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Introduction
Liver cancer is the sixth most common cancer in the world-
wide.1 The mechanisms of hepatocarcinogenesis are not fully 
understood; however, the theory of cancer stem cells (CSCs) 
has recently gained traction as a potential contributor to 
hepatic cancer. CSCs display great plasticity and self-renewal 
potential and play a decisive role in tumor formation and 
growth.2 These cells are highly drug-resistant and metastatic, 
which may underlie the recurrence and drug resistance of liver 
cancer.3, 4 Therefore, the identification of liver CSCs markers 
and therapeutic targets associated with them is necessary for 
improving treatment outcomes.5, 6

Biomarker is defined as “a characteristic that is objectively 
measured and evaluated as an indicator of normal biological 
processes, pathogenic processes, or pharmacologic responses 
to a therapeutic intervention.” Biomarkers play an important 
role in the early diagnosis of diseases.7, 8 

Microarray technology has revolutionized gene expres-
sion analysis and has been used widely for the identification 
of cancer biomarkers. The use of high-throughput techniques 
has resulted in an exponential growth in the amount of infor-
mation available in biomedical databases, which then can be 
exploited to integrate gene expression data for applications 
such as biomarker discovery, disease classification, or pheno-
type comparisons, among others.9

However, these types of data are characterized by high 
dimensionality as the number of genes is far bigger than 
the number of samples. One of the biggest challenges of 
high-dimensional data are the curse of dimensionality, which 
describes the exponential increase in volume associated with 
adding extra dimensions in the Euclidean space. It is responsi-
ble for the breakdown of the optimal statistical model fitting.10 

To address the problem, researchers have applied various 
machine learning methods to reduce both cardinality and 
redundancy of gene expression data during the classification 
process, and most of these methods were developed to facil-
itate the analysis of microarray data to identify the best dis-
criminative genes or biomarkers.11

Extreme gradient boosting (XGBoost) is a machine learn-
ing algorithm that assigns an importance score to each feature 
in the training phase, and these scores can then be used as the 
basis for identification of importance features. Since it uses 
multiple subsets of features to predict outcomes in the area of 
dimension cursed problem ensemble models may have better 
performance. Moreover, XGBoost is an optimized distributed 
gradient boosting that achieves state-of-the-art prediction 
performances.12

Feature importance ranking using the common tree 
ensemble models such as XGBoost and gbm R packages may 
provide inconsistent results. These methods only consider the 
effect of splits along the decision path. Therefore, when the 
model relies more on a given feature, the importance assigned 
to that feature changes incorrectly.13 Regarding model inter-
pretation, which is especially important when using machine 
learning models that are often difficult to interpret, several 
studies have used Shapley Additive exPlanations (SHAP).14-16 
Proposed by Lundberg and Lee, 17 SHAP is based on game the-
ory18 and local explanations19 that offers a means to estimate 
the contribution of each feature. SHAP provides a consistent 
importance value, which is an alternative to permutation fea-
ture importance.20

In the present study, we applied machine learning to gene 
expression data from previous studies on liver CSCs to iden-
tify putative biomarkers for identification and characterization 
of these cells.
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Conclusions. We suggest that the 10-gene set may be used as a biomarker set for detecting and characterizing CSCs using gene expression 
data.
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Materials & Methods
Data Preparation 
The study was approved by the ethics committee at Tehran 
University of Medical Sciences, Tehran, Iran (ethics code: 
IR.TUMS.REC.1394.1589). Since we used non-identifiable 
information from a publicly available data set, no specific con-
sent was required.

Datasets
Gene expression data for samples of liver CSC and non-CSC 
were downloaded from GEO through accession numbers 
GSE56771, GSE59713, GSE66529, GSE84223, GSE68778, 
GSE126121, GSE112788, GSE66515, GSE42318, GSE131680, 
GSE103866, and GSE62905, and a data series including only 
non-CSC samples were downloaded via accession num-
ber GSE112790. The first nine of the above data series were 
expression profiling by array, while the remaining four were 
high-throughput sequencing (HiSeq). We excluded samples 
that had undergone intervention. Finally, a total of 129 CSC 
and 247 non-CSC samples were included in the study.

