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Abstract: In this work, we have studied two Kaolin .kaolin DD1 which consists of two main 
phases (kaolinite and Halloysite) and Tamazert kaolin .kaolin KT2 whose main constituents 
are kaolinite, quartz and mica. Our choice was set on the component that is Kaolinite because 
of the existence of the latter in both kaolins. A correction of Lorentz-Polarization was carried 
out prior to the diffraction data, which has been achieved using LWL program dome. The 
true profile was extracted by this program. The methods used for the micro structural 
analysis of the present in the two Kaolins are the Warren - Averbach and the Williamson – 
Hall methods Scherrer's relationship has been applied in cases where the compound is 
devoid of strains. 
The study revealed that the kaolin Kaolinite DD1 is devoid of micro constraints. Which 
similar analysis has shown that the Kaolinite in KT2 incorporates the strains. This was 
confirmed by the Williamson - Hall method as well as Fourier analysis. The evaluation of 
strains in the Kaolinite of KT2 has been dome the method of Warren - Averbach and 
Williamson – Hall diagram. The average value of this constraint found by the first method us 
0.15 and 0.21 by the second method gave. The average size of crystallites of the Kaolinite in 
DD1 was found between 29 Å and 230 Å. 
by the method of Warren - Averbach and about 118 Å by the method of Williamson - Hall. 
Range the second Kaolinite the Kaolinite KT2, the size obtained was respectively 98 Å and 
130 Å using to by methods. The study of the size distribution showed that the dominant size 
of Kaolinite in DD1 and KT2 is about 40 Å (42%) and 58 Å (32%). respectively. 

Key words: DRX, LWL methods, Crystallites size, microdéfomation, Williamson-Hall and Warren & 
Averbach methods. 

1. Introduction 

The microstructural parameters of a material (sizes, shape of the crystallites, external and 
internal stresses in the crystals) are generally obtained by first extracting the true profile of the 
sample using a deconvolution operation of Profiles of diffraction lines for powdered compounds. 
For a microstructural study, the methods of Rent, Weigel and Louboutin (LWL) and that of 
Stokes are used in the deconvolution of the profiles of diffraction lines. These techniques are 
said to be rigorous because they do not make assumptions about the nature of the diffraction 
line profiles. Nevertheless, they use the Fourier coefficients to approximate the function of the 
'true' profile of the diffraction peak. Consequently, they are very sensitive to the number of these 
coefficients which implies the truncation effect (low number of coefficients) but also the 
cumulative error effect (large number of coefficients). For this reason, it is interesting to take 
into account the number of Fourier coefficients concerning the X-ray diffraction peaks. The 
method best suited to this study, where there is a possibility of the presence of a double size-
stress effect, is Warren and Averbach's method. The latter will be used in conjunction with the 
Williamson-Hall method (Balzar, 1999; Kamminga & Seijbel, 2004; Uvarov & Popov, 2007; 
Marinkovic et al., 2001;  Larson & Von Dreele, 2000; Vives et al., 2002;  Williamson & Hall, 1953;  
Vives et al., 2004; Rehani et al., 2006;  Mote, et al., 2012; Langford  et al., 1992; Langford , 1978; 
Wagner, 1966; Rao & Houska, 1986; Klug & Alexander, 1974). 
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Kaolins are part of the family of clays with montmorillonites, vermiculites, palygostites, The 
main phase constituting the kaolin is kaolinite or l’Halloysite. Often it is the older rocks, 
originally rich in feldspar, which decompose under the influence of reducing agents such as 
carbon dioxide, in kaolins and clays. All kaolin, formed by primary deposit contains beside 
hydrosilicate of alumina, kaolinite or halloysite, debris important rock undecomposed residue 
and non removed from the decomposition of which are essentially free quartz mica, magnetite, 
titanium minerals and other impurities hardly destructible. Quality of kaolin depends on many 
other compounds that it contains kaolinite as well as the nature and concentration of impurities. 
Often crude kaolins are directly usable in that state (in the case of kaolin-Djebbel Debbagh, 
eastern Algeria), but they can also be enriched by kaolinite removal of all or part of the grading 
methods (case of kaolin tamazert, East Algeria). 

