Investigating the partial pressure of carbon dioxide (CO₂) in the respiratory gases in laparoscopic gallbladder surgery and comparing it with arterial partial pressure of carbon dioxide

Babak Hosseinzadeh Zoroufchi,^a Setareh Soltany,^b Abolfazl Abdolahpour^a

^aDepartment of Anesthesiology, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran ^bCancer Research Center, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran Corresponding author: Abolfazl abdollahpour (Email: Abolfazlabdollahpoor@semums.ac.ir) (Submitted: 19 September 2019 – Revised version received: 13 October 2019 – Accepted: 25 October 2019 – Published online: 26 December 2019)

Objective The aim of this paper is determining the end-expiratory dioxide pressure in gallbladder laparoscopic surgery and compares it with the arterial carbon dioxide pressure.

Methods This cross-sectional study was performed on 30 patients undergoing laparoscopic cholecystectomy. At the beginning of operation, arterial blood gas (ABG) sample was taken from the patient's radial artery before CO_2 was injected into the abdomen. At the same time, CO_2 was measured by a capnography device. At the end of surgery, ABG sample was prepared for the second time before CO_2 was removed from the abdomen and CO_2 was recorded simultaneously by capnography device. After collecting data from ABG samples, arterial PaCO₂ was compared with those obtained from capnography device results and SPSS 16 software was used for data analysis.

Results The mean pre-operative $PaCO_2$ for laparoscopic ($PaCO_{2,1}$) was 34.343 and the mean pre-operative $ETCO_2$ for laparoscopic ($ETCO_{2,1}$) was 31.37. These values after laparoscopic surgery were 34.813 for $PaCO_2$, 34.813 ($PaCO_{2,2}$) and 33.13 ($ETCO_{2,2}$). There was also a correlation between $PaCO_{2,1}$ and $ETCO_{2,2}$ and $ETCO_{2,2}$, which was stronger between $PaCO_{2,2}$ and $ETCO_{2,2}$.

Conclusion There was a strong correlation between ETCO₂ results from capnography and PaCO₂ from ABG and to monitor carbon dioxide retention, capnography can be used as an alternative to ABG for laparoscopic gallbladder surgery patients.

Key words capnography, end-expiratory pressure, arterial carbon dioxide pressure, cholecystectomy, laparoscopy

Introduction

Gallstones are one of the most common diseases of the gastrointestinal tract. Most of these stones remain asymptomatic throughout the patient's life. For unknown reasons, some patients progress to a symptomatic stage that develops biliary colic following cystic duct obstruction by gallstones. This may lead to complications including cholecystitis, chronic cholecystitis, cholangitis, pancreatitis, fistula between the gallbladder and part of the intestine, and eventually ileus caused by gallstones and gallbladder carcinoma.^{1, 2} Therefore, if bile stones develop or are symptomatic or in conditions that are more likely to cause these complications, cholecystectomy is required. This can be done in an open procedure or in a so-called laparoscopic procedure.3 The use of this method has been growing increasingly so that it has been replaced by the open method of choice⁴ due to it its many benefits and fewer side effects such as reduced post-operative pain, faster return to work, reduced hormonal neurotoxicity, patients' satisfaction with the appearance of the scar and the less invasive nature of laparoscopic surgery than open surgery. The use of this method has been growing increasingly so that it has been replaced as an alternative choice method.

In this way, it is necessary to dilate the space inside the abdomen to create the proper space for working with the necessary devices and tools. Therefore, various gases such as nitrogen, helium and CO_2 are used for dilution, each with its advantages and disadvantages. The most common gas used in laparoscopy is CO_2 because it is non-combustible, absorbs rapidly in dissolved blood and is excreted through the respiratory tract.^{5, 6} Arterial carbon dioxide (PaCO₂) pressure is one of the most important determinants of blood pH, so its changes

can cause many disorders for patients. Since the probability of this change was high during anesthesia and it's not possible to monitor $PaCO_2$ directly, during anesthesia, $ET-CO_2$ expiratory CO_2 pressure monitoring is used to estimate $PaCO_2$. It is nowadays one of the standard monitoring methods during anesthesia and is often used as a non-invasive procedure for patients during anesthesia as well as in recovery and intensive care units.⁷

According to the ASTM International (formerly known as American Society for Testing and Materials), the measurement of CO₂ pressure is now mandatory monitoring and capnography is a standard anesthesia monitoring.^{8, 9} Continuous measurement of exhaled CO₂ is one of the methods that are used in the operating room for evaluation during anesthesia and in patients intubated in the tracheal intubation. But this approach can even be a non-invasive, rapid, and reliable method for predicting PaCO₂ in non-intubated patients.¹⁰ This measurement enables the estimation of PaCO₂ pressure without the need for arterial blood sampling. If there is a consistent relationship between the CO₂ pressure and the arterial end, this method is reliable and there will be no need for repeated arterial blood sampling.^{11, 12} So, the aim of this paper is to determining the end-expiratory dioxide pressure in gallbladder laparoscopic surgery and compares it with the PaCO₂ pressure.

