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Abstract.The Nonlinear F.E. code Structural Analysis Program (SAP) in which the primary 
nonlinear characteristics of bearings, impact elements and steel restrainer cables considered 
herein in order to investigate the dynamic analysis of a multi-span simply supported MSSS 
prestressed concrete bridge, equipped with steel restrainer cables and Lead Rubber Bearings 
LRB devices includingSoil Structure Interaction (SSI) effects. A MSSS bridge with restrainer 
cables and lead rubber bearings at the two abutments and intermediate bents located in 
North Algeria is selectedaccording to RPOA for seismic design category 1 is considered in 
this study.A detailed 3D nonlinear analytical model of study bridge subjected to three 
components identical seismic excitation includingpounding elements, restrainer cables and 
bearing devices at expansion jointsis developed. The nonlinear characteristics of theses 
boundary elements are represented by bilinear hysteretic models. Under strong seismic 
excitations, the large longitudinal displacementsresult the collision between bridge decks or 
even unseating of these decks at expansion joints of MSSS bridge. Finally,the study reveals 
among others that in order to prevent deck unseating resulting from restrainer failures and 
subsequent bridge collapse, particular attention should also be given to proper design of 
nonlinear characteristics of restrainers and bearing devices.  

Key words: Nonlinear F.E., Soil structure interaction, pounding elements, restrainer cables, 
lead rubber bearings 

1. Introduction 

The multi-span simply supported MSSS prestressed concrete bridgesare frequently used in 
highway bridgesrepresenting an essential component of transportation networks. This categorie 
of bridges presentsvarious advantages such as, fast construction, convenient manufacture and 
installation and their adjacent bridge decks are connected at expansion joints in order to 
accommodate temperature and deformations induced by shrinking and creep of prestressed 
concrete. Unfortunately, the expansion joints between adjacent decks or between deck and 
abutment become vulnerable components under severe ground motions, because of  the 
superstructure pounding which may induce the local failure of the deck itself and unseating 
damage. 

However, the MSSS highway bridge damages due to pounding impact at the expansion joints of 
girders and abutments and unseating have been particularlyobserved in several seismic events, 
(e.g. Wenchuan earthquake (Hung et al., 2008), Boumerdes earthquake (AFPS, 2003), Chi–Chi 
earthquake (Uzarski and Arnold, 1999), Kobe earthquake (Chouw,1995) and Northridge 
earthquake (Todd et al., 1994)). In particular, the Chi-Chi earthquake (1999) in Taiwan revealed 
hammering at the expansion joints in some bridges which resulted in damage to shear keys, 
bearings and anchor bolts (Uzarski and Arnold, 2001). Based on these observations, pounding 
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can cause crashing and spalling of concrete at the impact locations, result in damage to column 
bents, abutments, shear keys, bearing pads and restrainers, and possibly contribute to the 
collapse of deck spans. 

Many previous works have been conducted to investigatethe fragility of highway bridges under 
uniform ground motions (Shinozuka et al., 2003; Desroche and Muthamar, 2004; Hong et al., 
2019) and non uniform ground motions (Yang et al., 2018), they corroborated that the multi-
span simply supported MSSS prestressed concrete bridges are most vulnerable to pounding 
damage due to the discontinuity in the superstructure at multi-column bents. In particular, Hong 
et al. (2019) investigated the effect of the nonlinear impact on the longitudinal response of 
multi-span simply supported bridges under strong earthquakes and they concluded that the 
collision parameters affect the responses of the multi-span simply supported beam bridge 
subjected to ground motions. Further researches by Bi et al. (2013) and Yang et al. (2018) have 
also studied extensively the impact of spatially varying ground motions on the seismic response 
of bridges when pounding was either considered or not considered.  

In addition to above pratical justifications, the damage data of bridges have also illustrated 
thatthe bridge components structural performance may be very sensitive to 3D components of 
ground motions (Tiliouine and Ouanani, 2012) and foundation soil flexibility including 
abutment–backfill soil (Ouanani and Tiliouine, 2017).  