Preprocessing
R language was used for all processing steps, including prepro-
cessing, modeling, and pathway analysis. The dropout effect 
was eliminated in the HiSeq series. We performed log trans-
formation on data series, followed by quartile normalization 
where it was needed. Next, the Ensembl database (https://
www.ensembl.org/index.html) was used to convert IDs from 
different data series to Ensembl IDs. Data series were inte-
grated using the Merge function, and then the ComBat func-
tion from the sva R package was applied to remove batch 
effects. Finally, we had 8409 common transcript genes across 
all data series.

XGBoost model for biomarker 
signature identification
Data classification was performed using XGBoost, which is an 
efficient implementation of the gradient boosting framework 
proposed by Chen and Guestrin.21 Gradient boosted decision 
tree is an ensemble learning method based on sequential deci-
sion trees whereby each decision tree learns from the previous 
tree to improve the model and build a strong learner.

Model tuning
In XGBoost, several parameters need to be selected to max-
imize model performance. However, the multiplicity of 
parameters may result in a model learning noises and random 
fluctuations and considering them meaningful, a phenome-
non referred to as overfitting. Overfitting is a modeling error 
that occurs when a function is too closely fit to a limited set of 
data points.22 Parameter tuning is an essential step in avoiding 
overfitting or undue complexity. The hyperparameters adopted 
in this study were “nrounds,” “eta,” “min_child_weight,” “max_
depth,” “gamma,” “colsample_bytree,” “subsample,” “lambda,” 
and “alpha.”20

The parameter “nrounds” is the number of trees that are 
fitted in the model. The “eta” parameter refers to the learning 
rate, which is used to make the model more robust. The “min_
child_weight” is the minimum sum of instance weight needed 

in a child. If the tree partition step results in a leaf node with 
the sum of instance weight less than “min_child_weight,” the 
building process will stop further partitioning.21

The “max_depth” parameter defines the maximum num-
ber of partitions, with greater maximum depth increasing the 
risk of overfitting. The minimum loss reduction required to 
make a further partition on a leaf node of the tree is defined 
as “gamma,” with a larger “gamma” resulting in a more con-
servative algorithm. The “subsample” parameter refers to the 
fraction of observations randomly selected for the training 
instances, which is inversely related to overfitting. Another 
parameter useful in avoiding overfitting is “colsample_bytree.” 
Finally, the parameters “lambda” and “alpha” are L2 and L1 
regularization terms, respectively, that keep the weights small, 
thus preventing overfitting. 

The random search method was used for model tuning. 
Random search means that hyperparameters are randomly 
picked from the predefined searching domain uniformly 
and the searching does not depend on the previous boosting 
result. It has been shown to be efficient for problems with high 
dimensions in some studies.23

Model evaluation 
In this study, accuracy, sensitivity, and specificity were assessed 
to evaluate model performance. They are defined in Equations 
(1)–(3). The goal is to develop a model with high accuracy, 
sensitivity, and specificity.
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Gene selection
Two gene importance ranking lists obtained from XGBoost 
and SHAP values were considered for the selection of candi-
date genes. We selected the 10 highest-ranking genes common 
to both lists as the marker genes. 

In XGBoost, feature importance is measured using three 
metrics, namely, gain, cover, and frequency. Gain is the contri-
bution of a feature to the accuracy of the branches on them it is 
located. Cover measures the relative quantity of observations 
concerned by a feature. Frequency is a simpler way to measure 
the Gain. It just counts the number of times a feature is used in 
all generated trees. We used the gain score to create a ranked 
list of genes.24

The second ranking list was created with SHAP, which 
explains the prediction of an instance x by computing the con-
tribution of each feature to the prediction. The Shapley value 
for a feature j is the feature’s contribution to the prediction, 
weighted and summed over all possible feature value combi-
nations that determined through Formula 4:
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SHAP values can be used as feature importance scores: 
features with large absolute Shapley values are important. 
Since we wanted global importance, we averaged the absolute 
Shapley values per feature across the data (Formula 5):
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SHAP feature importance is an alternative to permuta-
tion feature importance. However, while permutation feature 
importance is based on the decrease in model performance, 
SHAP is based on the magnitude of feature attributions.25

Enrichment analysis
Pathway analysis for the top 10 genes was carried out using 
REACTOME, an open-source, open access, manually curated, 
and peer-reviewed pathway database. REACTOME provides 
intuitive bioinformatics tools for the visualization, interpreta-
tion, and analysis of pathway knowledge to support basic and 
clinical research, genome analysis, modeling, systems biology, 
and education. Gene ontology analysis was performed with 
Enrichr web-based tools and services.

