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Abstract.  A primary objective in the seismic design of structures is to ensure that the 
capacity of individual members of a structure exceeds the associated demands. For 
reinforced concrete (RC) columns, several parameters involving steel and concrete material 
properties control behavior and strength. Furthermore, it is unrealistic to simply consider 
the shear strength calculation as the sum of concrete and steel contributions while 
accounting for axial force when, in fact, all those parameters are interacting. Consequently, it 
is challenging to reasonably estimate the shear capacity of a column while accounting for all 
the factors. This study investigates the viability of using artificial neural networks (ANN) to 
estimate the shear capacity of RC columns. Results from ANN are compared with both 
experimental values and calculated values, using semi-empirical and empirical formulas 
from the literature. Results show that ANNs are significantly accurate in predicting shear 
strength when trained with accurate experimental results, and meet or exceed the 
performance of existing empirical formulas. Accordingly, ANNs could be used in the future 
for analytical predictions of shear strength of RC members. 
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1. Introduction 

In the seismic design of structures, it is essential to ensure that the deformation capacities of a 
structure and its components exceed the associated deformation demands. This concept is 
implicitly addressed in capacity-based design procedures, and is an explicit core requirement of 
displacement-based design procedures. Thus, it is desirable that structures are designed with 
high ductility and large deformation capacities according to seismic provisions. Shear failure of 
reinforced concrete (RC) members is inherently brittle, resulting in a significant drop in lateral 
load resistance at low deformation; this is highly undesirable in seismic design. Several studies 
have demonstrated that the shear strength of RC members degrades substantially under cyclic 
loading when compared to the flexural strength of the member (Ascheim et al., 1992; Priestley et 
al., 1994; Moehle et al., 2002; Biskinis et al., 2004). Accordingly, existing seismic design 
guidelines for RC structures require special reinforcement for zones where plastic hinges are 
expected to form in order to ensure that brittle modes of failure are avoided.  

Nonetheless, in many cases, due to the complex interaction between the parameters that affect 
shear strength of a member, empirical equations formulated based on analytical reasoning are 
often proposed in order to predict the shear strength of these members. These empirical models 
have been continuously and significantly improved, as shown by Biskinis et al. (2004). Recent 
procedures issued by the U.S. Federal Emergency Management Agency (FEMA) for seismic 
evaluation of existing structures (FEMA-356, 2000) and for the seismic design of new structures 
(FEMA-368, 2000) involve member verifications explicitly in terms of member deformations. 
These procedures provide a strong motivation to develop an accurate, dependable quantification 
of load and deformation capacities of RC members. Quantification of load and deformation 
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capacities of RC members is a difficult task due to their non-linear and complex behavior under 
seismic loading. Accordingly, existing equations in the literature need to be reexamined and 
verified using a large amount of experimental data, the more recent information available in the 
literature, and modern analytical techniques. 

2. Objectives 

This study aims to improve upon existing empirical equations and models by implementing 
artificial intelligence algorithms to predict the shear strength of RC columns based on a number 
of different variables. Artificial neural networks (ANN) have been developed and trained to 
predict the shear resistance for rectangular and circular RC columns under axial load and cyclic 
lateral loading. A database has been compiled that consists of column specimens that have been 
loaded cyclically and failed in shear or in shear after flexural yielding (flexure shear). 

3. Experimental Database 

The experimental database used was obtained from the Pacific Earthquake Engineering 
Research Structural Performance Database (PEER-SPD). PEER-SPD was chosen because the 
hysteresis of load-displacement data was readily available for nearly all column specimens in the 
database. This was necessary to form the load-displacement envelopes in order to determine 
column displacement and lateral loads at yield and ultimate failure as well as to determine the 
experimental values for the shear resistance, Vr. By applying a uniform approach for evaluating 
shear strength of RC columns, the authors believe that the database that was used will have a 
more consistent dataset. The experimental values of the shear resistance, Vr, were obtained by 
analyzing the force-displacement data for the column, determining the maximum loading, and 
using a value of 75% of the maximum load. This 75% is an average determined by systematically 
analyzing the force-displacement loops; following the approach of Elwood (2002), a yield point 
was defined as the corner point of a bilinear envelope of the first loading cycle on the load-
deflection diagram. The value of the force at this point was defined as Vr by Elwood (2002); 
however, for consistency and simple identification, an average of all specimens was taken at this 
point to be 75% of the peak resistance. Software was written to automatically determine these 
points from the hysteresis; the source code is available upon request. 

