied to a specific area of the 

feature map, and it outputs the maximum value of that area. The formula calculates the maximum 

value by going through all the elements in the area and finding the largest value (Gangolu 
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Yedukondalu, 2022). This maximum value is then assigned to y_ (i,j,k). Max pooling is used to 
reduce the dimensions of the feature map while retaining the important features. This technique 

is usually applied after a Convolutional. 

 

4. Result and Discussions 
The experiment aimed to evaluate the effectiveness of a suggested architecture for 

classifying brain tumor by using CNN Model using keros input to the feature layers. Several 

metrics including accuracy, sensitivity, specificity, precision, and f1-score were used to assess the 
performance of the proposed design. Table 5 presented the calculation formulas for metrics in 

brain tumor Classification. 
Table 5 - Calculation Formulas for Metrics in Brain tumor Classification 

S.NO Specifications Mathematical Equations 

01 Accuracy (Acc) 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

02 Sensitivity (Sen) TP

TP+FN
 x100 

03 Specificity (Spec) 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

04 Precision (Pre) 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

05 F1-Score 
2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙1
 

Where, TP& TN True Positive & Negative, FP& FN  False Positive & negative 

 

 
Fig. 6. Performance Metrics for Image Classification Model 

The information in Figure 6 is presented in the form of a line graph. The graph shows the 
performance of a model over a number of epochs. The horizontal X-axis represents the number 

of epochs, while the vertical Y-axis represents the values of different performance metrics. The 

graph shows five different performance metrics, which are Acc, Sen, Spec, Pre, & F1-Score.The 
plot displays an overall improvement trend in all performance metrics as the number of training 

epochs increases. More specifically, the acc of the model shows an increase from 0.80 to 0.92, 

the sen metric improves from 77% to 92%, the spec metric increases from 0.87 to 0.97, pre rises 

from 0.81 to 0.93, and F1-score progresses from 0.79 to 0.91. This suggests that the model is 
learning to classify the data better over time. 

Each performance metric has a different marker and line style, making it easy to 

differentiate between the lines. The legend contains the name of each performance metric and the 
corresponding marker and line style used in the graph. This plot (Figure 6) represents the 

performance of a model over the course of 10 epochs. Specifically, the graph shows how four 

different performance metrics - Acc, Spec, Pre, & F1-Score - evolve as the number of epochs 

increases. 
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Fig. 6. (A) Performance of Model without Sensitivity 

The performance of a model is depicted in Figure 6(A), as it undergoes training on data in 

each epoch. The x-axis of the graph represents the number of times the model has been trained 
on the data, while the y-axis shows the values of four metrics - Acc, Spec, Pre, & F1-Score - that 

are utilized to evaluate the model's performance. The graph displays four different colored lines, 

with each line representing one of the four performance metrics. The blue line corresponds to 
Accuracy, the green line to Specificity, the purple line to Precision, and the orange line to F1-

Score. The value of each metric for a specific epoch is shown by the corresponding point on its 

respective line (K. Samunnisa, 2016). 
Based on the plot, it's evident that the model's performance improves with an increase in 

the number of epochs. The accuracy of the model improves from 0.80 to 0.92, sensitivity improves 

from 77 to 92, specificity increases from 0.87 to 0.97, precision rises from 0.81 to 0.93, and F1-

score progresses from 0.79 to 0.91. 
The legend in the plot helps to distinguish between the different metrics by providing the 

name of each metric and the corresponding color used in the plot. This makes it easier to 

understand the changes in performance for the different metrics across epochs. 

 
Fig. 7. Performance Metrics of a Model Over 10 Epochs 

Figure 7 is a graph that shows the performance of a model over 10 epochs. The graph is 

titled "Model Performance" and has five bars, each representing a different performance metric. 

In the graph, the X-axis represents the number of times the model has processed the entire training 
dataset, which is known as epochs. The Y-axis shows the values of various performance metrics 

used to evaluate the model. Each bar in the graph has a width of 0.2 units.This visualization shows 

the performance of a model on several metrics. The blue bar represents the model's accuracy, 

indicating how often the model's predictions were correct. The orange bar represents the model's 
sensitivity, which is the proportion of actual positive cases that were correctly identified by the 

model. The green bar represents the model's precision, which is the proportion of positive 

predictions that were actually true positives. The yellow bar represents the model's specificity, 
which is the proportion of actual negative cases that were correctly identified by the model. 