Methods and Materials

This cross-sectional study was performed on 30 patients undergoing laparoscopic cholecystectomy. They were randomly assigned to Kowsar Hospital of Semnan, Iran in 2018– 2019. All stages of the study were approved by the Research and Ethics Committee of Kowsar Hospital in Semnan. All patients underwent the implementation of the plan before entering the study and a consent form was obtained from all patients. The inclusion and exclusion criteria were evaluated in this study.

- Inclusion criteria: Cholecystitis patients candidate for laparoscopic surgery.
- Exclusion criteria: Patients with lung obstruction diseases such as asthma, emphysema, COPD, and pulmonary embolism.

Demographic data including age, sex, height, weight, and smoking were recorded. After visiting patients at the clinic, pre-op and recording heart rate, respiratory rate, and blood pressure were measured. Patients underwent laparoscopic cholecystectomy under general anesthesia with intravenous induction and maintenance of general anesthesia with inhaled and evaporated anesthetics. At the beginning of surgery before the CO₂ gas is pumped into the abdomen, sampling site was sterilized with 70% alcohol in order to obtain the arterial blood gas (ABG) sample after the Allen test to ensure proper flow of the sample in the hand. It was then prepared using a heparinized G20 syringe from the ABG patient's radial artery. At the same time, CO₂ was measured by a capnography and to facilitate laparoscopic surgery, the intraperitoneal space was filled with CO₂ up to a pressure of up to 20 cm. Exposure to CO₂ was monitored by capnography at all stages of surgery. At the end of surgery, ABG sample was prepared for the second time before CO₂ removal from the abdomen and at the same time, CO₂ was measured and recorded by the CapnoTrue[®] ASP CO₂/ Spo2 Monitor Capnography. ABG samples were immediately sent to the laboratory and analyzed by a blood gas analyzer (AVL995 Blood Gas Analyzer) and PaCO₂ levels were measured and recorded. After collecting data from ABG samples, arterial PaCO₂ levels were compared with those obtained from capnography results. At the end of the operation, the patient was awakened by neostigmine at the rate of 40 mg/kg after discontinuation of the anesthetic and reversal of the relaxant and transferred to recovery.

Data Analysis

Descriptive findings were reported in subgroups using mean and standard deviation. Multivariate regression models were used to investigate the relationship between arterial CO_2 pressure and CO_2 pressure with and without underlying variables and the final analysis was performed on the reduced model. To analyze the difference between the two aforementioned values, One-sample *t*-test was used and compared with 0. The significance level for all tests was 0.05. SPSS 16 software was used for data analysis.

Ethical Considerations

Obtain informed consent to adhere to ethical principles and ensure confidentiality of research information.

Result

ŀ

Twenty-four patients participated in this study which 80% were female and 20% were male. The mean age of the subjects was 41.77 ± 13 , 13.89 years. The youngest was 26 years and the oldest was 80 years old. The mean height, weight, and BMI of the patients were 163.5, 70.5 and 26.35, respectively. Also, 28 (93.3%) were non-smokers and 2 (6.7%) were smokers. In this study, systolic blood pressure (SBP) and diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) were reported as 18, 76, and 90, respectively. The mean pre-operative PaCO₂ for laparoscopic surgery was 34.343 PaCO₂₋₁ and the mean pre-operative ETCO₂ for laparoscopic surgery was 31.37. These values for post-operative laparoscopy were 34.813 for PaCO₂, PaCO₂₋₂ and 33.13 for ETCO₂, ETCO₂₋₂. The mean and standard deviation of the difference between PaCO₂₋₁ and ETCO₂₋₁ were 2.9 and 4.11, respectively. These values were 1.6 and 3.72, respectively, for the difference between $PaCO_{2-2}$ and $ETCO_{2,2}$, with a *P*-value of less than 0.05 for both cases.

According to Table 1, there was a correlation between $PaCO_{2-1}$ and $ETCO_{2-1}$ results as well as between $PaCO_{2-2}$ and $ETCO_{2-2}$. This correlation was stronger between the values of $PaCO_{2-2}$ and $ETCO_{2-2}$.

