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Computational models of learning and the theories they
represent are often validated by calibrating them to hu-
man data on decision outcomes. However, only a few
models explain the process by which these decision out-
comes are reached. We argue that models of learning
should be able to reflect the process through which the
decision outcomes are reached, and validating a model on
the process is likely to help simultaneously explain both
the process as well as the decision outcome. To demon-
strate the proposed validation, we use a large dataset
from the Technion Prediction Tournament and an exist-
ing Instance-based Learning Model. We present two ways
of calibrating the Model’s parameters to human data: on
an outcome measure and on a process measure. In agree-
ment with our expectations, we find that calibrating the
Model on the process measure helps to explain both the
process and outcome measures compared to calibrating
the Model on the outcome measure. These results hold
when the Model is generalized to a different dataset. We
discuss implications for explaining the process and the de-
cision outcomes in computational models of learning.
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Unlike disciplines like economics, models of decision mak-
ing in psychology often incorporate theories of the un-

derlying cognitive processes that lead to specific outcomes
in a decision task. For example, Instance-Based Learn-
ing Theory (IBLT; Gonzalez & Dutt, 2011), a theory of
how people make dynamic decisions commonly includes
assumptions of how people search for information (i.e.,
the process) and how this information search helps peo-
ple to arrive at a decision (i.e., the outcome). However,
many of the process theories and corresponding models
are just tested on an outcome level; rather than on the
process level itself (Johnson et al., 2008). Accounting for
both the decision outcomes and the process through which
these outcomes are reached is important in mathemati-
cal models (Scheres & Sanfey, 2006). That is because by
accounting for the process and decision outcomes will en-
able such models to provide better account of the observed
phenomena. Furthermore, it is also important to account
for process and decision outcomes in computational mod-
els of learning that try to explain human decisions (Buse-
meyer & Diederich, 2009, Erev & Barron, 2005, Rapoport

& Budescu, 1992). For example, researchers investigat-
ing choice behavior are often interested in explaining the
overall maximization behavior (an outcome measure) and
the exploratory behavior (e.g., alternation between alterna-
tives, a process measure) through cognitive models, which
explains how people learn to maximize long-term rewards
(Biele, Erev & Ert, 2009; Erev, Ert, Roth, Haruvy et al.,
2010; Gonzalez & Dutt, 2011).

Amidst the importance of accounting for both the de-
cision outcome and the process, literature has revealed a
strong relationship between these two, where the result-
ing outcome is consistent with the adopted process (Erev
& Barron, 2005; Green, Price & Hamburger, 1995; Hills
& Hertwig, 2010). According to Erev and Barron (2005),
one expects a strong relationship between process and de-
cision outcomes in cases where the decision environment is
dynamic (i.e., repeated), and where the decision outcome
is contingent upon the process. For example, consider a
repeated binary-choice task, where choices are made re-
peatedly between two alternatives. One of the alternatives
is risky with a high outcome and a low outcome. These
two outcomes occur with a certain pre-defined probabili-
ties when this risky alternative is chosen. The other al-
ternative is safe with a medium outcome. This medium
outcome occurs with a sure (100%) chance when this al-
ternative is chosen. Now, if the expected value of the risky
alternative is greater than that of the safe alternative (i.e.,
the safe alternative is maximizing), then participants who
alternate a lot while selecting alternatives would end-up
maximizing their choices only half of the time. In fact,
Hills and Hertwig (2010) show that people seem to rely
on two distinct alternation processes while making binary
choices; both these processes achieve different amounts of
maximization behavior. These arguments are not only rel-
evant to human decisions but also to decision making in
animals. For example, Green et al. (1995) have shown
that pigeons can only learn to maximize their outcomes by
alternating between available alternatives in a probabilistic
environment involving repeated choices between safe and
risky alternatives.

