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Abstract: This work deals with the analysis of the mechanical bending behavior of a 
rectangular plate simply supported on four sides (FGM), subjected to transverse static 
loading. The high order theory is used in this work, The developed models are variably 
consistent, have a strong similarity with the classical plate theory in many aspects, do not 
require correction to the shear factor, and give rise to variations transverse shear stresses 
such as transverse shear parabolically varies across the shear thickness and satisfies surface 
conditions without stresses. Equilibrium equations are obtained by applying the principle of 
virtual works. The mathematical expressions of the arrow, the stresses are obtained using 
Navies approach to solve the system of equilibrium equations. The influence of mechanical 
loading and the change of the parameter of the material on mechanical behavior of the plate 
P-FGM are represented by a numerical example. 
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1. Introduction 

In recent years, functionally graded materials (FGM) have attracted considerable attention in 
many applications in engineering. Property gradient materials (FGMs), a type of composite 
material produced by continuously changing the volume fractions in the thickness direction to 
obtain a definite profile, these types of materials, have received much attention recently in 
because of the advantages of reducing disparity in material properties and reducing thermal 
residual stresses (Zhong & Yu, 2007). 

The concept of “Functionally Graded Materials” FGM was developed in Japan National Aerospace 
Laboratory in 1984 by Mr. Niino and his colleagues in Sendai (Mostefa et al,. 2018). The idea is to 
produce materials used as thermal barriers in spatial structures and fusion reactors (Koizumi, 
1992). The FGM can be used for various applications, such as thermal barrier coatings for 
ceramic motors, gas turbines, optical thin films, etc. (Nguyen et al., 2008). Due to wide variations 
and applications of materials with gradient properties, the literature corresponding to the FGMs 
in the constituents of the materials (Shimpi & Patel, 2006), fracture mechanics (Wu & Li, 2010; 
Şimşek, 2010; Lü et al., 2009; Ying et al., 2009), have been rapidly increased in the past 15 years. 
Many researchers have devoted their time to understanding the mechanical behavior and 
mechanism of FGM to provide an optimum profile to designers. Composite plates made of metal 
and ceramic are widely used in aircraft, ship reactors, and other structural technology 
applications (Merdaci et al., 2015; Merdaci et al., 2016). Understanding the mechanical behavior 
of an FGM plate is very important in estimating the safety of the plate (Reddy,. 1984). (Woo & 
Meguid, 2001) have applied the Karman theory for the large deformation to obtain the analytical 
solution for the plates and shells under a mechanical loading transverse and a field of 
temperature. (Praveen & Reddy, 1998) studied the static and dynamic responses of thick 
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(ceramic-metal) FGM plates using a finite element plate that takes into account the presence of 
transverse shear stresses, large rotations in the direction of Von Karman. This study deals with 
the analysis of the mechanical behavior at the static flexion of a rectangular plate of FGM 
functional gradient materials with the theory of refined shear deformation plates. It is assumed 
that the material properties of the plate change without interruption across the thickness, 
depending on the volume fraction of the constituent material according to a power-law function 
P-FGM. The results obtained show that the mechanical behavior of the rectangular plates FGM is 
different from those of the isotropic plates. Changing the material parameter has a significant 
effect on the boom, the normal and tangential stresses. 

2. Refined Plate Theory (RPT) 

An efficient and simple refined plate theory (RPT) was initially introduced and implemented by 
(Shimpi & Patel, 2006) in order to deal with the problems of static and dynamic analysis of 
orthotropic plates. The refined theory can be classified among the third-order shear deformation 
theories. The development of the refined plate theory is based on the assumptions that the 
theory represents parabolic variations of shear strains and shear stresses throughout the plate 
thickness and also satisfies the zero traction boundary conditions on the top and bottom 
surfaces of the plate. Additionally, the theory can provide high accuracy in prediction plate 
behavior subjected to mechanical loadings without using the shear correction factor. Based on 
the basic assumptions of the RPT (Shimpi & Patel, 2006), the displacement field of the RPT can 
be written as follows (Merdaci,. 2017):                                    

