Decomposition of a Fuzzy Function by One-Dimensional Fuzzy Multiresolution Analysis

Jean-louis Akakatshi Ossako ${ }^{1 *}$, Rebecca Walo Omana ${ }^{2}$, Richard Bopili Mbotia ${ }^{3}$, Antoine Kitombole Tshovu ${ }^{4}$
1,2,4 Department of Mathematics and Computer Science, Faculty of Science and Technology, University of Kinshasa, Kinshasa, D.R.Congo
${ }^{3}$ Department of Physics, Faculty of Science and Technology, University of Kinshasa, Kinshasa, D.R.Congo

Corresponding author: *jlakakatshi@gmail.com
Received Date: 10 January 2023
Accepted Date: 27 February 2023
Published Date: 01 March 2023

HIGHLIGHTS

- Demonstration of the existence of fuzzy multi-resolution analyzes for the decomposition of a fuzzy signal
- Obtaining the fuzzy spaces containing the details of the fuzzy signal by the existence of a fuzzy wavelet
- Construction of a fuzzy wavelet
- obtaining a fuzzy orthonormal basis of $L^{2}([0,1], \beta(R), \mu, F(R))$ on which to decompose a fuzzy signal

Abstract

Signal compression and data compression are techniques for storing and transmitting signals using fewer bits as possible for encoding a complete signal. A good signal compression scheme requires a good signal decomposition scheme. The decomposition of the signal can be done as follows: The signal is split into a low-resolution part, described by a smaller number of samples than the original signal, and a signal difference, which describes the difference between the low-resolution signal and the real coded signal. Our paper deals with the proofs of these properties in a fuzzy environment. The proof of onedimensional multiresolution analysis is given. The concept of fuzzy wavelets is introduced and as a byproduct a special fuzzy space of details of a signal is given and an orthonormal basis of $L^{2}([0,1], \beta(R), \mu, F(R))$ decomposing the fuzzy signal is obtained.

Keywords: Fuzzy image, fuzzy multiresolution analyzes, fuzzy basis functions, fuzzy basis Riesz, fuzzy orthonormal basis.

INTRODUCTION

The one-dimensional multiresolution analysis of $L^{2}(R)$ is an appropriate tool for wavelet study it, allows in particular, the construction of an orthonormal bases (Mallat, 1999; Meyer, 1987; Daubechies, 1992; Mehra, 2018).
The multiresolution analysis of a sequence of nested and closed subspaces $\left(V_{j}\right)_{j=-\infty, \ldots .,+\infty}$ satisfying the following properties:

1) $\forall j \in Z, V_{j} \subset V_{j+1}$.
2) $\forall j \in Z, f(t) \in V_{j} \Leftrightarrow f(2 t) \in V_{j+1}$
3) $\forall k \in Z, f(t) \in V_{0} \Leftrightarrow f(t-k) \in V_{0}$
4) $\lim _{j \rightarrow-\infty} V_{j}=\bigcap_{j=-\infty}^{+\infty} V_{j}=\{0\}$.
5) $\lim _{j \rightarrow+\infty} V_{j}=\overline{\bigcup_{j=-\infty}^{+\infty} V_{j}}=L^{2}(R)$

Moreover, there exist $\theta \in L^{2}(R)$ such that $\{\theta(t-n)\}_{n \in Z}$ is a Riesz basis of V_{0}.
A function $f \in L^{2}(R)$ is approximated at any level j of this analysis, and the approximation in V_{j} is twice finer than in V_{j-1} for every $\mathrm{j}=-\infty, \ldots .,+\infty$.

Problematic

This multiresolution analysis defines f in $L^{2}(R)$ using an orthonormal basis, as a sum of details.
The paper deals with this analysis in a fuzzy environment.

Methodology

Our methodological scheme follows the following steps:

- Fuzzy multi-resolution analysis ;
- Detail spaces and wavelets;
- Construction of the fuzzy wavelet ;
- Fuzzy orthonormal bases of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$.

Interest of the subject

The interest of our work is that it takes into account the fuzzy environment in the signal decomposition by one-dimensional multiresolution analysis in wavelet theory.

Results obtained:

The main result is multiresolution analysis and fuzzy orthonormal bases of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$

Consider an interval $[\mathrm{a}, \mathrm{b}]$ as a fuzzy universe set.