4. Artificial Neural Networks 

Artificial neural networks (ANN) are powerful computational tools inspired by the 
understanding and abstraction of the structure of biological neurons and the internal operation 
of the human brain (Haykin, 1994). The most important concept of ANNs is the way in which 
data is processed. Each ANN is composed of highly interconnected nodes or neurons used to 
process information. This structure allows ANNs to closely model the way that the human brain 
forms connections to solve problems and learn by example, or trial-and-error. A neural network 
must be “trained” for their specific application. This training process is accomplished by 
providing a network with a large amount of data to build connections between neurons. This is 
analogous to the same process that occurs in biological systems during the learning process. 
Synaptic connections between neurons are built and reconfigured over numerous generations of 
training. Increasingly, neural networks are applied to real-world applications where problems 
are too complex to solve by means of conventional methods or for problems where an 
algorithmic solution would be too complex or undefined. They also can be used where 
algorithmic solutions have been developed, but do not yield high accuracy in the results. Many 
applications of ANNs have shown superior accuracy to empirical algorithms in these cases. 

Several types of neural networks exist, the most common of which is the continuous multi-layer 
perceptron (CMP). This type of network is based on recursive generational evaluation, 
consisting of various layers of neurons passing information between each other. The first layer, 
called the ‘input layer’, has the same number of neurons equal to the number of variables. Each 
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successive layer is called a ‘hidden layer’, and may contain more or less neurons than the 
preceding layer. A final layer, called the ‘output layer’, contains the same number of neurons as 
the number of outputs expected by the response. In the case of no hidden layers, a neural 
network can only act on linear tasks. All problems that are capable of a solution with a CMP can 
be solved with only one hidden layer; however, more layers can be used, and may result in more 
accurate responses. A sample of a neural network architecture is shown in Figure 1. 

 
Fig 1. An example of the structure of an artificial neural network (ANN). 

Each neuron in a hidden layer first creates a linear combination of the outputs of the previous 
layer and a bias to introduce variation. These combinations and biases are called the weights. 
The neurons in the hidden layer then create a non-linear function based on the inputs. The most 
commonly used function is called the logistic function. This function varies from 0 to 1, and maps 
to a real value that may be positive or negative as well as large or small. As a requirement of 
using this function, all input data must first be normalized into a range from 0 to 1. One of the 
methods of normalizing the data input is by using the following equation: 

   
(      )

(         )
 (1) 

where xt is the scaled value of variable x, and xmin and xmax are the minimum and maximum values 
for the dataset, respectively. This normalizes any input data to a percentage value of the range of 
the data used. 

The training is based on making the mean squared error (MSE) in the network as small as 
possible. This is done over many training cycles, because when the network is initially presented 
with a large seemingly random distribution, the MSE will be very large. The training process 
modifies the ‘weights’ of each neuron in an attempt to decrease the MSE of the net to a global 
minimum over each cycle. Once the training process is complete, another set of testing data is 
presented to the network, and the results are compared with experimental results. 

In order to evaluate the performance of the ANN model, the absolute average error (AAE) of the 
ratio of the calculated shear capacity, Vrcalculated, to the experimentally measured shear capacity, 
Vrexperimental, was used to measure how accurately the network predicts the shear capacity relative 
to the experimental data.  The AAE was calculated using the following equation: 

 
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 100
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Furthermore, to determine the coefficient of variation among the ratio of Vrexperimental / Vrcalculated, 
the following equation was used: 



 Said and Gordon, J. Build. Mater. Struct. (2019) 6: 64-76 67 

 

 

)/(

)/(

calculatedlxperimentae

calculatedlxperimentae

VrVr

VrVr
COV




  (3) 

where µ and σ are the mean and standard deviation, respectively. 