3
0 2

3
0 2

1 5
( , , ) ( , )

4 3

1 5
( , , ) ( , )

4 3

( , , ) ( , ) ( , )

b s

b s

b s

w w
u x y z u x y z z z

x xh

w w
v x y z v x y z z z

y yh

w x y z w x y w x y

  
    

  

  
    

  

   

(1) 

 

The main differences between the improved TSDT developed by (Shi, 2007) and the RPT are the 
middle terms of in-plane displacement functions. And the transverse displacement (w) of the 
RPT is composed of two components of the displacement due to bending (wb) and shear (ws).To 
apply the improved theory for analyzing plate problems (Merdaci et al,. 2011), it is begun with 
the Constitutive equations that take the form as, 
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Or ( x , y , xy , yz , yx ) and ( x , y , xy , yz , yx ) are the stress and strain components, 

respectively. The stiffness coefficients ijQ
 are expressed as follows: 
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3. The solution method for FG plate analysis 

The governing equation or the total energy functional based on the improved RPT for FGM plate 
analysis derived from the energy approach can be solved using the Navier solution in order to 
determine the static bending  results. The total energy functional (Π) of FGM plates for the static 
bending analysis can be written as the following, 

e eU V    (4) 
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Where Ue is the virtual variation of the deformation energy and Ve  is the variation of work done 
by external forces can be expressed: 
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The equilibrium equations can be written from the displacement gradients and put the 

coefficients 0 u , 0 v , bw   et sw   and equal to zero separately. Thus the equilibrium equations 
related to the present shear deformation theory can be obtained. The boundary conditions, 
which are simply supported, are chosen to consider the analysis of the plate.  
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The assumed in-plane displacements satisfying the conditions of simply supported in direction 
of x and y are: 
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Where mnU , mnV , bmnW and smnW are arbitrary parameters to be determined. We obtain the 
following equation: 

    K F   (9) 

Where    and F  are column vectors 
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4. Results and discussions 

A rectangular ceramic-metal FGM plate according to the P-FGM power-law distribution is 
considered in this section. The geometry of the FGM plate is shown in figure 1 in which the 
composition of the material on the upper surface is assumed to be the ceramic-rich surface and 
the compositions of materials are continuously varied at the metal-rich surface on the opposite 
side.  

 

Fig. 1. The dimensions and the variation of the thickness of the rectangular plate FGM. 
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In this study, the bending analysis of the FGM plates by the present theory of trigonometric 
shear deformation is proposed. Comparisons are made with the solutions available in the 
literature. In order to verify the accuracy of this analysis, some numerical examples are 
undertaken. The properties of the materials used in the present study are: 

Metal (Aluminium,Al): Em=70GPa ; 3.0 , 

Ceramic (Alumina,Al2O3): Ec=380GPa  3.0 . Is taken the ratio a/h=10. 

Various non-dimensional parameters used are: 
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The FGM plate used is a symmetrical plate and has only two layers of equal thickness, there is no 

base layer. So, 021  hh . 

In this section, we propose to validate the proposed model through some standard tests known 
from the literature. It is essentially a question of evaluating its precision performance on the 
transverse displacements for different elongation ratios. In order to validate our model, an 
example of static flexion will be studied. The example treats the bending of a simply supported 
isotropic plate subjected to static loading varying linearly across the thickness. A comparison 
was made with the results of the method of (Timoshenko & Gere, 1972), the results of Euler-
Bernoulli and (Zenkour, 2004) will also be introduced in the comparison. 