Calibrating models to both process and outcome mea-
sures from one-time sequential sampling tasks is already
common in literature (Ratcliff, 1978; Ratcliff & Smith,
2004). For example, Ratcliff (1978) calibrated models to
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both outcome and process measures in an old-new recog-
nition memory task. In this task, the outcome measure
was proportion of correct responses and the process mea-
sure was the accumulation of evidence to a threshold for
making a response. In fact, calibrating models to both
outcome and process measures in one-time choice tasks is
so common that a suite of software called Diffusion Model
Analysis Toolbox (DMAT, Vandekerckhove & Tuerlinckx,
2007) has been recently developed for this purpose.

In contrast, to the authors’ best knowledge, except for
one study (mentioned below) no one has explicitly cali-
brated models to outcome and process measures simultane-
ously in dynamic decision making tasks (Johnson, Schulte-
Mecklenbeck & Willemsen, 2008). Johnson et al. (2008)
demonstrated via computational modeling that the prior-
ity heuristic, which provides a novel account of how people
make risky choices, captures the decision outcomes; yet,
this heuristic fails to account for the process measures. The
general finding is that although certain behavioral results
reveal a strong connection between the decision outcome
and the process, existing models of learning in dynamic
decision tasks rarely show any relationship between them
(Dember & Fowler, 1958; Erev & Barron, 2005; Erev, Ert,
Roth, Haruvy et al., 2010; Rapoport & Budescu, 1992;
Rapoport, Erev, Abraham & Olson, 1997; Tolman, 1925).
For example, although the outcome results (i.e., maximiza-
tion) in a symmetrical zero-sum matching pennies game
were consistent with predictions from a reinforcement-
learning algorithm, process results (i.e., alternations be-
tween alternatives) could not be accounted for by the algo-
rithm (Erev & Barron, 2005; Rapoport & Budescu, 1992).
Similarly, according to Johnson et al. (2008), the prior-
ity heuristic, a strategy to account for risky choices, fails
to account for the process measures in dynamic decision
tasks.

In one study, Gonzalez and Dutt (2011) have calibrated
cognitive models in the sampling paradigm (a dynamic
task), where participants are asked to sample options free
of cost before making a consequential choice for real. Gon-
zalez and Dutt (2011) demonstrate that a computational
model based upon the IBLT (Gonzalez, Lerch & Lebiere,
2003), (“IBL model” hereafter), when calibrated on the
outcome measure, was able to also explain the process
measure better than the best models known in two dif-
ferent experimental paradigms. Gonzalez and Dutt (2011)
however, did not calibrate their model on the process mea-
sure as well. Thus, it remains unclear what effect cali-
brating a model to the process measure compared to the
outcome measure has on the model predictions of both
these measures. In general, one expects the decision out-
come to be the result of the process (Johnson et al., 2008).
Thus, calibrating models on process measures rather than
outcome measures should have benefits in explaining both
these measures at the same time.

Although it is hard to find models calibrated to out-
come and process measures in dynamic tasks, past studies
have made certain qualitative predictions of dynamic de-
cision models (Busemeyer, 1985; Hertwig, Barron, Weber
& Erev, 2004; Lee, Zhang, Munro & Steyvers, 2011) on
outcome and process measures. However, a quantitative
empirical investigation of these models on both these mea-
sures is something currently lacking and much needed in
literature. This paper makes a contribution in this area by
investigating the benefit of calibrating cognitive models to
outcome and process data in a dynamic decision task.

