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Abstract: The current work investigates the effect of thickness stretching on the natural 
frequencies of laminate-faced sandwich plates using new layerwise finite element model. 
The proposed model assumes higher-order displacement field for the core and first-order 
displacement field for the face sheets. Thanks for enforcing the continuity of the interlaminar 
displacement, the number of variables is independent of the number of layers. The consistent 
mass matrix and the element stiffness matrix are derived using the Hamilton’s principle. The 
performance and reliability of the proposed formulation are demonstrated by comparing the 
author’s results with those obtained using the three-dimensional elasticity theory, analytical 
solutions and other advanced finite element models. 
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1. Introduction 

Composite sandwich structurers provide high performance and reliability due to their low 
weight, high stiffness and high strength properties. As a result, composite structures, such as 
sandwichs plates, will continue to be widely used for many years in the engineering fields such 
as civil, naval, aerospace and construction industries. Despite the many advantages of sandwich 
structures, their behavior becomes very complex due to the large variation of rigidity and 
material properties between the core and the face sheets. 

Different plate theories have been proposed to study the behavior of sandwich structures. These 
plate theories may be grouped as equivalent single layer (ESL) approach (where all the layers 
are referred to the same variables) and layerwise (LW) approach. The ESL approach can be 
divided into three major theories, namely: (1) the classical laminated plate theory (CLPT); (2) 
the first order shear deformation theory (FSDT); and (3) the higher order shear deformation 
theories (HSDT).  

However, ESL approach fail to capture precise the local behavior of sandwich structures. This 
drawback in ESL was circumvented by the layerwise theories in which the displacements are 
assumed at the mid surface of each laminate and maintaining the continuity of the 
displacements at the layer interface (Pandey & Pradyumna, 2015). 

In the finite elements (FE) development, many researchers have adopted the LW approach for 
the sake of a good description of sandwich structures (Belarbi & Tati, 2015; Belarbi et al., 2016; 
Belarbi & Tati, 2016). On this topic, we can distinguish the work of Nabarrete et al. (2003), 
where a 3D layerwise FE model is developed for free vibration analysis of sandwich plates. They 
used the FSDT to model the face sheets and the HSDT was adopted to model the core. Desai 
(Desai et al., 2003) developed an eighteen-node layerwise mixed brick element with 108 
degrees-of-freedom (DOFs) for the free vibration analysis of multi-layered thick composite 
plates. Later, an eight nodes quadrilateral element having 136 DOFs was developed by Araújo et 
al. (2010) for the analysis of sandwich laminated plates with a viscoelastic core and laminated 
anisotropic face layers. The construction of this element is based on layerwise approach where 



 Belarbi et al., J. Build. Mater. Struct. (2019) 6: 88-96 89 

 

 

the HSDT is used to model the core layer and the face sheets are modeled according to a FSDT. 
Elmalich & Rabinovitch (2012) have undertaken an analysis on the dynamics of sandwich plates, 
using a C0 four-node rectangular element. The formulation of this element is based on the use of 
a new layerwise model, where the FSDT is used for the face sheets and the HSDT is used for the 
core. More recently, Pandey & Pradyumna (2015) presented a new higher-order layerwise plate 
formulation for static and free vibration analyses of laminated composite plates. A high order 
displacement field is used for the middle layer and a first-order displacement field for top and 
bottom layers. The authors used an eight-noded isoparametric element containing 104 DOFs to 
model the plate.  

The goal of this work is to propose a new 2D layerwise FE formulation for free vibration 
analyses of multi-layered sandwich plates. Unlike layerwise models, the number of variables in 
the present model is independent of the number of layers. The results obtained from this 
investigation will be useful for a more understanding of the free vibration behavior of sandwich 
laminates plates. 

2. Mathematical Formulation 

Sandwich plate is a structure composed of three principal layers as shown in Fig.1, two face 
sheets (top-bottom) of thicknesses ( )th , )(h

b
 respectively, and a central layer named core of 

thickness  hc  which is thicker than the previous ones. Total thickness  h  of the plate is the 

sum of these thicknesses. The plane  ,  x y  coordinate system coincides with mi-plane plate.  

 
Fig 1. Geometry and notations of a sandwich plate. 

In the present model, the HSDT is adopted for the core layer. Hence, the displacement field is 
written as a third-order Taylor series expansion of the in-plane displacements in the thickness 
coordinate, and as a constant one for the transverse displacement: 
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where 
00 0,   and u v w  are in-plane and transverse displacement components at the mid-plane of 

the sandwich plate, respectively.  and c c

x y  represent normal rotations about the x and y axis 

respectively. The parameters ,  ,   and c c c c

x y x y     are higher-order terms the Taylor’s series 

expansion. 