The regression equation based on the final model is as follows:

Table 1. Correlation between PaCO ₂ -2 and ETCO ₂ -2 resulaparoscopic surgery	Its before
Pearson correlation coefficient	0.423
<i>P</i> -value	0.020
Quantity	30
Table 2 Correlation between DoCO 2 and ETCO 2 room	lte ofter

laparoscopic surgery					
Pearson correlation coefficient	0.720				
<i>P</i> -value	0.000				

Table 2. Distribution graph and its fitted line based on the regression equation for predicting PaCO ₂₋₁ using ETCO2-1						
Squared R	F	Degree of Freedom 1	Degree of Freedom 2	Р	Constant number	The regression coefficient
0.179	6.095	1	28	0.020	19.451	0.475

Quantity

Table 4. Distribution graph and its fitted line based on the regression equation for predicting PaCO ₂₋₂ using ETCO ₂₋₂						
Squared R	F	Degree of Freedom 1	Degree of Freedom 2	Р	Constant number	The regression coefficient
0.519	30.180	1	28	0.000	6.430	0.857

30

Madal	Primary model			Final reduced model			
Model	The regression coefficient	The standard error	Р	The regression coefficient	The standard error	Р	
Constant number	-74.474	48.263	0.134	34.676	11.704	0.007	
EtCO ₂₋₂	0.971	0.157	0	0.885	0.127	0	
Gender	5.021	2.405	0.05	6.03	1.666	0.01	
Age	0.024	0.059	0.691	-	-	-	
BMI	0.042	0.182	0.819	-	-	-	
Smoker	5.677	3.778	0.149	7.088	2.875	0.021	
Number of breaths	-0.194	0.234	0.417	-	-	-	
Heart beat	0.258	0.137	0.073	0.267	0.09	0.007	
Mean arterial pressure	-0.003	0.074	0.973	-	-	-	
Arterial oxygen saturation percentage	0.446	0.492	0.375				

Table 5. Multiple linear regression model of initial and final decrease to predict arterial dioxide pressure after intervention based on explanatory variables

Discussion

 $\rm CO_2$ gas is one of the most common gases used in laparoscopic surgery and its monitoring during surgery is very important. The importance of monitoring $\rm CO_2$ pressure is that changes in blood can cause changes in the blood pH of the patient and cause problems for the patient.¹³ ABG measurement is used as the gold-standard for monitoring oxygenation and also checks the CO₂ retention rate.^{14, 15} The aim of this paper is determining the end-expiratory dioxide pressure in gallbladder laparoscopic surgery and compares it with the arterial carbon dioxide pressure.

In this study, there was a strong correlation between $PaCO_2$ and $ETCO_2$ results before and after surgery in gallbladder laparoscopic patients. In the studies that have been done, such as the study by Husaini and Cho¹⁶ in which 35 patients underwent intraoperative craniotomy in different surgical stages, the evidence suggests that the results of capnography agree with ABG at all stages of craniotomy, both before general anesthesia and after skull opening and at the beginning of dural closure. And, there was a strong correlation between $ETCO_2$ and $PaCO_2$ results at all stages of craniotomy (correlation coefficients were 0.571, 0.559, and 0.629). The results of their study were consistent with our study.

In another study by Yazdani and Tohidi, 75 COPD patients were included. They found that there was a strong correlation between ETCO_2 values from capnography and PaCO_2 in arterial blood gases at both the initial admission and 30 min after oxygen and bronchodilator treatment (correlation coefficient r = 0.782 and *P* = 0.005). Further evaluation by Bland–Altman analysis indicated the agreement of the results of the two methods of capnography and ABG for measuring the relative

pressure of $\rm CO_2$ in both stages of the study. The results of their study were in line with ours. 17

Hasani et al.¹¹ conducted a study comparing end-expiratory and arterial CO_2 in patients undergoing coronary artery bypass grafting. They found that there was no statistical difference between the CO_2 and arterial end points at the time before and after cardiopulmonary bypass. As a result, capnography is a non-invasive, healthy monitoring to estimate arterial blood CO_2 levels. End-expiratory and arterial CO_2 have a direct relationship with patients with no underlying disease in coronary artery bypass graft surgery. They noted that measurement of $ETCO_2$ in healthy patients may eliminate the need for arterial blood to determine PaCO₂.

Warner et al.¹⁸ found that $ETCO_2$ results in patients with severe trauma requiring tracheal intubation were poorly correlated with PaCO₂ outcomes. Therefore, capnography should not be used to monitor this group of patients, which seems to be due to the patient's poor hemodynamic status and its effect on arterial blood gases, which were inconsistent with our study.