The fuzzy partition of this universe is given by the fuzzy subsets of the universe [a, b] which admit the properties given in the following definition:

Definition 1.1 (Perfilieva, 2006; Ohlan, 2021; Bloch, 2015 ; Sussner, 2016)
Consider $\mathrm{x}_{1}<\ldots<\mathrm{x}_{\mathrm{n}}$ fixed nodes such that $\mathrm{x}_{0}=\mathrm{a}$ and $\mathrm{x}_{\mathrm{n}+1}=\mathrm{b}$ with $\mathrm{n} \geq 2$. Then the fuzzy sets $A_{l}, \ldots \ldots . ., A_{n}$, of membership functions $A_{l}(x)$
fuzzy partition of $[\mathrm{a}, \mathrm{b}]$ if they satisfy the following conditions for $\mathrm{k}=1$, \qquad
(1) $A_{k}:[\mathrm{a}, \mathrm{b}] \rightarrow[0,1], A_{k}\left(x_{k}\right)=1$;
(2) $A_{k}(x)=0$ if $x \notin\left(x_{k-l}, x_{k+1}\right)$;
(3) A_{k} is continuous;
(4) A_{k}, for $\mathrm{k}=2, \ldots \ldots . ., \mathrm{n}$, increases strictly on $\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$ and decreases strictly on [$\left.\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right]$ for $\mathrm{k}=1$ \qquad n-1.
(5) For all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}], \sum_{k=1}^{n} A_{k}(x)=1$

And the membership functions that can be identified with the sets A_{l}, \ldots, A_{n} are called fuzzy basis functions.

Fuzzy multi-resolution analysis

Let $f:[0,1] \rightarrow \mathrm{F}(R)$ a fuzzy function and $K(R)$ be the set of closed intervals of R
Then α-cuts of $f, f_{\alpha}=[f]^{\alpha} \in K(R)$.
Theorem 1.2
There is a sequence of fuzzy sets $\left\{V_{j}\right\}_{j \in Z}$ forming a multi-resolution analysis of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$.

Proof

Consider a sequence $\left\{V_{j}\right\}_{j \in Z}$ in $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$ and $\forall \alpha \in[0,1]$, let $V_{j}^{\alpha}=\left[V_{j}\right]^{\alpha}$ the $\alpha-$ level sets of V_{j}.
We have: $V_{j}^{\alpha} \in K(R)$
Assume that this sequence of closed intervals is nested and verifies the following properties:

1) $\forall j \in Z, V_{j}^{\alpha} \subset V_{j+1}^{\alpha}$;
2) $\forall j \in Z, \exists f:[0,1] \rightarrow \mathrm{F}(R))$ such that $f_{\alpha}(t) \in V_{j}^{\alpha} \Leftrightarrow f_{\alpha}(2 t) \in V_{j+1}^{\alpha}$;
3) $\forall k \in Z, f_{\alpha}(t) \in V_{0}^{\alpha} \Leftrightarrow f_{\alpha}(t-k) \in V_{0}^{\alpha}$;
4) $\lim _{j \rightarrow-\infty} V_{j}^{\alpha}=\bigcap_{j=-\infty}^{+\infty} V_{j}^{\alpha}=\{0\}$;
5) $\lim _{j \rightarrow+\infty} V_{j}^{\alpha}=\bigcup_{j=-\infty}^{+\infty} V_{j}^{\alpha}$
$\forall \alpha \in[0,1]$, we shown in lemma 1.4 the existence of a Riesz basis $\left\{\theta^{\alpha}(t-n)\right\}_{n \in Z}$.
Note that j stands for resolution and represents the level of analysis of the function f_{α}; the approximation in V_{j}^{α} of f_{α} is twice fine as in V_{j-1}^{α} but half good as that in V_{j+1}^{α}.

Define $V_{j}=\left\{v \in \mathrm{~F}(R):[v]^{\alpha} \in V_{j}^{\alpha}\right\}$
Then for $v \epsilon V_{j}$, we have : $v_{\alpha} \in V_{j}^{\alpha} \subset V_{j+1}^{\alpha}$.
Therefore, ${ }^{v_{\alpha}} \in V_{j+1}^{\alpha}$ and ${ }^{v} \epsilon V_{j+1}$.
The choice of v being arbitrary, we have :
1') $V_{j} \subset V_{j+1}, \forall j \in Z$
2') By definition, if $\forall \alpha \in[0,1] f_{\alpha}(t) \in V_{j}^{\alpha}$, then : $f(t) \in V_{j}$ and by 2$), f(t) \in V_{j} \Leftrightarrow f(2 t) \in V_{j+1}$ $\forall j \in Z$.
3') Similarly, if $\forall \alpha \in[0,1], f_{\alpha}(t) \in V_{0}^{\alpha}$, then : $f(t) \in V_{0}$ and by 3$), f(t) \in V_{0} \Leftrightarrow f(t-k) \in V_{0}$ $\forall k \in Z$.
Note that:
(i) $\left[\bigcap_{j=-N}^{N} V_{j}\right]^{\alpha}=\bigcap_{j=-N}^{N} V_{j}^{\alpha}$.
(ii) $\left[\bigcup_{j=-N}^{N} V_{j}\right]^{\alpha}=\bigcup_{j=-N}^{N} V_{j}^{\alpha}$.