2. Methods of Analysis  

There are several methods to determine the microstructural parameters from the analysis of the 
peaks of X-ray diffraction. The methods based on the analysis of a single diffraction peak are 
constructed on fairly restrictive assumptions about the shape of the peaks and the contribution 
of the effects of size and shape. The Warren-Averbach method requires no assumption about the 
shape of the diffraction peaks, and it remains the most rigorous. However, it is very sensitive to 
the phenomenon of truncation profile and an overestimation of background noise. This method 
can lead to an error of 20-30% on the determination of the Fourier coefficients and hence the 
microstructural parameters (Ceretti, 2004). We have used this method in addition to one that is 
the Williamson-Hall (Vives et al., 2006), which is used in case of presence of microstrain in the 
crystallites. 

2.1. Methods of evaluation of the size 

To calculate the average size, there are several methods in case the absence of micro strains in 
the sample. 

2.1.1. Relation of Scherrer 

Scherrer hasshownthatcuts her cristallites in the sample (when the latter does not contain of 
forced micro) vary in the opposite direction of the width of ray of diffraction. The relation enters 
those two sizes is given by (Balzar, 1999): 

Df = C λ ∕ β cos 

For widths specified in 2C is a coefficient which depends on the shape of the crystallites 
(Langford et al., 1992) and can assume values between 0.8 and 1.39. For spherical particles, it is 
generally equal to 1. 

Df = 1 ∕ β* For widths in units where reciprocal Ɵ is the Bragg angle, Df is the average grain size, λ 
is the wavelength and β* is the integral width characterizing enlargement, expressed as the 
reciprocal lattice. 

2.1.2. Diagram Williamson – Hall 

This method applies to types of voightian or pseudo-voget profiles. It uses what is commonly 
called the Willamson & Hall graph (Williamson & Hall, 1953). This graph, to be a straight line, 
gives valuable information on the presence or absence of microstrain in the sample. The slope of 
the line indicates the presence of the latter (see Figure 1). 

If the profiles are purely Gaussian or purely voget, this method provides a very simple and fast 
way to evaluate the effects of constraint and size. For the other pseudo-voighal profiles, 



22 Lakel, J. Build. Mater. Struct. (2019) 6: 20-31  

 

 

approximations are necessary for the separation of these two effects (Langford et al., 1992; 
Langford, 1978; Wagner, 1966). 

* =Df + d* -Df  is the average grain size. D’ or: Df = *- d* 

 

Fig. 1. Diagram of shape Williamson & Hall. 

2.1.3. Method of Warren - Averbach 

If the sample does not contain microstrain was: AD(l, s) = 0, therefore A(l , sn ) = As(l) =. The initial 
slope of the curve giving A(l , sn ) according to the length L columns is inversely proportional to 
the apparent size of the crystallites in a direction perpendicular to the plane (hkl) considered 
(see Figure 2). This apparent size is given by the following equation (Uvarov & Popov, 2007): 

, or L = l  with: 

∆s = λ∕2 (sin2      sin1) 1 et 2are the values of the limit angles that define the profile. From the 
figure below, the point of intersection of the initial slope of the curve with the x-axis (L) provides 
the size Df. 

 

Fig. 2. Fourier Coefficients of As(l) as function of L. 

2.2. Measurement Method constraints 

2.2.1. Method Williamson – Hall 

In the case of the presence of micro-stress, we use the following equation (Williamson-Hall), 
which allows to obtain the average crystallite size and an estimate of micro-stress (Marinkovic 

et al., 2001):  is the value associated with the constraint. 
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The diagram corresponding to this relationship (giving  * depending d *) is a straight line 
whose slope represents the average value of micro-constraints and whose intersection with the 
horizontal axis gives the average crystallite size. 

2.2.2. Method of Warren – Averbach 

The most valuable for the separation of the size effect and the effect of stress is that of Warren - 
Averbach. Recall that this method is based on the use of data in the form not of a single line but 
several lines corresponding to different levels of reflection of a family of plans. Profile data are 
expressed in terms of Fourier coefficients of real A (l, s) and the relationship between the 
average values of micro-stress and coefficient (Larson & Von Dreele, 2000): 

 

i.e.:  

The coefficients As (l) which are obtained from this relationship, let be the average size of 
cristallites.la size s is equal to the reciprocal variable. 

We performed X-ray diffraction recordings on our kaolins Advanced D8 diffractometer. For this, 
we follow the following steps. Grinding the powder was done to make homogeneous grains. The 
powder is then deposited on the sample holder and pressed by a glass slide planar surface 
without too much pressure on the powder in order to avoid preferential orientations. It should 
be noted that the sample preparation is a critical parameter for obtaining quality results because 
the main information obtained from diffraction data are influenced by the sample. This 
information is: the position of the lines, the intensity of the lines, the line shape, the continuous 
background. 