Conclusion

This study indicated that although there was a significant average 3 and 1.6 unit of difference between the mean arterial CO_2 pressure and CO_2 pressure at the beginning and end of the operation but there was a strong correlation between ETCO₂ results from capnography and PaCO₂ from ABG. And to monitor CO_2 retention in gallbladder laparoscopic surgery, patients can use capnography as an alternative to ABG. Finally, it is recommended that further studies be conducted with a larger sample size.

References

 Shanker K B, Steinbrook RA, Brooks DC. Arterial to end tidal carbon dioxide pressure difference during laparoscopic surgery in pregnancy. Anesthesiology. 2000;93:370–3.

 Ferber J, Juniewicz HM, Lechowicz-Głogowska EB, Pieniek R, Wroński J. Arterial to end-tidal carbon dioxide difference during craniotomy in severely head-injured patients. Folia Med Cracov. 2001;42(4):141–52. Szabo G, Miko I, Nagy P, Brath E, Peto K, Furka I, Gamal E. Adhesion formation with open versus laparoscopic cholecystectomy: An immunologic and histologic study. Surg Endosc. 2007;21(2):253–7.

 Schietroma M, carlei F, Cappelli S, Amicucci G. intestinal permeability and systemic endotoxemia after laparotomic or laparoscopic cholecystectomy. Ann Surg. 2006;243(3):359–369.

- Moazeni-Bistgani M, mohammad Ali-Beigi F,Shahrjerdi S. Assessment of oral acetazolamide on postoperative pain after laparoscopic cholecystectomy. J Shahrekord Univ Med Sci. 2010;12(2):21–6.
- Liu C, Fan S-t, Lai EC, Lo C-m, Chu K-m. Factors affecting conversion of laparoscopic cholecystectomy to open surgery. Arch Surg. 1996;13(1):98–101.
- Takano Y, Sakamoto O, Kiyofuji C, Ito K. A comparison of the end-tidal CO2 measured by portable capnometer and the arterial P CO2 in spontaneously breathing patients. Resp Med. 2003;97(5):476–81.
- Khan FA, Khan M, Abbasi S. Arterial to end-tidal carbon dioxide difference in neurosurgical patients undergoing craniotomy: a review of practice. J Pak Med Assoc. 2007;57(9):446–8.
- 9. Belpomme V, Ricard-Hibon A, Devoir C, Dileseigres S, Devaud ML, Chollet C, et al. Correlation of arterial PCO2 and PETCO2 in prehospital controlled ventilation. Am J Emerg Med. 2005;23(7):852–9.
- Yosefy C, Hay E, Naseri Y, Magen E, Reisin L. End tidal carbon dioxide as a predictor of the arterial PCO2 in the emergency department setting. Emerg Med J. 2004;21(5):557–9.
- 11. Hassani E, Farasatkish R, Heydarpour E, Totoonchi M, Mahoori A. End tidal CO2 versus arterial CO2 monitoring in patients undergoing coronary artery bypass graft. Tehran Univ Med J TUMS Publ. 2009;67(9):650–4.
- Grenier B, Verchere E, Mesli Abdelghani. Capnography monitoring during neurosurgery: Reliability in relation to various intra-operative positions. Anesth Analg. 1999;88(21):43–8.

- Bhavani shankar K, Moseley H, Kumar A, Delph Y. Capnometry and anesthesia. Can J Anesth/J can anesth. 1992;39(6):617–32.
- McMahon A, Baxter J, Kenny G, O Dwyer P. Ventilatory and blood gas changes during laparoscopic and open cholecystectomy. Br J Surg. 1993;80(10):1252–4.
- Casati A, Gallioli G, Scandroglio M, Passaretta R, Borghi B, Torri G. Accuracy of end-tidal carbon dioxide monitoring using the NBP-75 microstream capnometer. A study in intubated ventilated and spontaneously breathing nonintubated patients. Eur J Anaesthesiol. 2000;17(10):622–6.
- Husaini J, Choy YC. End-tidal to arterial carbon dioxide partial pressure difference during craniotomy in anaesthetized patients. Med J Malaysia. 2008;63(5):384–7.
- Yazdani R, Touhidi MH. The correlation and level of agreement between arterial blood gas PCO2 and end-tidal CO2 in patients with chronic obstructive pulmonary disease exacerbation. Razi J Med Sci. 2013;19(103):48–54.
- Warner KJ, Cuschieri J, Garland B, Carlbom D, Baker D, Copass MK, Jurkovich GJ, Bulger EM. The utility of early end-tidal capnography in monitoring ventilation status after severe injury. J Trauma Acute Care Surg. 2009;66(1):26–31.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.