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Abstract.  This paper presents research on the use of artificial neural networks (ANNs) to 
predict fresh and hardened properties of self compacting concrete (SCC) made with Algerian 
materials. A multi-layer perceptron network with 5 nodes, 12 inputs, and 5 outputs is trained 
and optimized using a database of 167 mixtures collected from literature. The inputs for the 
ANN models are ordinary Portland cement (Cm), polycarboxylate ether superplasticizer (Sp), 
river sand (RS), crushed sand (CS), dune sand (DS), Gravel 3/8 (G1), Gravel 8/15 (G2), Water 
(W), Limestone filler (Lim), Marble powder (MP), blast furnace slag (Slag) and natural 
pozzolan (Pz). Instead, Slump flow (Slump), V-funnel, L-Box, static stability (Pi) and 28 days 
compressive strength (Rc28) were the outputs of the study. Results indicate that ANN 
models for data sets collected from literature have a strong potential for predicting 28 days 
compressive strength. Slump flow, V-funnel time and L-Box ratio could be moderately 
identified while an acceptable prediction has been obtained for static stability. Results have 
also confirmed by statistical parameters, Regression plots and residual analysis. 

Key words: Artificial neural networks, self compacting concrete, Algerian materials, fresh and hardened 
properties, prediction. 

1. Introduction 

Self-compacting concrete (SCC) is a high flowable concrete that can flow readily under its self-
weight (Okamura & Ouchi, 2003). The development of a SCC formulation is much more complex 
according to its sensitivity to small variations of mix proportions such as the proportion of 
water, cement, superplasticizer, aggregates and supplementary cementitious materials. 
Assessing the role of mix constituents considered as a key factor for an adequate formulation. 

Nowadays, several studies have been using various methods such as statistical methods, 
analytical modelling, and artificial intelligence for predicting fresh and hardened properties of 
SCC based on various components (Getahun et al., 2018). 

ANNs technique is a statistical method that advance the accuracy using extensive experimental 
data and neural networks algorithms in order to create an appropriate model which could solve 
complex problems (Ahmadi et al., 2017). In addition, this method could value previous works 
and making them as mathematical models, which may help to predict properties of concrete 
mixtures before conducting laboratory experiments. 

Several researchers are recently interested to predict SCC properties using ANNs. Sonebi et al. 
(2016) investigate the feasibility of using ANNs for prediction the fresh properties of SCC, they 
demonstrate the efficiency of ANNs to predict the filling ability, flowability and passing ability 
with good accuracy. Abu Yaman et al. (2017) reported that mix proportioning of SCC mixes could 
be performed using the trained neural network which in turn assures its effectiveness. Douma et 
al. (2017) indicate that ANNs have strong potential as a feasible tool for predicting accurately 
the properties of SCC incorporating fly ash.  Asteris et al. (2016) demonstrate the promising 
potential of ANN for the reliable and robust approximation of the 28 days compressive strength 
of admixture-based self compacting concrete. 
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The main objective of this study is to develop ANN models for predicting the fresh and hardened 
states of SCC made with Algerian components and based on experimental data gathered from 
literature. 

2. Literature review 

Several studies have been done to evaluate the possibility of formulating self compacting 
concrete based on local materials. Boukendakdji et al. (2009) evaluate the effect of Algerian slag 
on the properties of fresh and hardened SCC. Belaidi et al. (2012) study the influence of 
formulation parameters on rheological, mechanical and durability of SCC, through partial 
substitution of cement by natural pozzolana of Beni-saf and marble powder residue industry 
shaping and polishing marble. (Benabed, 2014) examines the influence of various types of sand 
with different morphologies and origins on the fresh and hardened properties of self compacting 
concrete. (Bouziani, 2013) provides a statistical approach to evaluate the effect of different kind 
of sands on the properties of SCC. 