In this paper, we evaluate the role of calibrating a com-

putational model to either the decision outcome or the
process in explaining and predicting both these measures.
Specifically, we calibrate an IBL model (Gonzalez & Dutt,
2011), to a risk-taking measure (decision outcome) or an al-
ternation measure (process), and evaluate the model fits to
human data (through parameter calibration in a dataset)
and predictions (through generalization in a dataset differ-
ent from calibration). Given the hypothesized benefits of
calibrating models on process measures (Camerer & Ho,
1999; Suppes & Atkinson 1959), we expect that the IBL
model being calibrated to the alternation measure would
improve its explanation about both the risk-taking and al-
ternations compared to when it is calibrated on the risk-
taking measure. We use two large human datasets, esti-
mation and competition, that were collected for the 2008
Technion Prediction Tournament (TPT (Erev, Ert, Roth,
Haruvy et al., 2010). The choice of TPT datasets is be-
cause the main focus of the tournament was on outcome
measures, where no attention was given to process mea-
sures (Erev, Ert, Roth, Haruvy et al., 2010). That is be-
cause it was felt that paying less attention to the process
measures can actually help the prediction of the outcome
measures (Erev & Haruvy, 2005; Estes, 1962), which is
contrary to the hypothesis under test in this paper. Thus,
this dataset becomes an ideal choice for testing a process-
measure calibrated model’s ability to perform on the out-
come measure. In what follows, we first discuss the role
of the calibration process in computational models. Next,
we present the effects of calibrating an existing IBL model
on the outcome measure or the process measure on the ex-
planations and predictions of one or both measures in the
TPT’s datasets. We close this paper by discussing the role
of model calibration to account for both the process and
decision outcomes.

The Role of Model Calibration in Explaining Different
Measures of Performance Calibrating a model to human
data means finding the values of its parameters that mini-
mize the deviation between model’s predictions and obser-
vations on a dependent measure. In the TPT, several influ-
ential models1of learning in binary choice were calibrated
and evaluated on only the outcome measure (risk-taking)
and not on the process measure (alternations). These mod-
els were able to account for risk-taking very well; however,
many of them did not provide any way of computing the
alternations (Gonzalez & Dutt, 2011). In fact, most of the
competing models did not provide any way to explain the
learning process (see an extended discussion about these
models in Gonzalez and Dutt (2011)). For example, a
number of models submitted to the TPT used prospect the-
ory (Tversky & Kahneman, 1992), to predict choices based
upon calibrated mathematical functions. Prospect Theory
does not provide any mechanism that would predict the
sequential selection of options over time. In fact, only a
few recent models of repeated binary-choice may account
for both the risk-taking and alternation measures simulta-
neously: One of these models is the Inertia Sampling and
Weighting (I-SAW) model (Chen et al., 2011; Nevo & Erev,
2012; Erev, Ert, Roth, Haruvy et al., 2010) and the other is
an IBL model (Gonzalez & Dutt, 2011; Gonzalez, Dutt &
Lejarraga, 2011; Lejarraga, Dutt & Gonzalez, 2012). How-
ever, these models were calibrated on both the outcome
and process measures at the same time, which makes it

1Some of these models included the two-stage sampler model,
the normalized reinforcement learning with inertia model, and
the explorative sampler with recency model (Erev, Ert, Roth,
Haruvy et al., 2010)
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difficult to evaluate the utility of calibrating models to one
of these measures.

We expect that calibrating a model to the process mea-
sure should generally be beneficial for the model’s ability
to explain both the process and outcome measures upon
generalization to novel conditions. Next, we provide de-
tails about the TPT datasets that we use to evaluate the
IBL model.

Method

Risk-taking and Alternations in Technion
Prediction Tournament

Competing models submitted to the TPT were evalu-
ated according to the generalization criterion method
(Busemeyer & Wang, 2000), by which models were
calibrated on choices made by participants in 60 prob-
lems (the estimation set) and later tested in a new set
of 60 problems (the competition set) with the param-
eters obtained from the calibration process in the es-
timation set. The generalization criterion method was
believed to be a true test for models to explain ob-
served choice decisions. Although the TPT involved
three different experimental paradigms, we only use
data from the “E-repeated” paradigm that involved
consequential choices in a repeated binary-choice task
with immediate outcome feedback on the chosen alter-
native. For each of the 60 problems in the estimation
and competition sets in this paradigm, a sample of
100 participants was randomly assigned into 5 groups
of 20 participants each, and each group completed 12
of the 60 problems. Each participant was instructed
to repeatedly and consequentially select between two
unlabeled buttons on a computer screen in order to
maximize long-term rewards for a block of 100 trials
per problem (this end point was not known to partic-
ipants). One button was associated with a risky al-
ternative and the other button with a safe alternative.
Selecting an alternative, safe or risky, generated an
outcome for the selected alternative (thus, the foregone
outcome on the unselected alternative was not shown).
The selection of the alternative with the higher ex-
pected value, which could be either the safe or risky
button, would maximize a participant’s long-term re-
wards. Therefore, choosing a maximizing alternative
across all the repeated trials would constitute the op-
timal strategy in the task. Other details about the
E-repeated paradigm are reported in Erev, Ert, Roth,
Haruvy et al. (2010).