5') From (ii), we have :

$$
\lim _{N \rightarrow+\infty} \bigcup_{j=-N}^{N} V_{j}^{\alpha}=\bigcup_{j=-\infty}^{+\infty} V_{j}^{\alpha} \text { and } \lim _{N \rightarrow+\infty}\left[\bigcup_{j=-N}^{N} V_{j}\right]^{\alpha}=\left[\lim _{N \rightarrow \infty} \bigcup_{-N}^{N} V_{j}\right]^{\alpha}=\bigcup_{j=-\infty}^{+\infty} V_{j}^{\alpha} .
$$

Hence, $\lim _{N \rightarrow+\infty} \bigcup_{j=-N}^{N} V_{j}=\bigcup_{j=-\infty}^{+\infty} V_{j}$.
Since $V_{j} \subset V_{j+1}$, we have $\lim _{j \rightarrow+\infty} V_{j}=\overline{\bigcup_{j=-\infty}^{+\infty} V_{j}}$.
4') V_{j}^{α} forms decreasing nested intervals when $j \rightarrow-\infty$ that is $V_{-(j+1)}^{\alpha} \subset V_{-j}^{\alpha}$, so we have :

$$
\bigcap_{j=-\infty}^{\infty} V_{j}^{\alpha}=\{0\} \text { and } \lim _{j \rightarrow+\infty} V_{j}^{\alpha}=\{0\}=\bigcap_{j=-N}^{N} V_{j}^{\alpha}=\left[\lim _{N \rightarrow \infty} \bigcap_{-N}^{N} V_{j}\right]^{\alpha} .
$$

To complete the proof of theorem 1.2, we need to show the existence of a Riesz basis for V_{0}^{α} and therefore, by (1.1) a Riesz basis for V_{0}.
This is done in lemma 1.4
Definition 1.3 (Mallat, 1999 ; Le Cadet, 2004)
A family of vectors $\left\{e_{n}\right\}_{n \in Z}$ is a Riesz basis of H if it is linearly independent and there exist $\mathrm{A}>0$ and $\mathrm{B}>0$ such that for any $f \in \mathrm{H}$, we can find $a[n]$ with
$f=\sum_{n=-\infty}^{+\infty} a[n] e_{n}$ satisfactory $A\|f\|^{2} \leq \sum_{n=-\infty}^{+\infty}|a[n]|^{2} \leq B\|f\|^{2}$.
Note that this energy equivalence ensures that the development of f on $\left\{e_{n}\right\}_{n \in Z}$ is numerically stable.
The following theorem, inspired by (Mallat, 1999), gives a necessary and sufficient condition for $\left\{\theta^{\alpha}(t-n)\right\}_{n \in Z}$ to be a Riesz basis of V_{0}^{α}.

Lemma 1.4

A family $\left\{\theta^{\alpha}(t-n\}_{n \in Z}, \alpha \in[0,1]\right.$, is a Riesz basis of V_{0}^{α} if and only if
$\exists 0<\mathrm{A}$ and $0<\mathrm{B}$ such that $\forall w \in[-\pi, \pi], \frac{1}{B} \leq \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} \leq \frac{1}{A}$

Proof

(i) By definition, $\left\{\theta^{\alpha}(t-n)\right\}_{n \in Z}$ is a Riesz basis of $V_{0}{ }^{\alpha}$ if $\forall \mathrm{f} \in V_{0}{ }^{\alpha}$,
$f(t)=\sum_{n \in Z} a[n] \theta^{\alpha}(t-n)$ and there exist $\mathrm{A}>0$ and $\mathrm{B}>0$ such that
$A\|f\|^{2} \leq \sum_{n \in Z}|a[n]|^{2} \leq B\|f\|^{2}$
The Fourier transform of f is $\hat{f}(w)=\hat{a}(w) \hat{\theta}^{\alpha}(w+2 k \pi)$ where $\hat{a}(w)=\sum_{n \in Z} a[n] e^{-i \pi w}, w \in[-\pi, \pi]$.
By the Parseval identity, we have :

$$
\sum_{n \in Z}|a[n]|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} d w
$$

and

$$
\|f\|^{2}=|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{f}(w)|^{2} d w .
$$

Using the periodicity of $\hat{a}(w)$, we have :

$$
\|f\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} d w .
$$

And by (1.3), we have : $\forall \mathrm{w} \in[-\pi, \pi]$:

$$
\|f\|^{2} \leq B\|f\|^{2} \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} .
$$

Hence $\frac{1}{B} \leq \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2}$

Similarly, we have : $A\|f\|^{2} \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} \leq\|f\|_{\text {which implies }}^{2} \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} \leq \frac{1}{A}$.
(2i) Conversely, if f verifies (1.2) then $\left\{\theta^{\alpha}(t-n)\right\}_{n, \in \mathcal{Z}}$ is a Riesz basis of $V_{0}{ }^{\alpha}$ if and only if $\forall f \in V_{0}{ }^{\alpha}$ and for any sequence $(a(n))_{n c Z} \subset 1^{2}$, we have :

$$
A\|f\|^{2} \leq \sum_{n \in Z}|a[n]|^{2} \leq B\|f\|^{2}
$$

Suppose that for one of these sequences, (1.2) is not verified.
Then $\forall w \in[-\pi, \pi],{ }^{\exists} \hat{a}(w)$, with support in $[-\pi, \pi]$, such that

$$
\frac{1}{B} \succ \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} \text { or } \frac{1}{A} \prec \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} .
$$