Boukhelkhal et al. (2015) study the effect of Algerian mineral admixtures (blast furnace slag, 
natural pozzolana and limestone fillers) on stability and rheology of SCC. Boukhelkhal et al. 
(2016) evaluate the effect of incorporating the marble powder as a supplementary cementitious 
material on rheological and mechanical properties of self compacting concrete. (Nécira, 2018) 
develops a series of high-performance self-compacting concrete using quarry sand, dune sand, 
limestone filler, natural pozzolana and granulated slag. Sahraoui and Bouziani. (2019 a,b) study 
the effects of mixture components and sand contents on rheological and hardened properties of 
self compacting concrete. 

Benyamina et al. (2019) investigate the influence of quarry limestone fines from manufactured 
crushed sand on rheological, mechanical and durability properties of SCC. Skender et al. (2019) 
assess the effects of various amounts of Algerian limestone filler, which is expected to modify the 
physical, mechanical and transport properties of SCC. Ouldkhaoua et al. (2019) examine how the 
use of metakaolin powder and catodique ray tube glass will affect the rheological properties of 
self-compacting concrete. Laidani et al. (2020) study the effect of using calcined bentonite as 
partial replacement of ordinary Portland cement on the sustainability of SCC. YH Aissa et al. 
(2020) explore the possibility of using calcareous tuff in SCC production. 

Details of all mixes collected from literature are resumed in Table 1. It should be noted that the 
above-mentioned works were selected on the basis of the following common components: 

- Ordinary Portland Cement (CEMI 42.5); 

- Third generation polycarboxylate ether-based (Medaflow 30 and 145); 

- Three types of sand (RS, CS and DS); 

- Limestone-type gravels (3/8) and (8/15); 

- Four mineral admixtures (Lime stone, Marble powder, Slag and Pozzolan). 

It is also worth noting that there are about forty other researches have reported the use of local 
materials to formulate SCC, but these studies are not compatible with the selected researches in 
terms of cement, superplasticizer types and the use of viscosity modifying agent (VMA). 
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Table 1: data sets collected from literature 

References 
Content 

Cement 
(Kg/m3) 

RS 
(Kg/m3) 

CS 
(Kg/m3) 

DS 
(Kg/m3) 

Gravel 
3/8 (G1) 

Gravel 
8/15 (G2) 

W/P Sp (%) 
Lim  
(%) 

MP  
(%) 

Slag 
(%) 

Pz  
(%) 

Boukendakdji et al. (2009) 352-465 867 0 0 280 560 0.4 1.2-2 0 0 10-25 0 

Belaidi et al. (2012) 285-475 886 0 0 277 553 0.4 0.9 0 5-30 0 5-25 

(Bouziani, 2013) 380 848 0 0 880 0 0.4 1.6 0 52.37 0 0 

(Benabed, 2014) 475 0-886 0-886 0-886 277 553 0.4 0.9-1.5 0 0 0 0 

Boukhelkhal et al. (2015) 404-467 0 541 360 401 401 0.42 1.6 0-15 0 0-15 0-15 

Boukhelkhal et al. (2016) 376-470 882.9 0 0 277 553 0.4 0.9 0 0-20 0 0 

Nécira et al. (2017) 400 0-770.89 0-780 0-776.84 385.45 385.45 0.35 1.5 37.5 0 0 0 

(Nécira, 2018) 251-501 821.69 0 0 432.9 432.9 0.32 0.6 0-50 0 0-50 0-50 

Sahraoui and Bouziani. (2019 a,b) 
420 754-1041 0 0 0-874.5 0-874.5 0.37 0.9 0 0-25 0 0 

420 0-877.15 0-877.15 0-877.15 350.86 526.29 0.38 0.95 0 20 0 0 

Benyamina et al. (2019) 490 0 480-600 323 443 295 0.4 1.4 0-25 0 0 0 

Skender et al. (2019) 481-490 0 450-600 323 443 295 0.4 1.4 0-25 0 0 0 

Ouldkhaoua et al. (2019) 469.59 909.78 0 0 329 494 0.4 0.8 0 0 0 0 

Laidani et al. (2020) 469.59 906.22 0 0 266.1 536.06 0.4 0.8 0 0 0 0 

YH Aissa et al. (2020) 560 0 960 0 270 545 0.4 0.5 0 0 0 0 
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3. Methodology 