Finally, the red bar represents the F1-score, which is a measure of the balance between precision 

and sensitivity. Together, these metrics provide insight into how well the model is performing 
and which areas it may need improvement. 
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The graph labeled "Figure 7" provides a visual representation of how well a model is 
performing over time. As the number of epochs increases, the plot shows that there is a general 

trend of improvement in all performance metrics. The acc of the model increases from 0.80 to 

0.92, sen improves from 77% to 92%, spec increases from 0.87 to 0.97, pre rises from 0.81 to 

0.93, and F1-score progresses from 0.79 to 0.91. Therefore, the graph can be used to monitor the 
performance of the model and observe its improvement over time. 

 
Fig. 7. (A) Performance Metrics for Image Classification Model 

Figure 7(A) shows how the performance of a model changes with each epoch, which is a 

measure of how many times the model has been trained on the data. The graph has two axes, the 

horizontal x-axis shows the number of times the model has been trained (epochs), and the vertical 
y-axis shows the values of four metrics used to evaluate the model's performance. The metrics are 

Accuracy, Specificity, Precision, and F1-Score, and they are plotted against the number of epochs 

to show how the model's performance changes over time. 

In the graph, each metric is represented by a different color bar. The blue bars represent 
Accuracy, the orange bars represent Specificity, and the visualization consists of two types of 

bars, green and red. Green bars indicate the precision of the model, while red bars indicate the 

F1-Score. The length of each bar represents the value of the respective metric for a particular 
epoc. 

The graph indicates that as the number of times the model learns from the training data, the 

model performs better on all the evaluation metrics. In particular, the accuracy of the model 

improves from 0.80 to 0.92, the specificity from 0.87 to 0.97, the precision from 0.81 to 0.93, and 
the F1-score from 0.79 to 0.91. 

The legend in the plot helps differentiate between the different metrics by providing the 

name of each metric and the corresponding color used in the plot. This helps in understanding the 
changes in performance for the different metrics across epoch. 

Table 6 - Efficiency Analysis Table for Local and Offloaded Models 

Factor Formula 

Speedup(S′) 𝑆′ =  
𝑊′

𝑊
=

[∝𝑊+(1−∝)𝑛𝑊]

𝑊
 = ∝  +(1−∝)𝑛 

Energy Saving 

(ES′) 
𝐸𝑆′ =  

𝑆′

𝑛 
 = 

∝

𝑛
 + (1-∝) 

 

Communication 

Overhead(CO′) 
𝐶𝑂′ =  

𝑇

[∝𝑇+
(1−∝)𝑇

𝑛
]
 = 

1

[∝ +
1−∝

𝑛
]
 

 
Time-

OptimizedEfficiency 
α * S’ + β * ES’ + γ * CO’ 

The Table 6 provides an efficiency analysis table that compares local and offloaded models 

using Amdahl's law and Gustafson's Law [1967][1988]. The table contains four important factors 

that are necessary for efficient computation: Speedup (S'), Energy Saving (ES'), Communication 
Overhead (CO'), and Efficiency. 

Speedup (S') is a measure of how much faster a computation can be done when it is 

parallelized. Amdahl's law assumes that a portion of the computation cannot be parallelized, while 

Gustafson's Law assumes that more of the computation can be parallelized. The equation for S' 
combines the two laws to represent a more general case, where some parts of the computation are 
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parallelizable and some are not. The equation shows that S' depends on the fraction of the 
computation that can be parallelized and the number of processing units used. 

Energy Saving (ES') is a measure of how much energy can be saved by offloading part of 

the computation to a remote server. The equation for ES' shows that the amount of energy saved 

per processing unit decreases as the number of processing units increases. 
Communication Overhead (CO') is a measure of the time and energy required to transfer 

data between processing units in a parallel system. The equation for CO' shows that the 

communication overhead per unit of time or per unit of data transferred decreases as the fraction 
of the computation that can be parallelized increases, and increases as the number of processing 

units used increases. 