Let us first assume that for these $w \in[-\pi, \pi]$, we have $\sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} \prec \frac{1}{B}$
So $\|f\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2} d w$.

$$
\prec \frac{1}{B} \frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} d w=\frac{1}{B} \sum_{n \in Z}|a[n]|^{2} \text {, that is } B\|f\|^{2} \prec \sum_{n \in Z}|a[n]|^{2} \text {. }
$$

Assume also that for these $w \in[-\pi, \pi]$, we have : $\frac{1}{A} \prec \sum_{k \in Z}\left|\hat{\theta^{\alpha}}(w+2 k \pi)\right|^{2}$.

$$
\begin{aligned}
& \text { So }\|f\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} \sum_{k \in Z}\left|\hat{\theta}^{\alpha}(w+2 k \pi)\right|^{2} d w \\
& \Rightarrow \frac{1}{A} \frac{1}{2 \pi} \int_{0}^{2 \pi}|\hat{a}(w)|^{2} d w \prec\|f\|^{2} \\
& \Rightarrow \frac{1}{A} \sum_{n \in Z}|a[n]|^{2} \prec\|f\|^{2} \text {, that is } \sum_{n \in Z}|a[n]|^{2} \prec A\|f\|^{2} .
\end{aligned}
$$

By this double contradiction, the reciprocal is well verified.

Detail spaces and wavelets

Definition 1.5 (Beg, 2013; Cheng, 2015 ; Huang, 2016)
Let A_{k} be a fuzzy basis function and let $\delta_{k}(x)$ be an other basis function satisfying all the conditions given in Definition 1.1
Then there exists $p \in N$ with $p>1$ such that $\delta_{k}(x)=A_{k}{ }^{p}(x)$
where $A_{k}{ }^{p}(x)=A_{k}(x) \ldots A_{k}(x)(p$ times $)$, and $\delta_{k}(x)$ is called the fuzzy delta function.
This implies that $\int_{-\infty}^{\infty} \delta_{k}(x) d x \prec \prec \int_{-\infty}^{\infty} A_{k}(x) d x$

$$
\begin{equation*}
\text { and } \int_{-\infty}^{\infty} A_{k}(x) d x=1 \tag{1.6}
\end{equation*}
$$

Definition 1.6 (Beg, 2013; Cheng, 2015 ; Huang, 2016)

Let $A_{k}(x)($ for $\mathrm{k}=0$, \qquad n) be fuzzy basis functions.
$\left\{A_{k}(x)\right\}$ are orthogonal fuzzy if $\int_{-\infty}^{\infty} A_{j}(x) A_{k}(x) d x=\left\{\begin{array}{c}\delta_{k}(x), \quad j=k \\ \varepsilon(x),|j-k|=1 \\ 0, \text { otherwise }\end{array}\right.$
where $\varepsilon(x)$ is a function such that $\int_{-\infty}^{\infty} \varepsilon(x) d x=\alpha \prec \prec \int_{-\infty}^{\infty} \delta_{k}(x) d x$
where α is an arbitrary positive real number close to 0 .
Definition_1.7 (Beg, 2013)
Consider a fuzzy basis function $A(x)$ centered on the first node, that is $\mathrm{k}=0$.
We define a displacement operator $\left(R_{k}\right)$ as follows:

$$
\begin{equation*}
A_{k}(x)=R_{k} A(x) \tag{1.9}
\end{equation*}
$$

Definition 1.8 (Beg, 2013)
The fuzzy scalar product is defined by : $\left\langle A, R_{k} A\right\rangle=\oplus_{m=-\infty}^{\infty} A \otimes A_{k}$
where $\left(A \otimes A_{k}\right)(m)=A(m) A_{k}(m)$
is an ordinary product.
Furthermore, the sum of any 2 terms in (1.10) is calculated as follows:

$$
\left(A \otimes A_{k}\right)(m) \oplus\left(A \otimes A_{k}\right)(n)=\left(A \otimes A_{k}\right)(m)+\left(A \otimes A_{k}\right)(n)-\left(A \otimes A_{k}\right)(m)\left(A \otimes A_{k}\right)(n)(1.12)
$$

Definition 1.9 (Beg, 2013)