A total of 167 SCC mixtures collected from literature was used for the training and validation of 
the ANNs. These models were built with 5 Hidden nodes and validated using a random holdback 
of 33% of the dataset in order to estimate parameters and assess the predictive ability of 
models. The equation and structure of the ANN models used in this research are expressed in 
Equation 1 and Figure 1. 

            (    (                             )) 

                (    (                             )) 
(1) 

Where Ai, Bi, Ci,j are the model coefficients (Table 2) and TanH is the hyperbolic tangent 
function which represent the activation function investigated in this work and is defined as: 

    ( )  
     

     
 (2) 

The training, validation, and test sets are created by subsetting the original data into parts. For 
this purpose, a Holdback method was selected in order to divide the original data into training 
and validation sets randomly. It could also specify the proportion of the original data to use as 
the validation set (JMP, 2020). It should be noted that a higher number of nodes results in more 
effective training, increases model complexity and processing time which required to enhance 
the computational power. 

 

 
Figure 1: Architecture of ANN models used in this study 
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4. Results and discussion 

Parameters estimates and model coefficients of the ANN models used in this research are shown 
in Tables 2 and 3 respectively. Five different statistical parameters have been employed for 
judging the performance of actual and predicted data including: the squared Pearson correlation 
coefficient (R2), root mean square error (RMSE), the mean absolute deviation (MAD), the error 
sums of squares (SSE) and the sum of the frequencies (Sum Freq).  

It can be seen that all models performed well and provided very good correlation coefficients 
(R20.8 for training and R20.7 for validation  ) except the predicted static stability Pi (R2 close 
to 0.7 for training and 0.64 for validation), this decline may be attributed to the high sensitivity 
of SCC when there have been a small variation of mix proportions (Thakre et al. 2017) Instead, 
results obtained in compressive strength at 28 days were correlated a high level (R2 close to 0.97 
for training and 0.89 for validation), which lead to conclude that ANNs were highly successful in 
learning and predicting the 28 days compressive strength. Similar tendency has been observed 
by (Malagavelli & Manalel, 2014) (Asteris et al., 2016) (Saha et al., 2017). 

RMSE was calculated in order to measure the differences between actual and predicted values, a 
lower value of RMSE have been obtained which indicate the good prediction performance of the 
obtained models. Smaller values of MAD confirm once more that ANNs can better fit the data 
used in this experiment. The high SSE values of Pi and L-Box indicate a large degree of variability 
within the data set, while the lower SSE for Rc28 reveals that the data does not vary 
considerably from the mean value, confirming that the results created by the ANNs were very 
close to those of actual values. 

Figures 2 to 6 provide the regression values for all actual and predicted data. It is obvious that 
Rc28 achieves the most reliable prediction while acceptable regressions have been registered 
for Slump and V-funnel. Instead, regression values for Pi and even for L-Box were moderate as 
report statistics have demonstrated. This confirms that the obtained models were able to 
reproduce the experimental results with high or acceptable accuracy.  

Residual by predicted plot for all models are presented in Figure 7. From this figure, it can be 
revealed that there aren’t any clear patterns in general. The points in a residual plot of Slump 
and Rc28 are randomly dispersed around the horizontal axis and they can be categorized as very 
good with a random error and this is a further justification of the previous results. Residuals of 
V-funnel, L-Box and Pi appear clustered on the horizontal axis, confirming once again that the 
functional part of models does not fit the data perfectly. 