Once the powder deposited on the sample holder, it remains to start recording on the 
diffractometer. Data recording is carried out on a predefined angular range with a pitch of 0.02 
(2  and a counting time by less than three seconds. Qualitative analysis by X-ray diffraction 
allowed from diffracting planes, highlighting the presence of kaolin DD1 main crystal phases as 
follows: 

Table 1. diffraction planes of the two main phases of DD1. 

phase (hkl) 2 

L’halloysite (010) 
(020) 

12.36 
29.28 

La kaolinite (200) 
(300) 
(011) 
(201) 

19.90 
35.02 
36.06 
38.54 

The same way as kaolin DD1, qualitative analysis by X-ray diffraction has highlighted the 
presence in KT2 kaolin, crystalline phases following Table 2. 

Table 2. Plans diffraction phases present in KT2 

Phase (hkl) 2 
kaolinite (100) 

(010) 
(200) 
(001) 

12.40 
19.88 
24.94 
38.52 

Quartz (201) 20.88 
Quartz+Mica (101) 26.66 

Mica+kaolinite (011) 35.00 
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3. Results and discussion  

Application of the correction a few peaks our kaolin to see the effect of the application of 
Lorentz-polarization correction, we chose to make the correction on a dozen peaks kaolins DD1 
and KT2. We noticed that the peaks do not change significantly after correction for Lorentz and 
polarization except for the first peak of each diffractogram which shows differences in a small 
part at the beginning of the peak. Figure 3 shows the first peak (peak (010)), where we see the 
difference at the beginning of the peak and another peak (peak (100)) where we see the good 
superposition of the peak corrected and uncorrected peak. 

Similarly, the same figure shows the first peak of the diffractogram KT2 (peak (100)) where the 
difference is visible in the early peak and a second peak (peak (020) where we see the significant 
effect of the correction Lorentz-polarization. 
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Fig. 3. Effect of correction Lorentz-polarization peaks of some kaolins study corrects red black peak peak 
uncorrected. 

3.1. Diagram Williamson – Hall 

The Williamson-Hall diagram of Kaolins M1 is given in Figure 4. We represent the values of 

 /cos.*  as a function of  /sin* d . Note that the curve is a straight line and the 
slope has a value that is negative. The negative value of this slope is probable due to the accuracy 
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of the data (obtaining the diffraction data, fitting, removal of the last point in the figure, ...). We 
therefore deduce that there are no substantial stresses in the kaolinite crystals. 

Figure 5 shows the Williamson-Hall diagram of Kaolin M2. Note that the curve is a non-zero 
slope line. So there are micro-constraints in the sample. 
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Fig. 4. Wialliamson-Hall diagram of kaolinDD1. 
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Fig. 5. Diagram of Williamson-Hall of kaolin KT2. 

3.2. Evaluation of the microstrain of kaolin KT2 brut 

The relationships used in the Warren & Averbach method are: 

 

 

These relations can be used with harmonic lines. In our case, we have only two harmonics, they 
are: (001) and (002). We apply the method to the profiles of these two lines: 
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- For the peak (001) et  : 

( I ) 

- For the peak (002) et l = 1 : 

 

The two previous relationships give the mean values of the size of the crystallites and of the 
micro-strain present in the sample: 

 

The estimated values for these strains are presented in Table 3. The mean of the set is <el>= 
0.15. 

Table 3. : Evaluation of the stresses exerted on the diffraction planes (hkl). 

l el 

1 0,50 
2 0,87 
3 1,49 
4 1,00 
5 0,79 
6 0,60 
7 0,51 
8 0,39 
9 0,37 

10 0,32 
11 0,34 
12 0,40 
13 0,32 
14 0,32 
15 0,26 
16 0,22 
17 0,21 
18 0,23 
19 0,14 
20 0,24 
21 0,13 
22 0,11 
23 0,09 
24 0,17 
25 0,02 
26 0,06 
27 0,01 
28 0,05 
29 0,07 
30 0,05 
31 0,04 
32 0,08 
33 0,06 
34 0,07 
35 0,07 
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37 0,03 
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40 0,05 
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1l

2

1

2

)001(

2

)001( 2)1(ln),1(ln esAsA s 

2

1

2

)002(

2

)002( 2)1(ln),1(ln esAsA s 

)(2

),1(ln),1(ln
2

)002(

2

)001(

2

)001()002(2

ss

sAsA
el










 Lakel, J. Build. Mater. Struct. (2019) 6: 20-31 27 

 

 

The Williamson-Hall diagram, shown in Figure 4, provides the estimated value for these 
constraints : < el>= 0.21. 