Let $A_{k}(x)=R_{k} A(x)$ (for $\left.\mathrm{k}=0, \ldots \ldots \ldots, \mathrm{n}\right)$ be fuzzy basis functions satisfying the equations (1.6) and (1.7).
Then $\left\{A_{k}(x)\right\}$ are fuzzy orthogonal. This implies : $\left\langle A(x), R_{k} A(x)\right\rangle=\left\{\begin{array}{c}\delta_{k}(x), \quad k=0 \\ \varepsilon(x),|k|=1 \\ 0, \quad \text { otherwise }\end{array}\right.$
where $\langle\cdot, \cdot\rangle$ is a scalar product.
as $\int_{-\infty}^{\infty} \varepsilon(x) d x=\alpha \prec \prec \int_{-\infty}^{\infty} \delta_{k}(x) d x \quad$, we can \quad approximate $\left\langle A(x), R_{k} A(x)\right\rangle \quad$ as \quad follows:
$\left\langle A(x), R_{k} A(x)\right\rangle=\left\{\begin{array}{c}\delta_{k}(x), \quad k=0 \\ 0, \quad \text { otherwise }\end{array}\right.$
From this approximation, it is possible to orthogonalize the basis $\{\theta(t-n)\}_{n \in Z}$ of V_{0}, and obtain an orthonormal basis $\{\Phi(t-n)\}_{n \in Z}$ of V_{0}.

Thus, as $\{\Phi(t-n)\}_{n c z}$ is an orthonormal basis of V_{o}, the properties (2^{\prime}) and (3^{\prime}) of fuzzy multiresolution analysis allow us to deduce that $\left\{\phi_{j n}\right\}_{n \in Z}=\left\{2^{j / 2} \phi\left(2^{j} t-n\right)\right\}_{n \in Z}$ form a fuzzy orthonormal basis of V_{j} for any $\mathrm{j} \in \mathrm{Z}$.

While these bases are suitable for approximation problems, they do not a priori have properties that facilitate the detection of singularities in an image; on the other hand, the details that are lost when going from a resolution j to a coarser resolution $\mathrm{j}-1$, are high-frequency components of the image.
Let W_{j-l} be the fuzzy space containing these details.
In the following, we define the direct sum between two fuzzy sets by using α-cuts.
Let $P_{K}(R)$ be the set of compact and convex subsets of R.
It is known that $\forall \mathrm{u} \in \mathrm{F}(R)$, the $\alpha-\operatorname{cut}[\mathrm{u}]^{\alpha} \in \mathrm{P}_{\mathrm{K}}(\mathrm{R}), 0 \leq \alpha \leq 1$.
For every $0 \leq \alpha \leq 1$ and for every $\mathrm{u}, \mathrm{v} \in \mathrm{F}(R)$, we define $\mathrm{u} \tilde{+} \mathrm{v}$ using α-cuts $[\mathrm{u} \tilde{+} \mathrm{v}]^{\alpha}$ as follows:
Lemma 1.10 (Lakshmikantham, 2003; De Barros, 2017; Gomes, 2015 ; Mazandarani, 2021).
Let u and $\mathrm{v} \in \mathrm{F}(R)$, then $\forall \alpha \in[0,1]:[\mathrm{u} \tilde{+} \mathrm{v}]^{\alpha}=[\mathrm{u}]^{\alpha}+[\mathrm{v}]^{\alpha}$.
We can define the direct sum between two fuzzy sets using α-cuts by :
Definition 1.11 (Cognet, 2000; Grifone, 2019)
$[w]^{\alpha}=[u \underset{D}{\oplus} v]^{\alpha}$ where :
$[w]^{\alpha}=[u]^{\alpha}+[v]^{\alpha}$ with $[u]^{\alpha} \cap[v]^{\alpha}=\{0\}$.
As $V_{j} \subset V_{j+1}$, there is a subset W_{j} such that $V_{j+1}=V_{j} \underset{D}{\oplus} W_{j}$.
We define this relationship using the α-cuts by :
Definition_1.12
$V_{j}^{\alpha}=V_{j-1}^{\alpha}+W_{j-1}^{\alpha}$ with $\quad V_{j-1}^{\alpha} \cap W_{j-1}^{\alpha}=\{0\}$.
The second condition implies orthogonality.
Now we present fuzzy orthonormal bases of these detail spaces; they will have interesting properties for the detection of singularities in an image, and in particular for the compression problem.
According to the definition of a fuzzy multiresolution analysis, we have :

$$
V_{0} \subset V_{1}
$$

Since $\Phi(t) \in V_{o}$, we have $\Phi(t) \in V_{l}$; hence, there exists a sequence $\left(h_{k}\right)_{k \in \mathcal{L}}$ such that :

$$
\phi(t)=\sum_{k \in Z} h_{k} \cdot \sqrt{2} \phi(2 t-k) .
$$

Given Φ, this relation allows to construct h_{k} (via its transfer function $\mathrm{m}_{0}(\mathrm{w})$, given in equation (1.16)).
On the other hand,

$$
W_{0} \subset V_{1}
$$

If $\Psi(t)$ is a function of W_{0}, there exists a sequence $\left(g_{k}\right)_{k \epsilon Z}$ such that:

$$
\psi(t)=\sum_{k \in Z} g_{k} \cdot \sqrt{2} \phi(2 t-k) .
$$

This relationship and the previous one are called fuzzy two-scale relationships.
These two relations allow us to construct a fuzzy wavelet Ψ such that $\{\Psi(t-n)\}_{n \in z}$ be a fuzzy orthonormal basis of W_{o}.
By compressing or expanding Ψ, we then construct fuzzy orthonormal bases of the other detail spaces:

$$
\left\{\psi_{j n}\right\}_{n \in Z}=\left\{2^{j / 2} \psi\left(2^{j} t-n\right)\right\}_{n \in Z} \text { is a fuzzy basis of } W_{j} \text { for } j \in Z .
$$