The models submitted to the TPT were not pro-
vided with human data for alternation between options
(i.e., the A-rate or the process measure), and they were
evaluated only according to their ability to account for
the risk-taking behavior (i.e., the R-rate or the out-
come measure) (Erev, Ert, Roth, Haruvy et al., 2010).
We calculated the A-rate for analyses of alternations
from the TPT data (see results in Gonzalez and Dutt,
2011). First, alternations are either coded as 1s, the
respondent switched from making a risky or safe choice
in the last trial to making a safe or risky choice in the

current trial; or they are coded as 0s, the respondent
simply repeated the last trial’s choice. The proportion
of alternations in each trial is computed by averaging
the alternations over 20 participants per problem and
the 60 problems in each dataset. The R-rate is the
proportion of risky choices in each trial averaged over
20 participants per problem and the 60 problems in
each dataset. A problem is defined as consisting of
two alternatives, risky and safe. In the risky alterna-
tive, there are two possible outcomes, high and low,
where the occurrence of these outcomes is determined
by corresponding probability value. In the safe alter-
native, there is one possible outcome, medium, where
this outcomes occurs with a 100% chance. For cal-
culating the A-rate and R-rate, the averaging is done
over 20 participants as this many participants were
collected in the TPT (Erev, Ert, Roth, Haruvy et al.,
2010).

Figure 1 shows the overall R-rate and A-rate over
99 trials from trial 2 to trial 100 in the estimation and
competition sets. As seen in both of these datasets,
the R-rate is relatively constant across trials, in con-
trast to the sharp decrease in the A-rate. The sharp
decrease in the A-rate shows a transition in the pattern
of information-search across trials (Gonzalez & Dutt,
2011). Overall, these R-rate and A-rate curves sug-
gest that risk-taking remains relatively steady across
trials, while they learn to alternate less and choose one
of the two alternatives more often. Thus, the A-rate
(process) is more dynamic compared to the R-rate (de-
cision outcome) and due to these differences it is likely
to be harder for a model to account for the A-rate
compared to the R-rate. We use the R-rate and A-
rate curves in Figure 1 to evaluate the role of model
calibration ahead in this paper.

An Instance-based Learning Model of Repeated
Binary-choice

IBLT (Gonzalez et al., 2003) has been used as the basis
for developing computational models that capture hu-
man behavior in a wide variety of dynamic decision
making tasks. These include dynamically-complex
tasks like the water purification plant task (Gonzalez
& Lebiere, 2005; Gonzalez et al., 2003; Martin, Gonza-
lez & Lebiere, 2004), training paradigms of simple and
complextasks (Gonzalez, Best, Healy, Bourne & Kole,
2010), simple stimulus-response practice and skill ac-
quisition tasks (Dutt, Yamaguchi, Gonzalez & Proc-
tor, 2009) and repeated binary-choice tasks (Gonzalez
& Dutt, 2011; Gonzalez et al., 2011; Lebiere, Gonzalez
& Martin, 2007; Lejarraga et al., 2012) among others.
The different computational applications of IBLT il-
lustrate its generality and ability to capture decisions
from experience in multiple contexts.