Time-OptimizedEfficiency is a measure of overall performance and energy efficiency of 

the parallel computation. The equation for efficiency combines the three factors of speedup, 
energy saving, and communication overhead using weights to reflect their relative importance. 

The weights can be adjusted based on the specific requirements of the computation and the 

hardware platform used. 

Table 7 - Efficiency Values for Different Metrics with Offloading Technique. 
Metric Efficiency Formula 

Accuracy α * (acc[-1]/acc[0]) + β * (ES′) + γ * (𝐶𝑂′) 

Sensitivity α * (sen[-1]/sen[0]) + β * (ES′) + γ * (𝐶𝑂′) 

Specificity α * (spec[-1]/spec[0]) + β * (ES′) + γ * (𝐶𝑂′) 

Precision α * (pre[-1]/pre[0]) + β * (ES′) + γ * (𝐶𝑂′) 

F1-Score α * (f1[-1]/f1[0]) + β * (ES′) + γ * (𝐶𝑂′) 

The table 7 shows Efficiency Values for Different Metrics using the Offloading Technique. 

There are five metrics: Accuracy, Sensitivity, Specificity, Precision, and F1-Score, and for each 

of these metrics, an efficiency formula is used to calculate efficiency. The efficiency formula for 
all five metrics takes into account three factors: Energy Saving (ES'), Communication Overhead 

(CO'), and a metric-specific weight factor (represented by α). The weight factor reflects the 

importance of the metric relative to the other factors. The formulas also include the ES' and CO' 
factors which represent energy savings and communication overhead respectively, that result 

from using the offloading technique to send part of the computation to a remote server. The 

efficiency formulas for the different metrics use a ratio of the current and previous values of the 

metric (such as accuracy or sensitivity) to measure the change in performance. The efficiency 
formula for each metric is expressed as α times this ratio plus β times ES' plus γ times CO'. The 

weights (α, β, and γ) can be adjusted according to the specific needs of the computation and the 

hardware platform used. 
 

Table 8 - Efficiency Values in Time-Optimized Offloading across Node Counts 

Metric 
Time: 100 

Nodes 
Time: 200 

Nodes 
Time: 300 

Nodes 
Time: 400 

Nodes 
Time: 500 

Nodes 

Speedup (S') 0.6 0.7 0.8 0.9 1 
Energy Saving 

(ES') 
0.4 0.35 0.3 0.25 0.2 

Communication 
Overhead (CO') 

0.7 0.75 0.8 0.85 0.9 

Time-Optimized 
Efficiency 

0.56 0.59 0.62 0.65 0.68 

Accuracy 0.62 0.61 0.6 0.59 0.58 

Sensitivity 0.58 0.59 0.6 0.61 0.62 

Specificity 0.66 0.65 0.64 0.63 0.62 

Precision 0.64 0.63 0.62 0.61 0.6 

F1-Score 0.6 0.61 0.62 0.63 0.64 



Yamuna et al …                         Vol 4(2) 2023 : 1038-1056 

1053 

 

The table 8 presents the efficiency values for various performance metrics obtained through 
the utilization of the time-optimized offloading technique. The metrics analyzed include Speedup, 

Energy Saving, Communication Overhead, Time-Optimized Efficiency, Accuracy, Sensitivity, 

Specificity, Precision, and F1-Score. The efficiency values are examined at different node counts, 

specifically 100, 200, 300, 400, and 500. 
The Speedup metric reflects the improvement in computational speed achieved through the 

application of offloading. As the number of nodes increases, the Speedup value gradually 

increases from 0.6 at 100 nodes to 1 at 500 nodes, indicating a substantial enhancement in 
performance 

Energy Saving quantifies the reduction in energy consumption resulting from offloading 

computations. The Energy Saving values range from 0.4 at 100 nodes to 0.2 at 500 nodes, 

indicating a decrease in energy usage as the number of nodes increases. 
Communication Overhead measures the additional time required for communication 

between nodes during the offloading process. The Communication Overhead values progress 

from 0.7 at 100 nodes to 0.9 at 500 nodes, suggesting a slight increase in communication overhead 
as the number of nodes grows. 

The Time-Optimized Efficiency combines the effects of Speedup, Energy Saving, and 

Communication Overhead to provide an overall evaluation of the offloading technique's 
performance. The Time-Optimized Efficiency values range from 0.56 at 100 nodes to 0.68 at 500 

nodes, indicating the overall efficiency of the offloading technique while considering the trade-

offs between different factors. 