5. Existing Shear Strength Models 

Three previous models were evaluated for their accuracy in predicting the shear strength of 
cyclically loaded members. The models evaluated were the ACI 318-14 (2014) shear strength 
model and the models developed by Priestley et al. (1994), and Moehle et al. (2002). 

The ACI 318-11 (2011) model presents the same shear strength prediction model as has been 
provided by code standards in preceding versions. Along with many of the other equations, this 
model recognizes a contribution to the shear strength by the steel (VS) as well as a contribution 
by the concrete (VC), as described in Equations 11-2 (units: psi, in). 

           (4) 

Equations 11-5 and 11-6 (herein Eqs. 5 and 6, respectively) provided a detailed approach to 
account for the moment and shear interaction and their effect on the concrete contribution as 
follows: 

       √  
        

   

  
        √  
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In the case that Mm is negative, it is permitted to use the upper bound of Vc as the concrete 

contribution. For spirally reinforced columns, Vs is multiplied by (sin  + cos ), where  is the 
angle between inclined stirrups and longitudinal axis of the member. Nonetheless, the most 
recent ACI-318-14 (2014), eliminated accounting for Mm as an optional additional step, while 
keeping Mu instead. It also kept Equation 22.5.6.1 (formerly 11-4), which accounts for the effect 
of axial load as follows: 

    (  
   

      
) √  

     (8) 

Priestley et al. (1994) presented a model that takes into account the displacement ductility, 
defined by the ratio of the ultimate displacement at failure to the displacement at yield. This 
ratio is used to define a modification factor that reduces the predicted shear strength of the 
column. Priestley et al. (1994) divided the strength calculation into three parts: a concrete 
contribution, Vc; a steel contribution, Vs; and an axial load contribution, Vp. These equations are 
presented as follows: 

              (9) 
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where k depends on the member displacement ductility level and the system of units chosen 
(megapascals or pounds per square inch) as well as on whether the column is expected to be 
subjected to uniaxial or biaxial ductility demand. In Equation (10), the effective shear area is 
taken as Ae = 0.8 Ag for both circular and rectangular columns. Figure 2, provided by Priestley et 
al. (1994), is used to determine k values. In Equation (12), D' is taken as the distance between 
the very outer peripheral loops or spirals of transverse reinforcement, center to center, or (d - 

d)' by some notation. For circular columns, Vs is multiplied by 
 

 
, and   is taken as the overall 

diameter. 

 
Fig 2. Degradation of concrete shear strength with ductility (Priestley, et al., 1994). 

The third model, evaluated for its capacity to predict shear strength, is a model recently 
proposed by Moehle et al. (2002). This model also recognizes a degradation of shear strength as 
a result of cyclic loading. However, in contrast to the presentation by Priestley et al. (1994), this 
model applies the shear degradation factor to both the concrete and steel contributions to shear 
strength. Doing so results in a more accurate model, as is evidenced by the data. Moehle’s 
equations recognize steel and concrete contributions as separate as well, with the axial load 
contribution taken into account in the concrete contribution term. 
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In circular columns, D' in Equation 16 is taken as (diameter – 2 × cover). 

The above models were tested on a database of 120 columns consisting of 65 spirally reinforced 
circular or octagonal cross-sections and 55 rectangular sections. Octagonal cross-section 
columns were approximated as circular sections, since the small difference in the concrete area 
is negligible. 

Evaluation of the existing shear strength models for RC columns is shown in Figures 3 through 5 
as well as Table 1. Despite the fact that ACI 318-11 does not account for shear degradation under 
cyclic loading, results are split fairly evenly between over-prediction of shear strength and a 
conservative prediction, as shown in Figure. However, there are several cases where shear 
strength has been greatly over-predicted, for example, in the case of Priestley et al. (1994), 
where the equations greatly over-predict the shear strength of almost all specimens, as shown in 
Figure 4. This may be attributed to the lack of application of the shear degradation factor to the 
steel contribution or to the over-estimation of the concrete contribution to shear resistance. 
Moehle’s return to the classical Ritter-Mörsch truss analogy of a 45-degree angle seems to be the 
most conservative, especially with the shear degradation factor applied to the steel contribution, 
as illustrated in Figure 5. 