This paper presents some results from an exhaustive investigation carried out on the dynamic 
analysis of amulti-span simply supported MSSS prestressed concrete bridge equipped with 
retrainers and seismic isolation devices at expansion joints and abutments including Soil 
Structure Interaction (SSI) effects. In this context, The nonlinear time history analyses using 
detailed 3D Finite Element Model FEM of a MSSS bridge located in North Algeria are performed 
to assess the performance of the steel restrainer cables and Lead Rubber Bearing devices LRB 
under the 3D components of severe seismic excitation. Nonlinear characteristics of the impact 
and restrainer elements at expansion joints and bearing devices at the seat-abutments and 
intermediate bents of study bridge are represented by nonlinear hysteretic models. These 
nonlinear properties are considered in the dynamic analysis of amulti-span simply supported 
concrete bridge. These considered nonlinearities include the width of expansion joint, the 
impact stiffness of colliding spansand the longitudinal stiffness of the bearing device in the 
seismic analysis in order to predict or to avoid the collision damages in bridge structures. In 
order to include the SSI effects, the effective stiffness, foundation soil damping at the base of the 
spread footings have been evaluated using procedure guidelines (FEMA, 2000).  

2. Description and 3-D nonlinear analytical modelind of MSSS prestressed 

concrete bridge 

2.1. Description of MSSS prestressed concrete bridge 

Fig. 1 shows details of typical MSSSpre-stressed concrete girder bridge located on the East-West 
highwayjoining the BouiraCity in Eastern Algeria.  The bridge consideredin this study isstraight 
with slope of 4.60% and consists of a three discontinued decksreinforced concrete of 13.1 m 
wide and equal length of 35.85m (Figures. 1(a), 1(b))and supported by seven prestressed 
concrete T girders (Figure 1(c)). 

The bridge with an overall length of 107.77m is supported on multi-column bents of equal 
height of 19.3m and two seat-type abutments.Each column has a circular cross-section             
with 1.8 m diameter (Figure 1(d)). 

The bridge consists of four expansion joints in steel of type Wd110, located on the two Multi-
column bentsand the two abutments. Each pre-stressed concrete T-shaped girder is supported 
at abutments and bents by the Lead Rubber Bering device LRB. 

https://link.springer.com/article/10.1007/s11803-003-0001-0#auth-1
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Fig 1. General description of MSSS prestressed concrete bridge. 

2.2. 3D nonlinear analytical modeling of MSSS prestressed concrete bridge 

The MSSS bridge with steel restrainer cables and lead rubber bearings at two abutments and 
intermediate bents considered in this study is analytically modeled as a lumped mass system. 
Thus, a 3D nonlinear analytical model of a bridge is developed using the Nonlinear F.E. code (CSI 
Bridge, 2015). The superstructure and multi-columns bents of bridge are modelled as elastic-
beam elements, while bridge additional connecting components such as the expansion joints 
that represent pounding elements aremodelled by linear spring elements, while the lead rubber 
bearings and restrainer cables are modelled by nonlinear springelements accounting the energy 
dissipation under strong motion. 
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2.2.1 Analytical modeling of restrainer cables elements 

Restrainer cable elements are devices which permitthe limitation of the deck longitudinal 
displacement and relative hinge openings in order to prevent unseating of bridge spans, or as 
fail-safe mechanisms to support bridge decks in case of unseating. They are often employed in 
bridges with insufficient seat widths and placed at the hinge locations at the deck abutment and 
deck-bent cap interfaces in the (MSSS) bridge considered herein. In general, the restrainer 
cables are employed in order to avoid unseating of the superstructure at the expansion 
joints.The restrainers alter the behavior of adjacent spans by transferring forces as the span 
opening exceeds the slack in the cable. Three types of restrainers are used in order to assess the 
seismic performanceofaMSSS bridge: the steel restrainer cables (SRC), the Shape Memory Alloy 
(SMA) bars in tension (SMA-T), and the SMA bars in bending (SMA-B) (Desroches and Delemont, 
2002; Tazarv and Alam, 2018). 