3.3. Evaluation of size in Kaolin KT2 brut 

From the relation 1 of Warren and Averbach, we find the values of the component AS (l) of A (1, 
S). The values of these components are written in Table 4. 

Table 4. The value of the AS component(l). 

L  
1 30062 
2 113961 
3 211566 
4 34602 
5 45809 
6 521 
7 61602 
8 77992 
9 86551 

10 980 
11 103 
12 1153 
13 12161 
14 1360 
15 141611 
16 15181 
17 16302 
18 17747 
19 181 
20 19587 
21 20776 
22 21993 
23 225 
24 2391 
25 24681 
26 251246 
27 26751 
28 27363 
29 28499 
30 29803 
31 30133 
32 31302 
33 3259 
34 3322 
35 3486 
36 35361 
37 3683 
38 371 
39 3892 

)(lAs
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Fig. 6. Variation of the Fourier real coefficients A (l, s) as a function of L 

From this graph, we derive the value of the mean size of the crystallites in the kaolin M2. This 
value is: <Df> = 92 Å. 

Evaluation of crystallite size in Kaolin DD1 

The average crystallite size of the kaolinite of M1 was calculated by the Warren & Averbach 
method 111 Å. 

Figure7 represents the variation of the coefficients of Fourier based on L (harmonic number). 

  

 
 

Fig. 7. Variation of the Fourier real coefficients A (l, s) as a function of L. 
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Table 5. The size of the crystallites of the kaolin DD1brut from the different diffraction peaks. 

The pics Df (Å) 

(200) 92 

(300) 230 

(011) 94 

(201) 29 

Heightsiz<D> = 111 

The average crystallite size of the kaolinite of DD1 was calculated by the Scherrer125 Å relation. 

Table 6. The size of the crystallites of the kaolin DD1brut from the different diffraction peaks. 

The pics Df (Å) 

(200) 130 

(300) 125 

(011) 129 

(201) 116 

Height size<Df> = 125 Å 

From the Williamson-Hall diagram, we derive the average values of crystallite size. The value 
found for this size is :D f = 118 (Å).  

As can be seen, the three results obtained from the three methods are sufficiently close: 

- By Scherrer ' s relation: D f= 125 Å. 

- By the Williamson - Hall diagram: D f= 118 Å. 

- By the method of Warren & Averbach: D f= 111 Å. 

3.4. Size distribution of kaolinite present in DD1 

The size distribution was estimated from the second derivative of the curveAs(l)according to the 
harmonic number L. We used a second degree polynomial for the calculations. We give in the 
following table only the most common sizes (sizes dominant). 

Table 7. Size of the main phase dominant kaolin DD1. 

pics dominant size (Å) 

(200) 32 

(300) 35 

(011) 40 

(201) 42 

3.5. Size distribution of kaolinite present in KT2 and DD1 

We calculated the size distribution of kaolinite in kaolin DD1. The value found for the dominant 
size is 40A. The distribution corresponding to this dominant size is of the order of 42%. 

The study of the size distribution of kaolinite in kaolin KT2 gave an average value of 58 Å for the 
dominant size; it has a distribution of about 32% (Lakel et al., 2013). 

4. Conclusion 

The methods for the determination of microstructural parameters from the analysis of the 
diffraction peaks were primarily developed for X-ray diffraction The Warren-Averbach method 
requires no assumption about the shape of the diffraction peaks and it is the most rigorous. 
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However, it is very sensitive to the phenomenon of truncation profile and an overestimation of 
background noise that can lead to an error of 20-30% on the determination of the Fourier 
coefficients. 

In the method of Sprauel, the Fourier coefficients are determined by smoothing each diffraction 
pattern by a mathematical function (generally Voigt), fitted to the experimental values by a 
least-squares optimization. In addition, this method allows to take into account the effects due to 
the heterogeneity of elastic deformations. The analysis is performed on two further orders of the 
same reflection. Methods based on the analysis of a single diffraction peak based on fairly 
restrictive assumptions about the shape of the peaks and the contribution of the effects of size 
and shape. They are rather qualitative analysis methods, but quick and easy application. The 
results obtained in the simplest cases (isotropic cubic) are in agreement with those obtainable 
with the methods based on the analysis of two orders of reflection. 
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