Construction of Ψ

Definition 1.13 (Kumwimba, 2016; Feng, 2001; Hesamian, 2022; Chachi, 2018)
Let \tilde{u} and $\tilde{v} \in \mathrm{~F}(R)$.
We define the operator $\langle\bullet, \bullet\rangle: \mathrm{F}(R) \times \mathrm{F}(R) \rightarrow \bar{R}$ by the equation

$$
\begin{equation*}
\langle\tilde{u}, \tilde{v}\rangle=\int_{0}^{1}\left(\tilde{u}_{\alpha}^{L} \cdot \tilde{v}_{\alpha}^{L}+\tilde{u}_{\alpha}^{U} \tilde{v}_{\alpha}^{U}\right) d \alpha \text { for all } \alpha \in[0,1] \tag{1.15}
\end{equation*}
$$

Thus, the two filters $g=\left(g_{n}\right)_{n \in Z}$ and $h=\left(h_{n}\right)_{n \in Z}$ that appear in the two-scale relations are expressed in terms of Φ and Ψ : it is sufficient to do the scalar product above between each of the two relations and $\sqrt{2} \phi(2 t-n)$ and to note $\{\sqrt{2} \phi(2 t-k)\}_{k \in Z}$ is orthonormal to obtain :
$h_{n}=\sqrt{2} \int_{0}^{1}\left[\phi_{\alpha}^{U}(t) \cdot \phi_{\alpha}^{U}(2 t-n)+\phi_{\alpha}^{L}(t) \cdot \phi_{\alpha}^{L}(2 t-n)\right] d \alpha$
$g_{n}=\sqrt{2} \int_{0}^{1}\left[\psi_{\alpha}^{U}(t) \cdot \phi_{\alpha}^{U}(2 t-n)+\psi_{\alpha}^{L}(t) \cdot \phi_{\alpha}^{L}(2 t-n)\right] d \alpha$
Applying the Fourier transform to each of the scaling relationships, we obtain (Meyer, 1987; Daubechies, 1992) the equations :

$$
\begin{align*}
& \hat{\phi}(w)=m_{0}(w / 2) \cdot \hat{\phi}(w / 2) \tag{1.16}\\
& \hat{\psi}(w)=m_{1}(w / 2) \cdot \hat{\phi}(w / 2) \tag{1.17}
\end{align*}
$$

where $m_{0}(w)=\frac{1}{\sqrt{2}} \sum_{k \in Z} h_{k} \cdot e^{-2 i \pi w k}$

$$
m_{1}(w)=\frac{1}{\sqrt{2}} \sum_{k \in Z} g_{k} \cdot e^{-2 i \pi w k}
$$

are the transfer functions of the filters $\frac{1}{\sqrt{2}} h$ and $\frac{1}{\sqrt{2}} g$.
Let us look for a function Φ that is a smoothing kernel that is $\hat{\phi}(0)=1$ and reapply (1.16) to $\hat{\phi}(w / 2)$, then to $\hat{\phi}(w / 4)$, and so on.
Finally, we obtain: $\hat{\phi}(w)=\prod_{j=1}^{+\infty} m_{0}\left(w / 2^{j}\right)$.

This makes it possible to express Φ as a function of h in the case where the starting data of the problem is the filter h .
Knowing $m_{l}(w)$, the expression of the function Ψ in the case where the starting point of the problem is the filter g can be deduced by equation (1.17).

Fuzzy orthonormal bases of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$.
Theorem_1.14
Let $\ldots \ldots . \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \ldots$. be a fuzzy multiresolution analysis of $L^{2}([0,1], \beta(R), \mu, \mathcal{F}(R))$.
If Ψ is a fuzzy wavelet constructed according to the above procedure, then this wavelet provides a fuzzy orthonormal basis of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$.

Proof

To do this, it is sufficient to use definition 1.12 on V_{j}, then on V_{j-l}, \ldots up to a certain level L to obtain :

By properties 4') and 5') of the fuzzy multiresolution analysis: $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))=\underset{j=-\infty}{\oplus_{D}} W_{j}$ that is: the space $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$ is decomposed as an orthogonal sum of detail spaces at all resolutions.