For the considered bridge, the SRC devicesconnecting the adjacent spans at the expansion 
jointsas shown in Fig. 1(b) are used herein in order to investigate the dynamicanalysis of a 
multi-span simply supported MSSS.  

2.2.2 Analytical modeling of pounding elements 

Two analytical methods are available for simulating the highly nonlinear behavior of pounding 
at the interfacesspan-abutment and span-span; the stereo mechanicalmethod and that of the 
contact element. The latter is activated when the collision occurs between decks/abutments and 
deck/deck of the bridge.The spring stiffness of pounding elementsis fixed proportionally to the 
axial stiffness of the neighboring structural segments, sometimes in combination with a damper 
(Kawashima and Shoji, 2000; Hong et al., 2019), the spring stiffness, Kgap is expressed as: 

       
  

 
                                                                                                                                                               

where EA represents the axial stiffness of the cross-section of the superstructure, L  is the length 
of the superstructure’s element, and   is the ratio of impact spring stiffness to that of the 
superstructure.  

The gap provided at the expansion joint is 11cmand adjacent spanscollision develop 
compressive forces when the relative displacement exhausts this gap width. It is modelled by the 
Kelvin model with stiffness KGap = 45.87x106 KN/m. The compressive forces (  ) for this model 

are expressed as follows (Desroche and Muthamar, 2004; Hong et al., 2019): 

                                 ( ̇)                                                                                     

                     Otherwise,         

  is given as. 

         ;  

 ̇    ̇    ̇                                                                                                                                                                 

where   and    are the displacements of nodes i and j respectively, gap is separation between 

these nodes,  ̇  and  ̇are the velocities of nodes i and j respectively.  

The dashpot constant of the Kelvin model is calculated using these formulas 

     √(  

    

      
)                                                                                                                                        
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where m1 and m2are the masses of the two impacting bodies, the constant (e) is the coefficient of 
restitution, for which the value is 1 for completely elastic impact and 0 for completely plastic 
impact (e.g. Anagnostopoulos and Spiliopoulos, 1992). 

2.2.3 Analytical modeling of LR Bearing devices 

Bridgesseismic isolation with Lead Rubber Bearings (LRBs) devices is an effective technique to 
passively reduce the seismic responses of the bridge. The LRB devices have a nonlinear behavior  
which may be idealized by a hysteretic bilinear model (see Figure 2).  

 
 

Fig 2. Characteristic curve of the LRB system: hystereticbilinear model. 

The principal parameters that characterize the LRB analytical model are the elastic stiffness K1, 
corresponding to combined stiffness of the rubber bearing and the lead core, the stiffness of the 
rubber K2, and the yield force of the lead core Fyield. 

The characteristic strength, Q can be accurately estimated as being equal to the yield force of the 
lead core.Flim and dlimare respectively maximum force and maximum bearing displacement, Keff is 
effective stiffness of the LRB. 

As a rule of thumb for lead-rubber isolators K1is taken as 10K2, (FEMA, 2000; Xu Chena and  
Chunxiang, 2020). 

The Table 1 reportes the parameter values adopted in this study of the LRB analytical modelin 
the longitudinal and lateral directions for a design displacement equal to 0.08m. 