Table 2: Details report statistics 

 Slump V-funnel L-Box Pi Rc28 

Training 

Rsquared (R2) 0.880517 0.897185 0.815892 0.696938 0.968663 
RMSE 2.527693 1.601559 7.183838 4.496816 2.78906 
MAD 1.983659 1.014633 5.335368 3.437899 2.013808 
SSE 709.2046 223.1542 5676.828 1900.807 700.097 

Sum Freq 111 87 110 94 90 

Validation 

R2 0.701792 0.785027 0.682712 0.641965 0.889876 
RMSE 4.628809 2.934053 9.577025 5.824216 4.832185 
MAD 3.659927 1.732885 6.862325 3.73383 3.629195 
SSE 1199.849 378.7813 5136.287 1594.31 1074.101 

Sum Freq 56 44 56 47 46 
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Table 3: Model coefficients of responses 

Parameter 
Estimate 

Slump V-funnel L-box Pi Rc28 
A0 63.28388 15.14357 69.56581 26.30666 55.77593 
A1 9.762795 15.6597 18.5131 2.624009 -3.62263 
A2 -10.9652 -9.84658 -18.601 -2.4258 9.297474 
A3 10.04468 1.301451 -11.8994 -1.53255 -15.5049 
A4 -4.89305 -15.6859 11.33388 -0.35976 4.938328 
A5 -12.7381 19.00461 -15.1506 -18.9019 -17.2991 
B1 -23.5887 -3.63521 -28.7153 150.8015 -10.2121 
B2 16.00778 -0.46792 12.46874 35.01113 -8.83419 
B3 -15.9981 -0.34531 16.55757 5.528856 -127.601 
B4 -21.0522 -0.16354 -27.9107 -106.68 11.75059 
B5 0.006721 1.650363 -11.9844 30.77949 27.11841 

C1.1 0.274386 0.051259 -6.44301 -5.33024 2.106865 
C1.2 0.015749 -0.00366 0.057676 -0.04392 0.020887 
C1.3 0.002319 0.000106 0.002042 0.000492 0.000587 
C1.4 0.011904 -0.00028 0.014763 -0.02168 0.002026 
C1.5 0.005066 -2.26E-05 -0.01826 0.048427 -0.00046 
C1.6 -0.01559 0.00128 -0.00397 -0.009 0.00334 
C1.7 0.00682 -0.00101 -0.01635 -0.00989 -0.00107 
C1.8 0.059329 0.022315 0.242906 -0.52765 -0.04285 
C1.9 -0.00568 0.006374 -0.0087 0.038518 -0.00993 
C1.10 0.021006 0.002181 0.034455 -0.10915 -0.01066 
C1.11 0.037648 0.001147 -0.08038 0.233543 -0.04839 
C1.12 0.028369 0.007646 0.097666 -0.01825 0.028028 
C2.1 -0.16161 -0.11075 -0.55608 0.267028 -0.33354 
C2.2 0.023716 3.44E-05 -0.03596 -0.01568 0.054679 
C2.3 0.000134 0.001165 -0.00084 -0.00347 -0.00446 
C2.4 0.003594 -0.0007 0.000406 0.003751 0.000753 
C2.5 -0.00305 -0.00363 -0.00323 -0.00531 -0.00482 
C2.6 -0.02423 0.000267 0.003523 -0.00161 0.007988 
C2.7 -0.0031 0.000168 0.009704 0.005639 0.014136 
C2.8 -0.08759 0.004299 0.013601 -0.16777 -0.09512 
C2.9 0.020337 -0.00544 -0.0605 -0.00729 0.001271 
C2.10 0.004044 0.002177 0.045792 -0.01218 0.005885 
C2.11 -0.01047 -0.0107 -0.04933 0.064607 0.027733 
C2.12 -0.08962 -0.00113 -0.05144 0.053976 0.008794 
C3.1 -0.90575 0.021695 -0.57513 0.047839 2.712765 
C3.2 0.012898 0.000114 0.024287 -0.00641 -0.02383 
C3.3 0.003106 -0.00004 0.000832 -0.00491 0.003437 
C3.4 0.004608 0.000185 0.011968 0.000208 -0.00403 
C3.5 -0.00225 -0.00015 -0.00801 0.006895 -0.00104 
C3.6 -0.01189 -1.82E-05 -0.0009 0.005767 -0.02916 
C3.7 -0.00656 -8.42E-05 0.001794 0.001471 0.014449 
C3.8 0.110108 0.001288 -0.14507 -0.02886 0.681383 
C3.9 0.074988 0.000322 0.001063 0.01544 0.034961 
C3.10 0.001166 -0.00015 -0.05332 -0.01557 -0.03789 
C3.11 -0.01852 -0.00042 -0.01343 -0.03729 -0.30774 
C3.12 -0.09811 -0.00036 0.068436 0.016709 -0.00431 
C4.1 -0.56855 0.060285 -0.04676 0.102512 -0.56029 
C4.2 -0.00058 -0.00231 0.037324 0.074527 0.045114 
C4.3 -0.00196 0.000563 -0.00744 -0.00271 0.004801 
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Table3: continued 