Consider a fuzzy function f of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$.
The previous formula allows us to decompose it on the fuzzy orthonormal bases defined on the spaces $\left(W_{j}\right)_{j \in Z}$:

$$
f(t)=\sum_{j \in Z} \sum_{k \in Z} d_{j, k} \psi_{j k}(t) \text { où } d_{j, k}=\left\langle f, \psi_{j k}\right\rangle
$$

with the coefficients $\left(d_{j, k}\right)_{k \in Z}$ corresponding to the wavelet coefficients of f at resolution j
Thus, $\left\{\Psi_{j k}(t)\right\}_{j \epsilon Z,}, k \in Z$ defines a fuzzy orthonormal basis of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$ on which f is decomposed into a sum of finer and finer details as j increases.
Note, again by properties 4^{\prime}) and 5^{\prime}) of the fuzzy multiresolution analysis, that we also have:
$L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))=V_{L}{\underset{j=L}{+\infty} D}_{D} W_{j}$.
$f \in L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$ is then decomposed as follows :
$f(t)=\sum_{k \in Z} c_{L, k} \phi_{L k}(t)+\sum_{j \in Z, j \geq L k \in Z} d_{j, k} \psi_{j k}(t)$.
$\sum_{k \in Z} c_{L, k} \phi_{L k} \quad$ is the projection of f onto an approximation space $V_{L}, \sum_{j \in Z, j \geq L k \in Z} \sum_{j, k} \psi_{j k}(t)$ contains all the details that were lost when approximating f onto V_{L}.

Restriction to the bounded interval [0, 1]: periodic fuzzy wavelet bases

Theorem 1.15

Consider a fuzzy multiresolution analysis of $L^{2}([0,1], \beta([0,1]), \mu, \mathrm{F}([0,1]))$.
Given a fuzzy wavelet Ψ, this wavelet allows us to obtain a fuzzy orthogonal basis of $L^{2}([0,1], \beta([0,1]), \mu, \mathrm{F}([0,1]))$.

Proof

In fact, since in this case the signals we manipulate are in practice of bounded support: we must define fuzzy wavelet bases on a bounded interval $[0,1]$.

To define a fuzzy wavelet basis on [0, 1], we start from a basis of $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R)),\left\{\psi_{j n}\right\}_{j \in Z, n \in Z}=\left\{2^{j / 2} \psi\left(2^{j} t-n\right)\right\}_{j \in Z, n \in Z}$.
The fuzzy wavelets $\Psi_{j n}(t)$ spanning $\mathrm{t}=0$ or $\mathrm{t}=1$ will have to be adapted. The simplest method is to periodise the wavelets $\Psi_{j n}$ and the function f.
To do this, we define :
$f^{p e r}(t)=\sum_{k=-\infty}^{+\infty} f(t+k)$ et $\psi_{j n}^{p e r}(t)=\sum_{k=-\infty}^{+\infty} \psi_{j n}(t+k)$.
$\psi_{j n}^{p e r}$ et $f^{p e r}$ are periodic, of period 1.
If the support of $\Psi_{j n}$ lies in $[0,1], \psi_{j n}^{p e r}=\psi_{j n}$ (and even if the support of the fuzzy wavelet Ψ is not compact, on a small scale, $\psi_{j n}^{p e r}$ will tend to $\psi_{j n}$): the behaviour of the fuzzy inner wavelets is not affected.
$\phi_{j n}^{p e r}$ is defined in the same way by periodising the fuzzy scale functions.
This gives that for all $\mathrm{J} \geq 0$, the family
$\left\lfloor\left\{\phi_{J, n}^{\text {per }}\right\}_{n=0, \ldots \ldots, 2^{j}-1},\left\{\psi_{j, n}^{\text {per }}\right\}_{j \geq J, n=0, \ldots \ldots \ldots 2^{j}-1}\right]_{\text {is a fuzzy orthonormal basis of }}$ $L^{2}([0,1], \beta([0,1]), \mu, \mathrm{F}([0,1]))$.
The spaces of fuzzy approximations $V_{j}^{p e r}$ and the spaces of fuzzy details $W_{j}^{\text {per }}$ are of finite dimensional spaces.
In other words, since $\psi_{j n}^{p e r}\left(t+2^{j}\right)=\psi_{j n}^{p e r}(t)=\psi_{j, n+2^{j}}^{p e r}(t)$, at resolution j there are only 2^{j} different fuzzy wavelets.
The same applies to fuzzy scale functions.
Thus, ${ }_{j}^{\text {per }}=\operatorname{vect}\left\{\phi_{j k}^{\text {per }}\right\}_{k \in Z}$ is in fact finite-dimensional: $\phi_{j k}^{\text {per }}=\phi_{j, k+2^{j}}^{\text {per }}$.
Specifically, $V_{j}^{p e r}$ is of dimension 2^{j}.
In particular, V_{0}, the coarsest fuzzy approximation space, is of dimension 1 : it is the set of constants on [0,1$]$.
We also have dim $W_{j}^{\text {per }}=2^{j}$.
This periodisation method has the advantage of being simple, but it can generate large wavelet coefficients at the edges, if the function f is not itself periodic.