Results
Data Preparation 
Datasets. In this study, our aim was to screen and mine for 
specific biomarkers for liver CSCs using the online available 
data. At the first stage, we obtained the gene expression profile 
of liver CSCs cell line and tissue including 376 samples (129 
liver CSCs and 247 non-CSCs) from published data in the 
GEO database.
Preprocessing. The ID for each data series, which was cap-
tured from its own platforms annotation file, was mapped to an 
Ensembl ID via the biomaRt package in R to unify the datasets. 
Then, the data series were merged, followed by a batch correc-
tion accomplished using the ComBat function from the sva 
package. The distributions of expression values before and after 
the batch effect correction for the combined datasets are shown 
in Fig. 1a–f. The difference in gene expression distribution 
between CSCs (Fig. 1a) and non-CSC samples was also magni-
fied after batch effect correction (Fig. 1b). The quantile–quan-
tile (Q–Q) plots (Fig. 1c–d) revealed a decrease in the distance 
between dots and the normal distribution line after removal of 
the batch effect. Finally, the PCA plots display the batch effect 
due to the integration of data from various studies (Fig. 1e), 
which has been resolved after applying the batch effect correc-
tion (Fig. 1f). Therefore, the gene expression data sets would be 
reliable for the subsequent analysis after batch effect correction.

XGBoost model for a biomarker signature 
Model tuning. The hyperparameters adopted in this study 
were “eta,” “nrounds,” “max_depth,” “gamma,” “lambda,” 
“alpha,” “min_child_weight,” “subsample,” and “colsample_
bytree.” Table 1 presents the search domains and optimal val-
ues for the hyperparameters. 

Gene selection and models evaluation. We randomly 
selected 65% of the data to train XGBoost and used the 
remaining 35% to test the model. Then, we employed a sev-
enfold cross-validation process to assess model performance 
stability. Fig. 2a displays the results of cross-validation for the 
three performance measures, i.e., accuracy, sensitivity, and 
specificity. The obtained accuracy was 88.68–94.45, sensitiv-
ity 86.68–94.11, and specificity 87.89–94.87. Overall, these 
indicators are significantly high and suggest that XGBoost 
can be used to model cell classification. XGBoost was finally 
retrained on the 75% of the training set and tested on the 
25% of the testing set. The final performance indicators 
achieved were as follows: accuracy: 90%, sensitivity: 94%, 
and specificity: 89%, which is again indicative of significantly 
high performance.

For gene ranking, we created 1000 models using the same 
hyperparameters, with each model assigning an importance 
score to each gene. Then, the median of the 1000 scores for 
each gene was computed to obtain the average score for the 
gene. We re-ranked these genes based on SHAP values and the 
gain scores. The 10 top-ranking genes remained the same in 
both rankings. We select these genes as a potential biomarker 
set. The biomarker genes were PTGER3, AURKB, C15orf40, 
IDI2, OR8D1, NACA2, SERPINB6, L1CAM, SMC1A, and 
RASGRF1.

To see if the selected marker genes could serve as “univer-
sal” markers for cell classification using gene expression data, 
we trained the XGBoost model using only the selected marker 
genes. Interestingly, the selected genes did reasonably better 
than all-gene modeling. The performance indicators achieved 
were as follows: accuracy: 97%, sensitivity: 100%, and specific-
ity: 95% (Fig. 2b). We also calculated the SHAP value for each 
marker gene (Fig. 3).

Enrichment analysis
We further tested the top 10 genes for enriched gene ontol-
ogy terms by the Enrichr web service and analysis tools of the 
Reactome website for pathways (Fig. 4).

Results
A total of 57 were recruited in this study. Of 57 children with 
G6PD deficiency, 17 (29.8%) were diagnosed as severe cases 
depending on the level of hemoglobin at time of presenta-
tion to the emergency room in Children Welfare Teaching 
Hospital. 

The total number is 57 patients. The mean age is 4.35 
years, males were constituting 85.9%, 32 patients were living 
in Urban area mostly from Baghdad, two-thirds of the patients 
have recorded ingestion of fresh type of fava beans (64.9%), 
while one-third ingested dried type (35%). Ten patients were 
already diagnosed with G6PD prior to the presentation; six of 
them were diagnosed based on previous episodes of hemoly-
sis, and four depending on routine assessment for a suspected 
family member. 