Table 1. Parameters of the bilinear model for LRB 
 
 
 
 
 

2.2.4 Analytical modeling of dynamic soil structure interaction 

The complex dynamic impedance Z of the soil foundation is expressed as (e.g. Gazetas, 1991; 
Wolf, 1997): 

                                                                                                                                                                     

Direction 
K1 

(KN/m) 

K2 

(KN/m) 

Keff 

(KN/m) 

Q  

(KN) 

Fyield 

(KN) 
C 

Longitudinal and lateral 1634 163.4 357.65 15.50  85.33 

Q 

Fyiel 

Keff  

K2 

K1 K1 

Displacement , (D) 

dlim 

Flim 

Force, (F)  



110 Ouanani, M. et al., J. Build. Mater. Struct. (2020) 7: 105-118  

 

 

where K and    are real and imaginary parts of the dynamic impedance complex function, the 
damping coefficient C expresses the radiation that arise from waves emanating away from the 
foundation soil. Table 2 summarizes the relationships expressing the static stiffnesses of springs 
and damping coefficients corresponding to the six degrees of freedom at the base of the supports 
of bridge piers. (e.g. Ouanani and Tiliouine, 2015; Gazetas, 1991). 

Table 2. Dynamic impedance complex function of foundation soil 

 

 

 

 

 

 

 

 

 

 

 

In Table 2,   ,   ,   ,    ,     and     are equivalent radii forarectangular foundation with 

dimensions L and B (L: long side dimension; B: short side dimension) (e.g. Fema 273, 1997; 
Gazetas, 1991; Wolf, 1997; Yohchia, 1997). 

  represents the Poisson’s coefficient, whereas   and   
  designate the effective shear modulus 

and the effective shear wave velocity consistent with soil type and PGA design value. 

The 2D-FEnonlinear analytical modelin the longitudinal direction of MSSS bridge modelled as 
lumped massas well as its connection components are detailed in Figure 3. 

 

 
Fig 3. Detail’s2D-FE non linear analytical model in the longitudinal direction of the MSS bridge and its  

Components 

3. Modal Analysis of aMSSS prestressed concrete bridge- foundation soil system 

For free vibration response analysis of a MSSS prestressed concrete bridge-foundation soil 
systems, the soil structure Interactionis essentially controlled by foundation soil flexibility 
which in turn is dependent onproperties of foundation soil. 

In this study,the soil corresponding to the actual condition site construction for the considered 
bridge issoil type S2 (firm site) in accordance with RPOA (2008); the weight density  = 
21KN/m3; Poisson’s ratio  = 0.40 and initial shear wave velocity Vs = 400m/s.  
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Moreover, the equivalent stiffness and damping coefficients of foundation soil are determined 
under a simulated accelerogram with PGA equal to 0.275g. The PGA consistent reduction factors 
for the effective shear modulus G/Go and the effective shear wave velocity   

     are determined 
using a computer program (SHAKE) for earthquake response analysis of horizontally layered 
sites Schnabel et al. (1976). 

The associated values of coefficients of stiffness and viscous damping foundation soil have been 
evaluated for soil type S2 (firm site) with G/Go = 0.55 and   

     = 0.55.  

Table 3.Effective stiffness and effective damping constants of foundation soil. 

In this study, numerical techniques (e.g. Wilson, 2002; Chopra, 2011) have been performed in 
order to identify the dynamic characteristics of the MSSS prestressed concrete bridge. 

Table 4 lists the first eleven modal periods and the modal participation factors as well as the 
corresponding mode types denoted herein by L for lateral, Lg for longitudinal, V for vertical 
directions and T for torsional vibrations for the coupled bridge structure-foundation soil system. 

In addition, the first 3-D modal characteristics of lateral, vertical, longitudinal and torsional 
vibrations of both symmetrical (S) and unsymmetrical (AS) higher modes of the bridge have 
been identified. A 3-D graphical representation of the corresponding mode shapes is presented 
in Figure 4. 

Table 4. Modal periods and participation factors vibration modes 

From Table 4, it is clearly observed that the first three modes of vibration are longitudinal, 
which leads to a dynamic analysis in the longitudinal direction (i.e. in the most critical direction) 
of a multi-span simply supported MSSS prestressed concrete bridge equipped with restrainers 
and seismic isolation devices at expansion joints and abutments including Soil Structure 
Interaction (SSI) effects. 