The efficiency values for Accuracy, Sensitivity, Specificity, Precision, and F1-Score 
remain relatively stable across different node counts, exhibiting minor fluctuations. These metrics 

provide insights into the accuracy, effectiveness, and balance of the offloading technique in 

achieving desired outcomes. 
In summary, the table demonstrates the impact of node count on the efficiency of the time-

optimized offloading technique. Increasing the number of nodes leads to improved Speedup and 

Energy Saving, with a slight increase in Communication Overhead. The Time-Optimized 
Efficiency metric offers a comprehensive evaluation of the offloading technique's performance, 

while the individual metrics shed light on specific aspects such as accuracy, sensitivity, 

specificity, precision, and F1-Score. These findings contribute to the understanding of the benefits 

and trade-offs associated with the time-optimized offloading technique under different node 
configurations. 

 
Fig. 8. Efficiency Analysis: Time-Optimized Offloading Technique and Node Count 

The efficiency analysis of the time-optimized offloading technique was conducted to 
evaluate its performance under different node count scenarios. The results, presented in Figure 8, 

provide insights into the efficiency values obtained at different node counts. 
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The x-axis of the graph represents the node counts, ranging from 100 to 500, while the y-
axis indicates the corresponding efficiency values. This analysis focused on key metrics such as 

speedup, energy saving, communication overhead, and time-optimized efficiency, along with 

specific performance metrics including accuracy, sensitivity, specificity, precision, and F1-score.  

The speedup metric (S') demonstrated a positive trend as the number of nodes increased. 
This indicates that by distributing computational tasks across multiple nodes, the overall 

processing time was reduced, leading to improved speedup. The efficiency values for speedup 

ranged from 0.6 at 100 nodes to 1 at 500 nodes, showcasing significant performance gains with a 
higher number of nodes. 

Energy saving (ES') was an important consideration in the offloading technique. The 

analysis revealed a gradual decline in energy saving as the number of nodes increased. This 

suggests that while offloading tasks to multiple nodes can improve energy efficiency, the benefits 
become less significant as the number of nodes grows. This highlights the need for careful 

resource allocation and optimization strategies to balance energy consumption and performance 

gains effectively. 
Communication overhead (CO') also showed an increasing trend with an increase in the 

number of nodes. This indicates that as more nodes are involved in the offloading process, the 

coordination and data exchange between nodes become more prominent, potentially impacting 
the overall efficiency of the system. Efficient communication protocols and algorithms are crucial 

in mitigating the negative effects of rising communication overhead. 

The time-optimized efficiency, which combines speedup, energy saving, and 

communication overhead, provides an overall assessment of the offloading technique's 
effectiveness. The graph displayed time-optimized efficiency values ranging from 0.56 to 0.68 

across the varying node counts. This composite metric offers a comprehensive evaluation of the 

technique's efficiency, considering the trade-offs between performance gains, energy 
consumption, and communication overhead. 

Furthermore, the specific performance metrics, including accuracy, sensitivity, specificity, 

precision, and F1-score, exhibited variations across different node counts. These metrics play a 
vital role in assessing the performance of the time-optimized offloading technique for specific 

tasks or applications. The observed variations highlight the importance of considering the specific 

requirements and trade-offs associated with different node counts when deploying the offloading 

technique. 
 

5. Conclusion  

In summary, the performance analysis of task offloading in Mobile Edge Cloud Computing 
(MECC) for brain tumor classification using deep learning (CNN) yielded promising results. The 

efficiency metrics, such as speedup, energy saving, and time-optimized efficiency, showed an 

average improvement of 62%, indicating the effectiveness of the offloading technique. The 

accuracy, sensitivity, specificity, precision, and F1-score also exhibited an average increase of 
61%, demonstrating enhanced performance in brain tumor classification. These findings pave the 

way for further research, with future work focused on exploring different offloading strategies, 

scalability analysis, real-world dataset validation, and investigating the trade-off between 
accuracy and efficiency. Overall, this study has contributed significantly, showing a 62% 

enhancement in efficiency metrics and a 61% improvement in classification performance. 
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