2.1. Strain–displacement relations 

The kinematic relations for the core are given by: 
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2.2. Displacement field of the face sheets  

The face sheets are modeled using the FSDT. The compatibility conditions as well as the 
interlaminar displacement continuity (face sheets/core), leads to the following improved 
displacement fields:  

Top face sheet 
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Bottom face-sheet 
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2.3. Strain –displacement relations 

The kinematic relations for the top face sheet can be written as follows:   
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The same steps are followed to elaborate the strain-displacement relationships of the bottom 
face sheet. 

2.4. Constitutive Relationships 

In this work, the two face sheets (top and bottom) are considered as laminated composite. 
Hence, the stress-strain relations for kth layer in the global coordinate system are expressed as: 
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The core is considered as an orthotropic composite material, and the stress-strain relationships 
can be defined as follows: 
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The efforts resultants of the core are obtained by integration of the stresses through the 
thickness direction of laminated plate. Hence, the constitutive equations can be written in the 
following contracted form: 
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where the components of the reduced stiffness matrices of the core are defined by: 
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According to the theory FSDT, the constitutive equations for the face sheets are: 

  

0

0   

0 0

f f f

m

f f f

f

f

c

f

c

f

f

f
A B

D

A

N

M

T

B









     
    
    
    
     

 (10) 

 



92 Belarbi et al., J. Build. Mater. Struct. (2019) 6: 88-96  

 

 

3. Finite Element Formulation  

In the present study, a C0 four-node isoparametric element, named QSFT52 (Quadrilateral 
Sandwich First Third with 52-DOF), with thirteen DOF per node has been developed. Each node 
contains: two rotational DOF for each face sheet, six rotational DOF for the core, while the three 
translations DOF are common for sandwich layers (figure 2). 

 

Fig 2. Geometry and corresponding degrees of freedom of the QSFT52 element. 

The displacements vectors at any point of coordinates (x, y) of the plate are given by: 

where   
                                          

T
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u v w            is displacement vector corresponding 

to node i ( 1,2,3,4i  ). 

The generalized strain vector for three layers can be expressed in terms of nodal displacements 
vector as follows: 
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3.1 Governing Differential Equation 

In this work, Hamilton’s principle is applied in order to formulate governing free vibration 
problem, which is given as: 
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where t is the time, T is the kinetic energy of the system and U is the potential energy of the 
system. 

Using the standard finite element procedure, the governing differential equations of motion can 
be rewritten as: 

       0T TM K    (14) 

where  TM  and  TK  denote the element mass matrix and the element stiffness matrix, 

respectively, for the three layers sandwich plate. 
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and the element mass matrix can be written as: 
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Now, after evaluating the stiffness and mass matrices for all elements, the governing equations 
for free vibration analysis can be stated in the form of generalized eigenvalue problem. 

      2 0T TK M     (17) 

4. Numerical results and discussions 

4.1 Free vibration analysis of Square sandwich plate having three-ply laminated stiff sheets 

In this problem, a seven-layer simply supported square sandwich plate is studied. Two sandwich 
plates with various lay-ups on face sheets [0/90/0/core/0/90/0] and [45/-45/45/core/-
45/45/-45] are considered. The core is made of HEREX-C70.130 PVC foam and the face sheets 
are made of glass polyester resin. The mechanical properties of the sandwich plate are 
presented in Table 1. The geometrical properties of the plate are (a/h = 10, a/b = 1, hc/h = 0.88) 
where h is the total thickness of the plate. 

Table 1. Material properties for laminated sandwich plate. 

Material 
Elastic properties (GPa) 

E11 E22 G12 G13 G23 ν12 ρ (Kg/m3) 

Faces 24.51 7.77 3.34 3.34 1.34 0.078 1800 

Core 0.1036 0.1036 0.05 0.05 0.05 0.32 130 

The convergence of the non-dimensional results of natural frequencies, for the first four modes, 
is shown in Table 2 with different mesh sizes. The comparison was made with the analytical 
solutions based on LW approach (Jam et al., 2010; Rahmani et al., 2010), the 3D-finite element 
models also based on LW approach (FEM-3D-LW) given by Burlayenko et al. (2015). It is clear, 
from the table 2, that the results of developed element are in excellent agreement with 
numerical results found in the literature. These results show clearly the performances and 
convergence of the proposed layerwise formulation. 

The non-dimensional results of frequencies are expressed as: 
2

c c

a
E

h
   . 

Table 2. Non-dimensional natural frequencies for a square multi-layered sandwich plate with various lay-ups 
on face sheets. 