Rectangular spraed 
footings 

 
Translational stiffness  (KN/m) Rotational stiffness   KN  /rd) 

L(m) B(m) e(m)   3   2   1    3    2    1 

13.2 6.4 1.8 9277264 9055319 9717088 299229684 101021483 259074216 

 

Translational damping  (KN.s/m) damping rotationnel (KN.m.s/rd) 

                     

63027 63027 109612 848832 199542 629024 

Modal 
orders 

Period 
(sec.) 

Particiaption 
factors(%) 

Mode types 

  X-X Y-Y Z-Z R-X  
1 3,445 64,8 0 0 0 First-order  Symmetric (S) Longitudinal vibration (Lg) 
2 3,398 0 0 0 0 First Anti symmetric (AS) Longitudinal vibration (Lg) 
3 3,373 6,7 0 0 0 Second-order  Symmetric (S) Longitudinal vibration (Lg) 
4 3,184 0 57,2 0 0,1 First-order  Symmetric (S) Lateral vibration (L) 
5 2,518 0 0 0 0 First-order  Antisymmetric (AS) Lateral vibration (L) 
6 0,504 0 0 56,4 0 First-order  Symmetric (S) Vertical vibration (V) 
7 0,502 0 0 0 0 First-order  Antisymmetric (AS) Vertical vibration (V) 
8 0,500 0 0 0,1 0 Second-order  Symmetric (S) Vertical vibration (V) 
9 0,476 0 10,1 0 0,1 Coupling modes of L and T vibrations 

10 0,473 0 0 0 0 First-order  Antisymmetric (S) Torsional vibration (T) 
11 0,468 0 0,8 0 3,2 First-order  Symmetric (AS) Torsional vibration (T) 
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Fig 4.  3-D graphical representation of the mode shapes of both symmetrical (S) and unsymmetrical (AS) 
fundamental modes of vibration of the MSSS bridge 
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4. Dynamic analysis of  a MSSS prestressed concrete bridge- foundation soil 
system 

In the second part of this study, the previous work is now extended to assesthe dynamic analysis 
of a MSSS prestressed concrete bridge with restrainers and seismic isolation devices including 
foundation soil flexibility subjected to a stochastically simulated earthquake based on the design 
spectrum for the soil type S2 (firm site) in accordance with RPOA(2008). 

Figure 5 show the simulated ground motion compatible with a design spectrum RPOA(2008)  
scaled by a factor of 2 (i.e. PGA = 0.55g). 

Fig 5.  (a) Simulated ground motion, (b) Response spectra and design spectrum RPOA(2008) of the simulated 
ground motion 

For time history analysis of the study bridge response, the mass and stiffness proportional 
Rayleigh damping coefficients were determined considering the first two modal periods 
assuming a 5% viscous damping ratio. 

The dynamic equations of motion are solved numerically using Newmark’snumerical method 
(Zienkiewicz and Taylor, 2005; Newmark, 1962). 

4.1. Effect of pounding on the gap relativedisplacement 

The absolute maximum gap relative displacements of expansion joints at abutments and at 
intermediate bentsof the MSSS bridge with and without completely elastic pounding are 
determined in the longitudinal direction (i.e. in the most critical direction). The results obtained 
are reported in Table 5. 

Table 5.  Effect of pounding on the absolute maximum gap relative displacements (m) of the girders. 

From Table 5 it is clear that the absolute maximum gap relative displacement is larger at 
abutment expansion joints, especially in the corner girder. By comparing the pounding effects, 
we can also see that the absolute maximum gap relative displacements are reduced at 
abutments and amplified at bents when the pounding effects are considered. 

For illustration purposes, the time history responses of bridge in term of relative displacements 
without and with pounding are depicted in Figures 6(a) for expansion joints of abutments and in 
6(b) for expansion joints of intermediary multi-column bents of the study bridge.   