Analysis of the demographic and clinical characteristics 
of the 57 patients according to the severity of hemolysis (mild 
vs severe) and the results of the independent samples t-test 
(for continuous variables) and Chi square (for categorical vari-
ables) are represented in Table 1. Younger age group patients 
tend to present with the severe form of hemolysis (3.59 years 
with a P value of 0.001). No significant gender susceptibility 

SHAP values can be used as feature importance scores: 
features with large absolute Shapley values are important. 
Since we wanted global importance, we averaged the absolute 
Shapley values per feature across the data (Formula 5):
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the batch effect. Finally, the PCA plots display the batch effect 
due to the integration of data from various studies (Fig. 1e), 
which has been resolved after applying the batch effect correc-
tion (Fig. 1f). Therefore, the gene expression data sets would be 
reliable for the subsequent analysis after batch effect correction.

XGBoost model for a biomarker signature 
Model tuning. The hyperparameters adopted in this study 
were “eta,” “nrounds,” “max_depth,” “gamma,” “lambda,” 
“alpha,” “min_child_weight,” “subsample,” and “colsample_
bytree.” Table 1 presents the search domains and optimal val-
ues for the hyperparameters. 

Gene selection and models evaluation. We randomly selected 
65% of the data to train XGBoost and used the remaining 35% 
to test the model. Then, we employed a sevenfold cross-vali-
dation process to assess model performance stability. Fig. 2a 
displays the results of cross-validation for the three perfor-
mance measures, i.e., accuracy, sensitivity, and specificity. The 
obtained accuracy was 88.68–94.45, sensitivity 86.68–94.11, 
and specificity 87.89–94.87. Overall, these indicators are sig-
nificantly high and suggest that XGBoost can be used to model 
cell classification. XGBoost was finally retrained on the 75% 
of the training set and tested on the 25% of the testing set. 
The final performance indicators achieved were as follows: 
accuracy: 90%, sensitivity: 94%, and specificity: 89%, which is 
again indicative of significantly high performance.

For gene ranking, we created 1000 models using the same 
hyperparameters, with each model assigning an importance 
score to each gene. Then, the median of the 1000 scores for 
each gene was computed to obtain the average score for the 
gene. We re-ranked these genes based on SHAP values and the 
gain scores. The 10 top-ranking genes remained the same in 
both rankings. We select these genes as a potential biomarker 
set. The biomarker genes were PTGER3, AURKB, C15orf40, 
IDI2, OR8D1, NACA2, SERPINB6, L1CAM, SMC1A, and 
RASGRF1.

To see if the selected marker genes could serve as “univer-
sal” markers for cell classification using gene expression data, 
we trained the XGBoost model using only the selected marker 
genes. Interestingly, the selected genes did reasonably better 
than all-gene modeling. The performance indicators achieved 
were as follows: accuracy: 97%, sensitivity: 100%, and specific-
ity: 95% (Fig. 2b). We also calculated the SHAP value for each 
marker gene (Fig. 3).

Enrichment analysis
We further tested the top 10 genes for enriched gene ontol-
ogy terms by the Enrichr web service and analysis tools of the 
Reactome website for pathways (Fig. 4).

Discussion
Liver cancer is a leading global health issue associated with 
high morbidity and mortality rate.26 In recent years, CSCs 
have been reported to make important contributions to tumor 
recurrence, progression, and therapeutic resistance. Therefore, 
therapeutic targeting of liver stem cells is necessary.5

In this study, we integrated data series from GEO to iden-
tify potential biomarkers for liver CSCs via machine learning 
classification-based gene selection. One application of inte-
grated gene expression is biomarker discovery. The integra-
tion of data from multiple studies increases the sample size by 
incorporating samples from different cohorts, increasing the 
statistical power and the robustness of the results. However, it 
should be mentioned that increasing the sample size reduces 
the gene count in the integrated data set, resulting in informa-
tion loss.9, 27, 28