A recent IBL model has showcased the theory’s ro-
bustness across multiple choice tasks: A probability-
learning task, a repeated binary-choice task with fixed
probabilities, and a repeated binary-choice task with
changing probabilities (Lejarraga et al., 2012). We
use this model to evaluate the effects of model cali-
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Figure 1. (A) The R-rate and A-rate across trials observed in human data in the estimation set of the TPT between trial 2 and trial
100. (B) The R-rate and A-rate across trials observed in human data in the competition set of the TPT between trial 2 and trial 100.

bration to different outcome or process measures. The
model’s formulations and decision-making process are
further explained in other publications (Gonzalez &
Dutt, 2011; Lejarraga et al., 2012) and summarized
in the Appendix. This model makes choice selec-
tions between alternatives in a trial by comparing the
weighted averages of observed outcomes on each alter-
native called “blended values.” A blended value for an
alternative, safe or risky, is a function of the probabil-
ity of retrieving instances from memory multiplied by
their respective outcomes that have been observed on
previous selections of the alternative (Lebiere, 1999;
Lejarraga et al., 2012). Each instance consists of a
label that identifies a decision alternative in the task
and the outcome obtained. For example, (risky, $32)
is an instance where the decision was to choose the
risky alternative and the outcome obtained was $32.
The probability of retrieving an instance from mem-
ory, which is used to compute the blended value, is a
function of its activation (Anderson & Lebiere, 1998).
Each observed outcome (represented by a correspond-
ing instance in memory) has an activation value that
is a function of the recency and frequency of observing
the outcome plus a noise term. This simplified activa-
tion equation has shown to be sufficient at explaining
human choices in several experiential tasks (Gonzalez
& Dutt, 2011; Lejarraga et al., 2012). The activation
is influenced by the decay parameter , which captures
the rate of forgetting or the reliance on recency and fre-
quency of observing outcomes. The higher the value of
the parameter, the greater is the model’s reliance on
outcomes experienced recently. The activation is also
influenced by a noise parameter that is important for
capturing the variability in human behavior from one
participant to another. IBL borrows d and s parame-
ters and the activation equation from a popular cog-
nitive framework called ACT-R (Atomic Components
of Thought – Rational; Anderson & Lebiere, 1998).
However, unlike ACT-R where d and s parameters are
kept fixed, we calibrate the values of these parameters
in the IBL model to account for choices in human data.
The model equations for blending and activation are
included in the Appendix.

Results

Model Calibration to Different Measures

We used a genetic algorithm program to calibrate the
model’s parameters to minimize the mean squared de-
viation (MSD) between its predictions and the ob-
served average A-rate per problem or the average R-
rate per problem. The average R-rate per problem
and the average A-rate per problem were computed
by averaging the risky choices and alternations in each
problem over 20 participants per problem and 100 tri-
als per problem (for a problem’s definition, please see
the description above). Later, the MSDs were calcu-
lated across the 60 estimation set problems by using
the average R-rate per problem and by the average
A-rate per problem from the model and human data.
For calibration, both the s and the d parameters were
varied between 0.0 and 10.0 and the genetic algorithm
was run for 500 generations (crossover rate = 50%;
mutation rate = 10%). The assumed range of vari-
ation for the s and d parameters and the number of
generations in the genetic algorithm is large, and it en-
sures that the optimization process does not miss the
minimum MSD value due to a small range of parame-
ter variation (for more details about genetic algorithm
optimization, please see Gonzalez & Dutt, 2011). We
calibrated the IBL model separately on the R-rate and
the A-rate measures, and the optimized values of the
d and s parameters were determined for each calibra-
tion.

The model calibrated on the R-rate produced the
smallest MSD for d = 5.00 and s = 1.50. These pa-
rameters have the same optimal values as reported by
Lejarraga et al. (2012), who had also calibrated this
IBL model on the R-rate measure on the same dataset.
As documented by Lejarraga et al. (2012), the value
of both the d and s parameters is high compared to
the ACT-R default values of d = 0.5 and s = 0.25
(Anderson & Lebiere, 1998). Furthermore, the model
calibrated on the A-rate produced the smallest MSD
for d = 9.74 and s = 0.96. Thus, calibrating the model
on the A-rate produces a greater value for the d pa-
rameter and a slightly smaller value for the s param-
eter. The greater d parameter value suggests a high
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dependency on recently experienced outcomes to make
choice decisions.