Locations Abutment expansion joints Multi-column bents 

Girders locations Corner Intermediary Central Corner Intermediary Central 
Without pounding 0.2054  0.2036 0.2000 0,0301 0,0252 0,0175 

With pounding 0,1108 0,1029 0,1015 0,0389 0,0347 0,02553 

Time (sec.) 
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It observed that the pounding effects generally lead to a decrease in gap relative displacements 
at the joint expansions of abutments (see Figure 6(a))  and an increase at the expansion joints of 
bents (see Figure 6(b)). 

 

 

4.2. Effect of pounding on the peak LRB  shear strain 

The maximum shear strains in the longitudinal direction of lead rubber bearings LRB located at 
abutments and multi-column bents of the MSSS bridge with and without pounding are given in 
Table 6 below.  

Table 6.  Effect of pounding on the maximum shear strain of lead rubber bearings (in %) 

It is seen that the maximum values of bearings shear strain located on abutments and multi-
columns bent are more prounced when the pounding effects are negleted.   

Moreover and for the purpose of illustration, Figures 7(a) and 7(b) below show the time-history 
response in the longitudinal direction of LRB seismic isolation devices at abutment back wall 
and multi-column bents. 

Fig. 7. Time history response of shear strain response of LRB seismic isolation device at abutments (a) multi-
columns bent (b) of bridge model.  

4.3. Effect of restrainer on the relative displacement of expansion joints 

The restrainers used in seisimic design of the study bridge are steel cables. The latters are 
modelled as a multi-linear model with strain hardening andthe axial forces are generated when 
restrainers get engaged by loosing the initial slack of 15mm. The yield force of restrainers is 

Locations Abutment expansion joints Multi-column bents 

Girder locations Corner Intermediary Central Corner Intermediary Central 
Without pounding 413 409 377 442 440 435 

With pounding 244 241 303 245 248 252 

Time (sec.) 

 

 

Fig 6. Time history response of absolute maximum relative displacement; (a) Expansion joints of 
abutments, (b) Expansion joints of intermediate multi-column bents 
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2640 KN/m and initial modulus of elasticity is equal to 69000 MPa. The initial stiffness of the 
restrainers of 30 kN/mm and a strain hardening of 5% is assumed. 

Figure 8 below, depict the temporal variations of relative displacements of expansion joints at 
abutments and intermediate multi-column bents of the MSSS bridge with and without 
restrainers.  

 

Fig 8.  Time history response of absolute maximum relative displacement; (a) Expansion joints of abutments, 
(b) Expansion joints of intermediary multi-column bents 

From Figure8(a) it is seen that the values of relative displacements of expansion joints of 
abutments are reduced (indicated by the dash-dotted line) when using the restrainers combined 
with pounding elements and seismic isolation bearings.Similar trends are observed in the 
expansion joints of intermediary multi-column bents (see Figure 8(b)).  

We can summarize that the restrainers could control the expansion joint opening deformation 
and secure the unseating of the bridge deck on the expense of the increase of shear and moment 
seismic demand of the supporting pier at the expansion joint. 

4.4. Effect of restrainer on the shear strain response of LRB seismic isolation device 

In order to understand the influence of restrainer cables on the LRB seismic isolation device 
response in the longitudinal direction for study bridge under simulated earthquake, shear 
strains time variations for these isolators at abutments and bents are plotted in Figure 9. 

 
Fig 9. Time history response of shear strain response of LRB seismicisolation device of bridge model (a) at 

abutments (b) at multi-columns bent. 

From Figure 9(a) it is observed that, there is a significant reduction of LRB isolators shear 
strains at abutments due to the application of restrainer cable system. The bearing peak shear 
strain at abutment locations is found to be 240% for bridge without the restrainer cables, while 
it is equal to 132% for bridge with restrainer cables which corresponds to significant decreases 
of 45% when the restrainer cables system is considered. Similar conclusions can be drawn for 
LRB isolators shear strainsat multi-columns bents Figure 9(b). 

Therefore, the restrainer cables tend to reduce the earthquake forces induced in the 
seismicisolation system of a multi-span simply supported bridge. Under extreme seismic 
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excitations, the maximum bearing shear strain is a quantity of prime interest in the seismic 
design of bridge structures because if it exceeds certain limits, the bearings may fail resulting 
into the bridge collapse.  