Note, however, that when periodic boundary conditions are used, the notations can be abbreviated by writing V_{j} rather than $V_{j}^{p e r}, \Psi_{j k}$ instead of $\psi_{j k}^{p e r}, \ldots$ \qquad

Discussion

Our results, in particular the definition and the proof of a one-dimensional fuzzy multiresolution analysis, constitute our major and original contribution. It allowed us to perform the decomposition of a fuzzy signal.

CONCLUSION

A good signal compression scheme requires a good signal decomposition scheme. The signal is subdivided into a low-resolution part, which can be described by a smaller number of bits than the original signal, and a signal difference, which describes the difference between the low-resolution signal and the real coded signal. We have seen that, for a fuzzy signal, this decomposition can be obtained by one-dimensional fuzzy multiresolution analysis via the use of α-cuts. This fuzzy multiresolution analysis allowed the definition of the detail spaces as well as the constructions of a fuzzy wavelet and a fuzzy orthonormal basis of the space $L^{2}([0,1], \beta(R), \mu, \mathrm{F}(R))$ on which the signal is decomposed.

CONFLICT OF INTEREST DISCLOSURE

The authors declare no conflict of interest in the subject matter or materials discussed in this manuscript.

REFERENCES

Antoine, J. P., Murenzi, R., Vandergheynst, P., \& Ali, S. T. (2008). Two-dimensional wavelets and their relatives. Cambridge University Press.

Beg, I. \& K.M. Aamir. (2013), Fuzzy wavelets, The Journal of Fuzzy mathematics, 21(3), 623-638.
Bloch, I. (2015). Fuzzy sets for image processing and understanding. Fuzzy sets and systems, 281, 280291.

Chachi, J. (2018). On distribution characteristics of a fuzzy random variable. Austrian Journal of Statistics, 47(2), 53-67.

Cheng, R., \& Bai, Y. (2015). A novel approach to fuzzy wavelet neural network modeling and optimization. International Journal of Electrical Power \& Energy Systems, 64, 671-678.

Cognet, M. (2000), Algèbre linéaire, Bréal.
Daubechies, I. (1992). Ten lectures on wavelets. Society for industrial and applied mathematics.

Copyright® 2022 UiTM Press. This is an open access article licensed under CC BY-SA https://creativecommons.org/licenses/by-sa/4.0/

De Barros, L. C., \& Santo Pedro, F. (2017). Fuzzy differential equations with interactive derivative. Fuzzy sets and systems, 309, 64-80.

Feng, Y., L. Hu, H. Shu. (2001), The variance and covariance of fuzzy random variables and their Applications, Fuzzy Set Syst., 120, 487 - 497.

Gomes, L. T., de Barros, L. C., \& Bede, B. (2015). Fuzzy differential equations in various approaches. Berlin: Springer.

Grifone, J. (2019). Algèbre Linéaire $6 E$ Édition. Éditions Cépaduès.
Hesamian, G., \& Ghasem Akbari, M. (2022). Testing hypotheses for multivariate normal distribution with fuzzy random variables. International Journal of Systems Science, 53(1), 14-24.
Huang, W., Oh, S. K., \& Pedrycz, W. (2016). Fuzzy wavelet polynomial neural networks: analysis and design. IEEE Transactions on Fuzzy Systems, 25(5), 1329-1341.

Kumwimba, D. (2016). Analyse stochastique floue et application aux options financières : cas du Modèle de Blach - Scholes Flou, Thèse de Doctorat, Université de Kinshasa, RDC.

Lakshmikantham, V. \& R.N. Mohapatra. (2003), Theory of Fuzzy Differential Equations and Inclusions, London EC 4P4EE, p. 14-15.

Le Cadet, O. (2004). Méthodes d'ondelettes pour la segmentation d'images. Applications à l'imagerie médicale et au tatouage d'images, Thèse de Doctorat, Institut National polytechnique (Grenoble), France.

Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.
Mazandarani, M., \& Xiu, L. (2021). A review on fuzzy differential equations. IEEE Access, 9, 6219562211.

Mehra, M., Mehra, V. K., \& Ahmad, V. K. (2018). Wavelets theory and its applications. Springer Singapore.

Meyer, Y., Jaffard, S., \& Rioul, O. (1987). L'analyse par ondelettes. Pour la science, 119, 28-37.
Ohlan, R., \& Ohlan, A. (2021). A bibliometric overview and visualization of fuzzy sets and systems between 2000 and 2018. The Serials Librarian, 81(2), 190-212.

Perfilieva, I., (2006), Fuzzy transforms, Theory and applications, Fuzzy Sets and Systems, 157(8) 9931023.

Sussner, P. (2016). Lattice fuzzy transforms from the perspective of mathematical morphology. Fuzzy Sets and Systems, 288, 115-128.