Figure 2 shows the MSDs for the R-rate and the A-
rate from the IBL model that was calibrated on the R-
rate or the A-rate in the estimation set. When model
parameters were calibrated on the R-rate (i.e., d = 5.0
and s = 1.5), the model explained the R-rate quite
well (MSD = 0.008), but it explained the A-rate less
well (MSD = 0.063). Thus, the model explains the
outcome measure well when calibrated on the outcome
measure; but, it explains the process measure less well.
In contrast, when the IBL model parameters are cal-
ibrated on the A-rate, the model explains the A-rate
much better (MSD=0.002) and the resulting R-rate
also relatively well (MSD = 0.023). Thus, the bene-
fit of calibrating the model on the A-rate measure (=
0.061) is larger than the detriment of calibrating the
model on the R-rate measure (= 0.015). Overall, these
results show that by calibrating the IBL model to the
process measure, one is able to explain both the pro-
cess and outcome measures better than by calibrating
the IBL model to the outcome measure. Thus, these
results suggest that the components of the IBL model
are good representations of the A-rate process and well
as the R-rate decision outcomes, especially when ac-
counting for the A-rate is more challenging than the
R-rate because the A-rate is more dynamic than the
R-rate (Gonzalez & Dutt, 2011).

Figure 2. The MSD for the R-rate per problem and A-rate per
problem in the estimation set of the TPT. The model was either
calibrated on the R-rate per problem or calibrated on the A-rate
per problem in the estimation set. The calibrated values of the d
and s parameters obtained for each measure(R-rate or A-rate per
problem) have been shown in brackets.The differences for calibrat-
ing with A-rate measure(respective R-rate measure) are shown by
two vertical arrows.

Figure 3 presents the human and model R-rate and
A-rate across trials when the model was calibrated to
the R-rate (Figure 3A) and when it was calibrated to
the A-rate (Figure 3B). Here, it can be observed how
the model explains the human learning data better for
the measure used to calibrate the model.

Generalizing the Calibrated IBL model to the
Competition set

The demonstration that calibrating a model to a pro-
cess measure helps explain both the process and out-
come measures is an important way to corroborate the
consistency of predictions from cognitive models. A
robust model should be able to explain the learning
process, as well as the outcomes resulting from that
very process.

According to Lebiere, Gonzalez, and Warwick
(2009), models that explain only the outcome and not
the process behavior might find it difficult to general-
ize their predictions to novel conditions. Here, we used
the generalization criterion test (Ahn, Busemeyer, Wa-
genmakers, & Stout, 2009; Busemeyer & Wang, 2000),
to investigate the predictions that the different calibra-
tion procedures can make in novel data sets: We ran
the calibrated models in novel conditions to evaluate
and compare performance. The model calibrated to
the TPT’s estimation set on the R-rate or the A-rate
was generalized to TPT’s competition set by keeping
the same parameter values that were derived during
calibration. The model was run using 20 participants
per problems and 60 problems in the competition set.
There were different sets of problems used between the
estimation and competition sets. Also, these problems
were run as part of two separate experiments involving
different human participants. Given these differences,
one expects poorer performance from both the mod-
els in the competition set compared to the estimation
set. However, as the algorithm used to generate prob-
lems in the competition set was same as that used
to generate problems in the estimation set, one also
expects both models to showcase results that are sim-
ilar to those found for the estimation set: The model
calibrated to the process measure is able to explain
both the process and outcome measures better than
the model calibrated to the outcome measure.