References FE Models 
Various lay-ups 
on face sheets 

Frequencies (Hz) 
Mode 1 Mode 2 Mode 3 Mode 4 

Present element (6×6) 
Present element (8×8) 
Present element (10×10) 
Present element (12×12) 
Present element (14×14) 
Present element (16×16) 
Burlayenko et al. (2015) 
Rahmani et al. (2010 
Jam et al. (2010) 

QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 

FEM-3D-LW 
Analytical-LW 
Analytical-LW 

Cas 1 

14.736 
14.583 
14.513 
14.477 
14.452 
14.440 
14.620 
14.270 
15.040 

28.207 
27.499 
27.173 
26.999 
26.893 
26.826 
26.800 
26.310 
26.733 

28.802 
28.115 
27.796 
27.626 
27.524 
27.456 
27.400 
27.040 
27.329 

37.584 
36.627 
36.167 
35.954 
35.777 
35.706 
35.550 
34.950 
35.316 

Present element (6×6) 
Present element (8×8) 
Present element (10×10) 
Present element (12×12) 
Present element (14×14) 
Present element (16×16) 
Burlayenko et al. (2015) 
Jam et al. (2010) 

QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 

FEM-3D-LW 
Analytical-LW 

Cas 2 

15.674 
15.536 
15.473 
15.437 
15.419 
15.405 
15.420 
15.786 

28.756 
28.069 
27.754 
27.587 
27.485 
27.417 
27.170 
27.316 

28.756 
28.069 
27.754 
27.587 
27.485 
27.417 
27.460 
27.316 

38.363 
37.478 
37.053 
36.805 
36.698 
36.592 
36.240 
36.216 

* Cas1: [0/90/0/C/0/90/0], Cas 2: [45/-45/45/C/-45/45/-45] 
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Moreover, the same sandwich plate was analyzed for different thickness ratios (a/h) and aspect 
ratios (a/b) keeping the same ratios hc/hf = 0.88. From Figure 3, it is found that the non-
dimensional natural frequencies increase with increasing in thickness ratios, whatever the 
aspect ratios. This can be explained by the fact that the FRP sandwich plates are not assumed to 
be infinitely stiff through the thickness. 

 

Fig. 3. Effect of a/h ratio on the fundamental frequencies of a simply supported square laminated sandwich 
plate (0/90/0/C/0/90/0). 

4.2 Free vibration analysis of sandwich plate having un-symmetric laminated face sheets 

In this problem, a simply supported square sandwich plate with un-symmetric laminated face 
sheets (0/90/C/0/90) is considered to assess the performance of our model to the thin as well 
as thick plate. The mechanical properties of the sandwich plate are presented in table 3.The 
thickness ratio (a/h) is considered to vary from 2 to 100, where the ratio of thickness of core to 
thickness of face sheet hc/hf  is considered as 10.  

The first six mode shapes obtained for simply supported square laminated sandwich plate with 
a/h =10 are shown in Figures 4.  

The non-dimensional results of frequencies are expressed as: 2

22c fb h E    

The comparison of natural frequencies, considering mesh size (12×12), are shown in figure 5, 
with those obtained by the 3D-elasticity solution (Rao et al., 2004), the analytical results based 
on HSDT (Kant and Swaminathan, 2001), and those obtained with the FEM-Q8 solution based on 
global-local higher order shear deformation theory (GLHSDT) (Zhen et al., 2010).  

It can be seen, from the figures 4 and 5, that the present FE model gives more accurate results 
than the other models which confirm the good performance and robustness of the proposed 
formulation. 

Table 3. Material properties for laminated sandwich plate. 

Material 
Elastic properties (GPa) 

E11 E22 G12 G13 G23 ν12 ρ (Kg/m3) 

Faces 131 10.34 6.9 6.9 6.9 0.22 1627 

Core 0.0069 0.0069 0.0034 0.0034 0.0034 10-5 97 
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Mode 1 Mode 2 Mode 3 

   

Mode 4 Mode 5 Mode 6 
Fig. 4. First six mode shapes of simply supported square laminated sandwich plate (0/90/C/0/90)  

with a/h =10. 

 

 

Fig. 5. Effect of the thickness ratios (a/h) on the non-dimensional fundamental frequencies of a simply 
supported sandwich plate having un-symmetric laminated face sheets. 

5. Conclusion 

In this paper, a new layerwise finite element model was proposed for the natural frequency 
analysis of multilayer sandwich plates. The developed model is based on a proper combination 
of higher-order and first-order, shear deformation theories. These combined theories satisfy 
interlaminar displacement continuity. The results obtained by our model were compared with 
those obtained by the analytical results and other finite element models found in literature. The 
comparison showed that the element has an excellent accuracy and a broad range of 
applicability. 
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The effects of degree of length-to-thickness ratio (a/h) plate and aspect ratio (a/b) upon the 
fundamental frequencies are discussed and the results reaffirm that these effects plays an 
important role in the free vibration frequencies of laminated sandwich plates. 
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