Parameter 
Estimate 

Slump V-funnel L-box Pi Rc28 
C4.4 0.00607 -0.0001 0.022628 0.012973 0.008234 
C4.5 -0.00017 -0.00148 -0.00307 -0.00569 -0.01172 
C4.6 -0.00346 -0.00103 -0.00872 -0.00193 -0.00427 
C4.7 -0.00344 0.000349 0.003323 0.003267 -0.00517 
C4.8 0.141922 0.007608 0.081171 0.36632 -0.12896 
C4.9 -0.01441 0.011606 -0.09656 -0.00705 0.021165 
C4.10 0.019381 -0.00544 -0.00735 0.050952 0.005363 
C4.11 0.034617 0.005238 0.100924 0.033341 -0.011 
C4.12 -0.04773 0.00696 0.038846 -0.0471 0.056323 
C5.1 -0.31598 -0.11879 -1.5101 -1.67961 -3.91819 
C5.2 -0.0297 0.005039 -0.00144 0.060703 -0.02201 
C5.3 -0.00974 0.001052 -0.00261 -0.02415 -0.00348 
C5.4 -0.00267 -0.0001 0.011369 -0.03148 0.002148 
C5.5 -0.00296 -0.00267 0.007953 -0.02841 0.007107 
C5.6 0.000888 -0.0017 -0.00106 0.076022 -0.01745 
C5.7 0.00423 0.001507 0.009059 -0.00798 0.035716 
C5.8 0.075789 -0.01946 0.026686 -0.20353 -0.02288 
C5.9 0.014454 0.004378 0.060278 0.022536 -0.03866 
C5.10 -0.01043 -0.00204 0.057819 0.025281 -0.00018 
C5.11 -0.01188 0.006042 0.072845 0.026894 0.115404 
C5.12 0.015081 0.003512 0.005938 0.076111 0.043143 

 

 

Figure 2: Regression for training and validation data results of Slump  
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Figure 3: Regression for training and validation data results of V-funnel  

 

Figure 4: Regression for training and validation data results of L-Box 

 

Figure 5: Regression for training and validation data results of Pi 
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Figure 6: Regression for training and validation data results of Rc28 

 

Figure 7: Residual by predicted plot for all models 
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5. Conclusion 

In this work, artificial neural networks accuracy in predicting SCC properties was assessed. For 
this purpose, an ANN models consisting of 5 hidden layer nodes, 12 input nodes which represent 
the components of SCC and 5 output nodes representing the fresh and hardened properties of 
SCC containing Algerian materials. Results conducted and presented in this paper demonstrate 
that the developed ANN models were able to predict 28 days with high accuracy as confirmed 
with Regression plots, residual analysis and statistical parameters. Furthermore, this modelling 
technique performs sufficiently in the estimation of Slump, L-Box and V-funnel time, while static 
stability could be predicted with acceptable precision. In general, ANNs can be considered as 
good technique in modelling and predicting of SCC properties with high reliability. 
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