Table 1. Statistical Performance of Existing Shear Strength Equations. 

 
Rectangular Columns 

 
Circular Columns 

 
 

Vrexperimental / VrCalculated 
  

Vrexperimental / VrCalculated 

Method AAE (%) Average SD CoV (%) 
 

AAE (%) Average SD CoV (%) 

Moehle et al. (2001) 46.6% 1.76 0.92 52.4% 
 

42.1% 2.12 3.33 157.5% 
Priestley et al. (1994) 99.3% 0.63 0.27 42.8% 

 
82.4% 0.71 0.40 56.9% 

ACI-318-14 eq. 
[22.5.6.1] 

46.5% 0.85 0.35 40.5%  28.2% 1.14 0.35 30.5% 

 

 
Fig 3. Experimental vs. calculated column shear strength, according to ACI 318-14 (2014) Equation 22.5.6.1. 
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Fig 4. Experimental vs. calculated column shear strength according to the Priestley et al. (1994) model. 

 

 
Fig 5. Experimental vs. calculated column shear strength according to the Moehle et al. (2002) model. 

The statistical performance of the three approaches presented in this paper, shown in Table 1, 
indicates that the ACI approach is quite acceptable, taking into account that it is a design 
standard that needs to conform to a wide range of applications. 

6. ANN Model 

Hundreds of neural network architectures were created and tested, and the top performing 
networks for circular and rectangular columns were selected. Selection criteria were based on 
the best fit to the data as well as the lowest absolute mean error. The networks were trained 
with a subset of the original data. This subset, chosen at random by a Gaussian distribution 
function, consisted of half the specimens available in the database. The other half was reserved 
to test the performance of the network. Figures 6(a) and 6(b) illustrate the networks for 
rectangular and circular columns, respectively. 
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For rectangular columns, seven input variables were provided to predict the shear strength of 
the member. These variables are shown in Table 2.  Table 3 illustrates relevant statistical data 
for each of the top ANN models for rectangular columns. Network NN-321 had the best 
correlation to the results, and an error mean that leaned more towards the conservative side of 
prediction, which is preferable. 

  

Fig 6. ANN model architecture for (a) NN-321 (rectangular columns) and (b) NN-149 (circular columns). 

For circular columns, the same input variables were used to train the networks, with the 
exception of bw and d, and the addition of the column diameter, D, bringing the total number of 
input variables for circular columns to six. Table 3 illustrates the pertinent properties and 
information about the structure and statistical data of the top ANN model for circular columns. 
The ANN models used for predicting the shear strength of circular columns were not as robust 
and efficient, and did not achieve the same confidence in the results as did the rectangular ANNs. 
However, the confidence was still significantly greater than the previously presented empirical 
equations. 

Table2. ANN Input Variables for Rectangular Columns. 

Input Variable Notation Units Comments 

Column Base    length  

Effective Depth   Length 
Distance from extreme compression fiber to 
centroid of longitudinal tension reinforcement 

Axial Load Contribution 
 

  √   
 unitless  

Aspect Ratio 
 

 
 unitless  

Displacement Ductility   unitless 
Ratio of ultimate displacement at failure to 
displacement at yield 

Longitudinal Reinforcement 
Ratio 

   unitless 
Area of longitudinal reinforcement divided by gross 
concrete area 

Volumetric Transverse 
Reinforcement Ratio 

   unitless  

 

(b) (a) 



72 Said and Gordon, J. Build. Mater. Struct. (2019) 6: 64-76  

 

 

ANN model NN-149 performed the best out of a large number of evaluated ANN models. 
However, NN-149 had trouble predicting shear strength for columns identified as high outliers. 
This is typical for many of the properties, especially in ANN modeling, where confidence in the 
results becomes dependent on the number of test specimens from the database used for training 
within that range. For that reason, it is recommended that the models are only used within the 
range of parameters that they are used in training. 