Table 1. Effect of the ratio (a / b) of the elongation on the boom for an isotropic plate subjected to linear 
loading and (k = 2) for the different theory. 

a/b 
Euler-Bernoulli [Timoshenko1972] [Zenkour 2004] Present study 

CPT FPT SPT RPT 

1/4 0.9832 1.0003 0.9969 0.99694 
1/2 0.7103 0.7249 0.7220 0.72204 

1 0.2774 0.2866 0.2847 0.28478 
2 0.0443 0.0480 0.0473 0.04731 
4 0.0038 0.0049 0.0046 0.00469 

Table 2. Comparison between the different models of normal stress calculation of an isotropic plate subjected 
to linear loading. 

z/h 
Euler- Bernoulli [Timoshenko1972] [Zenkour2004] Present study 

CPT FPT SPT RPT 

0.5   1.975764 1.975764 1.983924 1.995501 
0.4 1.580611 1.580611 1.581429 1.582588 
0.3 1.185458 1.185458 1.182452 1.178187 
0.2 0.790305 0.790305 0.786469 0.781029 
0.1 0.395152 0.395152 0.392663 0.389131 
0 0 0 0 0 

-0.1 0.395152 0.395152 0.392663 0.389131 
-0.2 0.790305 0.790305 0.786469 0.781029 
-0.3 1.185458 1.185458 1.182452 1.178187 
-0.4 1.580611 1.580611 1.581429 1.582588 
-0.5 1.975764 1.975764 1.983924 1.995501 
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The results obtained from the deferent models (Timoshenko & Gere, 1972; Zenkour, 2004) 
coincide with those resulting from the present method as illustrated in Tables 1 and 2. 
Displacements and normal stresses of an isotropic plate subjected to linear loading. 

Table 3. Value of displacements, and the effect of the volume fraction "k" with respect to the rectangular plate 
simply supported in FGM. 

Theory w  
K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 

CPT 0.0737 0.1900 0.2774 0.3277 0.3554 0.3710 
FPT 0.0779 0.1970 0.2866 0.3385 0.3673 0.3840 
SPT 0.0779 0.1960 0.284 0.3360 0.3645 0.3808 

  Present study (RPT) 0.0779 0.1960 0.2847 0.3360 0.3645 0.3808 
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Fig. 2. Influence of thickness (h / a) for various values of "k" of FGM plate. 

In the figure 2, shows that the decrease is between those of the ceramic plates (Al2O3) and the 
metal (Al). It can be observed that the deflection of the metal-rich FGM plate is greater compared 
to the ceramic plate. This can be taken into account for the Young module. 
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Fig. 3. Variation of the stress, through the thickness of FGM plate. 
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Fig. 4. Transverse shear stress across the thickness of the FGM plate. 

In Figure 3, the stresses are tensile above the median plane and under compression below the 
median plane. The results demonstrate a non-linearity of the variation in the axial stress of sheet 
thickness for FGM plates. It is important to note that the maximum stress depends on the value 
of the exponent of the volume fraction "k". And n figure 4, the maximum value occurs at a point 
on the median plane of the plate, and its amplitude for an FGM plate is greater than for a 
homogeneous plate (ceramic or metal). 

5. Conclusion 

This work consists of demonstrating the theoretical plate solutions of FGM functional gradient 
materials under transverse loading developed using high order theory or refined theory (RPT). 
The numerical results obtained show that the variation of the modulus of elasticity plays an 
important role on the distributions of normal and tangential stresses as well as the transverse 
displacement of the FGM plate. The developed theories give a parabolic distribution of the 
transverse shear deformation and satisfy the boundary conditions and do not require a shear 
correction factor as in the case of (FPT). The accuracy and effectiveness of the present theory 
(RPT) has been demonstrated for the static bending behavior of the FGM plate. All comparative 
studies have shown that the arrows and stresses obtained using the new four-unknown 
deformation-shear theory (RPT) are almost identical to those of the other five-unknown theories 
(SPT). The extension of the current theory is also provided for general boundary conditions and 
more general form plates. In conclusion, we can say that the proposed (RPT) theory is precise 
and simple to solve for the study of the behavior of the static bending of rectangular plates in 
FGM. 
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