Figure 4 shows the resulting MSDs from generaliz-
ing the IBL model to the competition set. The model
that was calibrated on the estimation set’s R-rate re-
sulted in the best predictions for the same measure in
the competition set (MSD = 0.006); however, its pre-
dictions for the A-rate were relatively inferior (MSD =
0.074). Furthermore, the model that was calibrated on
the A-rate resulted in the best predictions for the same
measure in the competition set (MSD = 0.006) with
reasonably good predictions for the R-rate (MSD =
0.032). Thus, again the improvement in MSD for the
A-rate is larger than (= 0.068) the decrement in the
MSD for the R-rate (= 0.026). Also note that the re-
sults in competition set (Figure 4) generate poorer per-
formance (higher MSDs) from the models, in general,
compared to those in the estimation set (Figure 2).

As in the estimation set, these results translate to
the process of learning over trials (see Figure 5). The
model’s predictions for the measure on which it was
calibrated to in the estimation set are the best. The
model that was calibrated on the R-rate in the estima-
tion set predicted the R-rate better than the A-rate
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Figure 3. The R-rate and A-rate across trials predicted by the IBL model and that observed in human data in the TPT’s estimation set.
Panels A and B show the results of calibrating the IBL model to the R-rate per problem and the A-rate per problem, respectively.

Figure 4. The MSD for the R-rate per problem and A-rate per
problem in the competition set of the TPT. The model was either
calibrated on the R-rate per problem or calibrated on the A-rate
per problem in the estimation set. The calibrated values of the d
and s parameters obtained for each measure (R-rate or A-rate per
problem)in the estimation set have been shown in brackets. The
differences for calibrating with A-rate measure (respective R-rate
measure) are shown by two vertical arrows.

(Figure 5A); however, the model that was calibrated
on the A-rate in the estimation set predicted both the
R-rate and A-rate over time quite well (Figure 5B).

Discussion

We argue that strong and robust models of human be-
havior need to explain both the decision outcome and
the process from which that outcome came about. We
suggest that many models of human behavior, particu-
larly in the context of repeated choice and dynamic de-
cisions from experience, have only focused on predict-
ing outcomes but not the process. Furthermore, most
of the existing computational models of experiential
decisions explain the decision outcomes, while com-
pletely ignoring or failing to account for the process
through which these decision outcomes are reached
(see a review of models in (Gonzalez & Dutt, 2011).
This observation is perhaps not a coincidence, because
predicting outcome as a result of a process is very chal-
lenging (Erev & Barron, 2005; Rapoport et al., 1997).

Our findings presented the robustness of explaining
and predicting outcome and process measures through
an IBL model. We demonstrated a method for find-
ing out a cognitive model’s ability in explaining both
the process and the decision outcomes. The model’s
calibration on the process measure reduced the MSD
for the A-rate (process) by a large amount without a
large deterioration in the MSD for the R-rate (decision
outcome). The proposed calibration was also helpful
in accounting for both these measures after the model
was generalized into a novel condition.

Explaining both the process and decision outcomes
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Figure 5. The generalization of the IBL model in the TPT’s competition set. (A) The model’s parameters were calibrated on the R-rate
per problem measure in the TPT’s estimation set. (B) The model’s parameters were calibrated on the A-rate per problem measure in the
TPT’s estimation set.

is important, because doing so will improve our un-
derstanding of how people maximize long-term goals
through the process of sequential choices from expe-
rience. Several recent model-comparison competitions
have suggested the use of different dependent measures
for calibrating models without a clear motivation for
choosing one measure over the other. For example, the
measure of model evaluation in the TPT was solely
risk-taking, i.e., decision outcomes (Erev & Barron
2005); however, the measure of evaluation in the re-
cently concluded market-entry competition (Erev, Ert,
& Roth, 2010) was a combination of risk-taking (out-
come) and alternations (process). Our analysis sug-
gests that stronger and more robust models of learning
should be able to explain both the decision outcomes
and the process by which these outcomes came about.
Future model comparison efforts should enforce both
types of measures.
In this paper, we used one IBL model to showcase

the benefits of calibrating models on a process mea-
sure compared to an outcome measure. This attempt
maybe limited in its ability at present as we only used
one model, IBL, on two datasets. However, this at-
tempt does showcase the wider generalizability of the
theory, IBLT, which has been used in literature to
derive a number of models on a number of decision
tasks (please see: Gonzalez, in press; Gonzalez, 2013
for more arguments).