4.5. Effect of restrainers on pounding forces 

The gap element is provided to take care of pounding effects between the abutment-deck and 
deck-deck. The initial gap provided in the gap element is 0.10 m and pounding develops the 
compressive forces at the interfaces when the relative displacement exhaust this initial gap 
width. It is modeled by introducing a linear spring with stiffness KGap = 3790622 KN/m at 
abutments and equal to 1895511 KN/m at bents. 

To investigate the effect of restrainer cables on the pounding response at deck-abutment and 
deck-deck interfaces of MSSS bridge, the temporal variations of the pounding forces without and 
with restrainers are presented in Figure 10. 

Fig 10. Time history response of pounding forces of bridge model(a) at abutments (b) at multi-columns bents. 

From Figure 10 (a), it can be noticed that the restrainer cables reduce significantly the values of 
pounding forces at the interface of abutment-deck of study MSSS bridge. The maximum 
pounding force is found to be 41064kN for bridge without restrainers, while it is equal 18646kN 
when the bridge spans are connected with restrainer cables system. Similar conclusions can be 
drawn for pounding forces at multi-columns bents (see Figure 10(b)). From the same Figure, it is 
seen that, there is a substantial 23% reduction in the peak pounding forces at multi-columns 
bents due to restrainer cables effects. 

It can be concluded that the maximum pounding force at expansion joints of a multi-span simply 
supported MSSS concrete bridge is obviously reduced using restrainer cables system. 

5. Summary and Conclusions 

In this paper, an extensive numerical investigation on the dynamic analysis of a multi-span 
simply supported MSSS prestressed concrete bridge with expansion joints and lead rubber 
bearing devices including foundation soil flexibility effects are presented. In this context, the 3D 
Finite Element Model FEM of a MSSS bridge subjected to a 3D components of severe seismic 
excitation is performed in order to assess the performance of steel restrainer cables and Lead 
Rubber Bearing devices LRB. The Nonlinear hysteretic models characterizing the seismic 
behavior of various bridge components (including expansion joints and bearing devices) are 
considered.  

The effects of restrainer cables and pounding forces on the MSSS bridge behavior are discussed, 
and the following conclusions are drawn: 

1. The first three dominant modes of the bridge are in the longitudinal directions which to 
assess a dynamic analysis in this direction (i.e. in the most critical direction). 
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2. Pounding effects generally lead to a decrease in gap relative displacements at abutment joint 
expansions and increase at bent expansion joints. 

3. The computed maximal shear strainsof LRB in the longitudinal direction are more prounced 
when the pounding effects are negleted. 

A comparative assessment of behaviour of expansion joints, lead rubber bearing devices and 
steel restrainers components showsthat under this study: 

i. The restrainers could control the expansion joint opening deformation and secure the 
unseating of the bridge. 

ii. The steel restrainer cables tend to reduce the earthquake forces induced in the seismic 
isolation devices LRB of a multi-span simply supported bridge. 

iii. Under extreme seismic excitations, the peak shear strain at bearing devices is a quantity of 
prime interest in the design of bridge structures because if it exceeds certain limits, the bearings 
may fail resulting into the bridge collapse. 

iv. The maximum pounding forces at expansion joints of a multi-span simply supported MSSS 
concrete bridge are obviously reduced using restrainer cables system. 

It follows that in order to ensure an acceptably safe structural performance of aMSSSprestressed 
concrete bridge with expansion joints and seismic isolationsystem LRB at abutments, due 
consideration should be given at design stage to: 

 Sound evaluation of distortion limits of seismic isolation bearings LRB at expansion joints 
and the restrainers components capacities at expansion joints. 

 Using restrainers combined with the seismic isolation systems at bridge expansion joints 

could be an effective method of reducing the large pounding forces and preventing unseating 

damage. 
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