Table 3. ANN Properties and Performance Data for Rectangular and Circular Columns. 

Network NN-321 
(Rectangular Columns) 

NN-149 
(Circular Columns) 

Data Mean 158.74 253.68 
Data S.D. 113.26 130.08 
Error Mean 2.325 2.133 
Error S.D. 14.703 29.609 
Abs E. Mean 9.635 21.719 
S.D. Ratio 0.129 0.974 
Correlation 0.992 2 
# of Hidden Layers 2 10 
# Hidden Units, Layer 1 15 7 
# Hidden Units, Layer 2 13 --- 

 

7. Results and Discussion 

In the prediction of shear strength for RC columns under cyclic loading, neural networks prove 
to be a very valuable tool due to the extremely non-linear nature of the parameters involved 
contributing to shear strength and the complexity of their interaction. Neural networks extend 
beyond the typical realm of empirically based equations, but have the important requirement of 
computing power and a meaningful database to predict the shear strength of columns.  

Neural networks can be retrained when new data become available, and actually ‘learn’ how to 
predict the shear strength based on all available information, just as humans can. Such capacity 
makes ANNs very beneficial in the seismic design of structures. 

7.1. Rectangular Columns 

For rectangular columns, the best performing ANN model was capable of predicting the shear 
strength of concrete columns significantly better than existing models in the literature. Results 
displayed in Figure 7 shows data points mostly around the 45 line; this is in clear contrast to 
the results shown in Figures 3 through 5.  

Results listed in Table 3 show the capacity of the network to estimate the shear strength of 
columns accurately for the wide range of parameters studied. Figure 8 shows the ratio of 
experimental to calculated column shear strength plotted against the range of several 
parameters. While most data points are close to the unity line, point clustering is quite common.  

Accordingly, it is recommended that new tests target new values of parameters, thus improving 
the performance of ANN models as well as other models in the literature. 
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Fig 7. Experimental vs. calculated column shear strength according to the proposed ANN model for 

rectangular columns. 

  

  

 

Fig 8. Ratio of experimental-to-calculated column shear strength for the NN-321 model (rectangular 
columns), plotted against the range of various parameters. 
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7.2. Circular Columns 

For circular columns, the ANN model performance was hindered by the limited number of data 
points provided. Nonetheless, the ANN model was able to outperform other formulas in the 
literature, as seen in Figure 9. Furthermore, Figure 10 shows clustering of data for several 
parameters indicating that some parameters are repeatedly used at the same value, similar to 
rectangular columns. Figure 10(c) illustrates the need for high strength concrete column testing, 
since most tested column are below 40 MPa. It is also noteworthy that the majority of the 
estimated results were an underestimation. 

 
Fig 9. Experimental vs. calculated column shear strength according to the proposed ANN model for circular 

columns. 
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Fig 10. Ratio of experimental-to-calculated column shear strength for the NN-149 model (circular 
columns) plotted against the range of various parameters. 

8. Conclusion 

In the prediction of shear strength for RC columns under cyclic loading, neural networks proved 
that it can be a very valuable tool due to the extremely non-linear nature of the parameters 
involved contributing to shear strength of RC columns. Neural networks extend beyond the 
typical realm of empirically based equations, but have the necessary computing power to predict 
the shear strength of the column. Neural networks can be retrained when new data become 
available, and can actually ‘learn’ how to predict the shear strength based on previous 
information, just as humans can. This makes ANNs very beneficial in the seismic design of 
structures. 

For the prediction of the shear strength of rectangular RC columns, the ANN model NN-321 
proved to be the best candidate with the best fit to the data, while ANN model NN-149 was the 
best model for circular columns. Both models outperformed the existing models in the literature 
examined in this study. 

Nonetheless, neural networks have inherent limitation to their capability to predict shear 
strength of RC columns. ANN models are most accurate within the range of parameters used to 
train the network and accordingly, they should be cautiously outside the ranges of parameters. 
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