As part of our future research, we would like to build
on our current finding by calibrating and evaluating
models on both the outcome and process measures in

various tasks that differ in their outcome feedback and
dynamics. Also, as part of future research, we would
like to consider the mutual benefits of calibrating mod-
els to both process and decision outcomes especially
when there are more than two measures. It would be
interesting to observe the extent to which the bene-
fits of calibrating models to different kinds of process
measures carries over to different kinds of decision out-
comes. In the case there are more than two measures,
one could combine multiple process and outcome mea-
sures by doing a weighted sum of mean-squared devi-
ations calculated on these measures. One could keep
weights at values such that all combining measures are
weighted equally during optimization. Furthermore, it
would be interesting to observe how calibrating mod-
els to the process measures carries over to the outcome
measures when the calibration is done at the individual
level rather than at the aggregate level. These eval-
uations would help extend our existing knowledge on
this topic and help us explore benefits and limitations
for computational models in explaining both the de-
cision outcomes and the process through which these
outcomes are reached.
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Appendix

Decision Rule

A choice is made in the model in trial t+1 as the selec-
tion of an alternative with the highest blended value
as per Equation 1 (below).

Blending and activation mechanisms

The blended value of alternative j is defined as

Vj =
n∑

i=1
pixi (1)

Where xi is the value of the observed outcome in the
outcome slot of an instance i corresponding to the al-
ternative j, and pi is the probability of that instance’s
retrieval from memory (for the case of our binary-
choice task in the experience condition, the value of
j in Equation 1 could be either Risky or Safe). The
blended value of an alternative is the sum of all ob-
served outcomes xi in the outcome slot of correspond-
ing instances, weighted by the instances’ probability
of retrieval.

Probability of Retrieving Instances

In any trial t,the probability of retrieving instance i
from memory is a function of that instance’s activa-
tion relative to the activation of all other instances
corresponding to thatalternative, given by

Pi,t = e
Ai,t
π∑

j e
Ai,t
π

(2)

Where π is random noise defined as s×
√

2 s and is a
free noise parameter. The noise parameter s captures
the imprecision of retrieving instances from memory.

Activation of Instances

The activation of each instance in memory depends
upon the activation mechanism originally proposed in
ACT-R [2]. According to this mechanism, for each
trial t, activation Ai,t of instance i is:

Ai,t = ln (
∑

ti∈1,...,t−1
(t− ti)−d) + s× ln (1− yi,t

yi,t
) (3)

Where d is a free decay parameter, and ti is a pre-
vious trial when the instance i was created or its acti-
vation was reinforced due to an outcome observed in
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the task (the instance i is the one that has the ob-
served outcome as the value in its outcome slot). The
summation will include a number of terms that coin-
cides with the number of times an outcome has been
observed in previous trials and the corresponding in-
stance i’s activation that has been reinforced in mem-
ory (by encoding a timestamp of the trial ti). There-
fore, the activation of an instance corresponding to an
observed outcome increases with the frequency of ob-
servation and with the recency of those observations.
The decay parameter d affects the activation of an in-
stance directly, as it captures the rate of forgetting or
reliance on recency.

Noise in Activation

The yi,t term is a random draw from a uniform distri-
bution U(0, 1), and the s× ln ( 1−yi,t

yi,t
) term represents

Gaussian noise important for capturing the variability
of human behavior.

Pre-populated Instances in Memory

For the first trial,the IBL model does not haveany in-
stances in memory from which to calculate blended
values. Therefore, the model is made to make a selec-
tion between instances that are pre-populated in mem-
ory. Lejarraga, Dutt, and Gonzalez [23] used a value
of +30 in the outcome slot of the two alternatives’ in-
stances. The +30 value is arbitrary, but most impor-
tantly, it is greater than any possible outcomes in the
TPT problems and will trigger an initial exploration
of the two alternatives. We use these pre-populated
values in the model in this paper.
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