Thirteen (13) data series from GEO were integrated pro-
ducing a total of 385 samples in two groups (CSCs and non-
CSCs). Batch correction was conducted with ComBat of the 
sva R package, which is frequently used in this area.10, 29-32 We 
used XGBoost for cell type prediction, as it offers high pre-
diction accuracy and has stronger interpretability owing to 
its state-of-the-art algorithms. Because of these advantages, 
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researchers are increasingly using XGBoost in biomarker 
discovery.12, 33, 34 To improve the prediction performance, we 
tuned hyperparameters using random search, which is more 
efficient than either a traditional manual or grid search and 
evaluates more of the search space, especially when the search 
space has more than three dimensions.35 As we did not have 

an external data set to evaluate our model, we performed a 
sevenfold cross-validation with accuracy as the overall metric 
and sensitivity and specificity as the class-specific metrics. In 
our model, the values for the three metrics indicate high per-
formance at both training and testing stages, suggesting that 
XGBoost can effectively distinguish the two classes.12, 20

Table 1. Tuned hyperparameter and Searching domain in XGBoost.
Name Domain Transformation function Optimal Hyperparameter Value

eta [0.01 , 0.10] - 0.088

nrounds [100 , 1000] - 475

max_depth [4 , 10] - 5

gamma [-1 , 0] F(x) = 10x 0.62

lambda [-1 , 1] F(x) = 10x 1.59

alpha [-1 , 1] F(x) = 10x 1.08

min_child_weight [1 , 12] - 3.28

subsample [0.5 , 1] - 0.61

colsample_bytree [0.5 , 1] - 0.85

Fig 1. The density, Q–Q, and PCA plots for evaluating the effect of the batch removal method on overall data. (a) The density plot before 
batch effect removal. (b) The density plot after batch effect removal (c) The Q–Q plot before batch effect removal. (d) The Q–Q plot after batch effect removal. (e) The 
PCA plot before batch effect removal. (f ) The PCA plot after batch effect removal. The dashed line in the density plot represents CSCs samples, and the continuous line 
represents non-CSCs samples. N, the gene number in the combined data set.
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Fig. 2. Models performance presentation. (a) The XGBoost model’s sevenfold cross-validation plot. (b) Selected gene 
XGBoost model ROC generates an AUC value greater than that achieved using all-gene XGBoost.

Fig. 3. SHAP summary plot. Contribution of each gene to model (XGBoost with top 10 genes) 
output.
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XGBoost assigns an importance score for each feature, 
which can be used for feature selection. SHAP values also pro-
vide a means of ranking features as well as providing a mea-
sure of prediction consistency. Therefore, for more certainty, 
we used both XGBoost importance and SHAP values.13, 20 
The SHAP values and gain scores for genes were imputed, as 
described by Riberio et al and Chen et al, respectively.19, 21

We created 1000 XGBoost models by the same tuning 
parameters and then obtained feature importance score (gain) 
and SHAP values for each of the 1000 models. Finally, the 
median of 1000 scores was calculated for each gene. These scores 
are reliable and can be used as gene ranks.12 Genes were ordered 
separately by gain score and SHAP value. The top 10 genes from 
the SHAP list were selected, 9 of which were also among the 
top 10 genes in the gain score list and the remaining 1 corre-
sponded to the 11th gene in this list. So, the 10 highest-ranking 
genes from the SHAP list were selected as the biomarker set, 
including PTGER3, AURKB, C15orf40, IDI2, OR8D1, NACA2, 
SERPINB6, L1CAM, SMC1A, and RASGRF1. To ensure that 
this gene set can be used as a biomarker set, we trained our 
model using only these 10 genes, which offered better predic-
tion performance compared with all-gene models.

Many studies have shown that CSCs have one or more 
abnormalities in signaling pathways that regulate cell cycle 

and self-renewal. The cellular pathways in which the key 
genes are most involved are pathways associated with cell 
cycle regulation.36 For example, the aurora kinase b (Aurkb)-
protein phosphatase 1 (PP1) axis has been shown to mediate 
the resetting of Oct4 during the cell cycle in embryonic stem 
cells. Aurkb-PP1 axis also plays a critical role in cell cycle-de-
pendent changes in kinetochore assembly by regulating the 
balance between phosphorylation and dephosphorylation of 
kinetochore substrates.37

SMC1A has also a key role in tumor metastasis and resis-
tance to radiation therapy. This gene is associated with CSCs, 
epithelial-to-mesenchymal transition, and DNA–damage 
response pathways. Yadav et al demonstrated that suppres-
sion of SMC1A expression reduces the self-renewal capacity 
of prostate cancer cells.38 PTGER3 induces tumorigenesis and 
drug resistance in ovarian cancer.36 LMBR1 is a regulator of 
nuclear stemness marker BMI1 in gastrointestinal stromal 
tumors.39 Another study has reported PFKL to play a vital role 
in the maintenance of CSC-like phenotype in hepatocellular 
carcinoma.40 L1CAM has been implicated in maintaining the 
growth and survival of CD133+ glioma cells both in vitro and 
in vivo and has been suggested to be a CSC-specific therapeu-
tic target for improving the treatment of malignant gliomas 
and other brain tumors.41

Fig. 4. Pathway and gene ontology analysis of selected genes. (a) Selected genes-involved pathways. (b) Overall view of cell cycle 
pathways in which the selected genes were involved. (c) Selected genes involved in biological processes. (d) Selected genes 
involved in molecular functions. (e) Selected genes involved in cellular component.
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Conclusions
These 10 key genes were found to play important roles in liver 
CSC maintenance. It seems that AURKB is more important 
for controlling the stemness and may help in the treatment of 
liver cancer. This gene may be a therapeutic target for inhib-
iting liver cancer stemness characteristics. However, this con-
clusion is based on retrospective data, and validation of these 
findings warrants further biological studies.
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 28. Ghosheh N, Küppers-Munther B, Asplund A, et al. Human pluripotent stem 
cell-derived hepatocytes show higher transcriptional correlation with adult 
liver tissue than with fetal liver tissue. ACS Omega 2020;5:4816-4827.

 29. Bai J, Zhang X, Kang X, et al. Screening of core genes and pathways in breast 
cancer development via comprehensive analysis of multi gene expression 
datasets. Oncol Lett 2019;18:5821-5830.

 30. Xia L, Su X, Shen J, et al. ANLN functions as a key candidate gene in cervical 
cancer as determined by integrated bioinformatic analysis. Cancer Manage 
Res 2018;10:663.

 31. Kuang Y, Wang Y, Zhai W, et al. Genome-wide analysis of methylation-driven 
genes and identification of an eight-gene panel for prognosis prediction in 
breast cancer. Front Genet 2020;11:301.

 32. Guo T, Ma H and Zhou Y. Bioinformatics analysis of microarray data 
to identify the candidate biomarkers of lung adenocarcinoma. PeerJ 
2019;7:e7313.

 33. Zhang X, Li T, Wang J, et al. Identification of cancer-related long non-coding 
RNAs using XGBoost with high accuracy. Front Genet 2019;10:735.

 34. Ding W, Chen G and Shi T. Integrative analysis identifies potential 
DNA methylation biomarkers for pan-cancer diagnosis and prognosis. 
Epigenetics 2019;14:67-80.

 35. Si M, Xiong Y, Du S, et al. Evaluation and calibration of a low-cost particle 
sensor in ambient conditions using machine-learning methods. Atmos 
Measure Tech 2020;13.

 36. Rodriguez-Aguayo C, Bayraktar E, Ivan C, et al. PTGER3 induces ovary 
tumorigenesis and confers resistance to cisplatin therapy through up-
regulation Ras-MAPK/Erk-ETS1-ELK1/CFTR1 axis. EBioMedicine 2019;40:290-
304.

 37. Shin J, Kim TW, Kim H, et al. Aurkb/PP1-mediated resetting of Oct4 during 
the cell cycle determines the identity of embryonic stem cells. Elife 
2016;5:e10877.

 38. Yadav S, Kowolik CM, Lin M, et al. SMC1A is associated with radioresistance 
in prostate cancer and acts by regulating epithelial-mesenchymal transition 
and cancer stem-like properties. Mol Carcinogen 2019;58:113-125.

 39. Bai C, Liu X, Xu J, et al. Expression profiles of stemness genes in 
gastrointestinal stromal tumor. Human Pathol 2018;76:76-84.

 40. Lin S-H, Liu T, Ming X, et al. Regulatory role of hexosamine biosynthetic 
pathway on hepatic cancer stem cell marker CD133 under low glucose 
conditions. Scient Rep 2016;6:1-10.

 41. Bao S, Wu Q, Li Z, et al. Targeting cancer stem cells through L1CAM 
suppresses glioma growth. Cancer Res 2008;68:6043-6048.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative 
works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

https://doi.org/10.22317/jcms.v6i6.898


