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System structure and cognitive ability as predictors
of performance in dynamic system control tasks
Jan Hundertmark, Daniel V. Holt, Andreas Fischer, Nadia Said, and Helen Fischer
Department of Psychology, Heidelberg University, Heidelberg, Germany

In dynamic system control, cognitive mechanisms and
abilities underlying performance may vary depending on
the nature of the task. We therefore investigated the
effects of system structure and its interaction with cog-
nitive abilities on system control performance. A sample
of 127 university students completed a series of different
system control tasks that were manipulated in terms of
system size and recurrent feedback, either with or without
a cognitive load manipulation. Cognitive abilities assessed
included reasoning ability, working memory capacity, and
cognitive reflection. System size and recurrent feedback
affected overall performance as expected. Overall, the
results support that cognitive ability is a good predictor
of performance in dynamic system control tasks but pre-
dictiveness is reduced when the system structure contains
recurrent feedback. We discuss this finding from a cogni-
tive processing perspective as well as its implications for
individual differences research in dynamic systems.

Keywords: dynamic system control, complex problem solving, rea-
soning ability, working memory, cognitive reflection

It is a central question in problem solving and decision
making research which task properties and situational

factors determine the difficulty of a problem and how these
demands interact with the abilities of a problem solver.
On the most general level, intelligence is useful for many
types of problems and indeed, problem solving ability is
often considered a defining aspect of general intelligence
(e.g., Sternberg, 1982). However, while in some problem
domains the value of cognitive abilities is well established,
in other domains it does not help much and occasionally
even has adverse effects (e.g., Wiley & Jarosz, 2012). In
dynamic system control paradigms intelligence has gener-
ally been shown to be beneficial (Stadler, Becker, Göd-
ker, Leutner, & Greiff, 2015), but it is still largely an
open question in which way different aspects of dynamic
systems (e.g., the number of variables or types of func-
tional relations) contribute to problem difficulty and why
some dynamic systems show high correlations with cogni-
tive abilities while others do not. We therefore investigated
the main effects of two characteristics of dynamic systems,
system size and presence of oscillatory eigendynamics, and
how they moderate the influence of cognitive abilities on
control performance. Additionally, we assessed the effects
of cognitive load. Taken together, we cover three groups
of determinants of performance in dynamic system control
tasks (as classified by Funke, 1991): (a) system characteris-
tics, (b) personal factors, and (c) context factors. System-
atically combining this range of factors in a single study

allowed us to analyze their interaction, in particular, how
system characteristics moderate the effect of cognitive abil-
ities and context factors in determining task performance.

To investigate these questions, we employed a computer-
simulated microworld paradigm. In microworld tasks par-
ticipants interact with computer-simulated dynamic sys-
tems of varying size and complexity (Kluge, 2008). Sys-
tems are usually presented with a semantic framing such
as managing a business, operating a complex machine, or
carrying out chemistry experiments. The semantic fram-
ing may or may not give cues about the internal structure
of the system. The task goal usually consists of exploring
and successfully controlling the system to reach a target
state. Systems used in research vary widely in terms of
complexity, realism, and prior knowledge required for suc-
cessful control. The core idea of the microworld paradigm
is to mimic essential characteristics of dynamic systems
in the real world in a controlled laboratory environment
(Brehmer & Dörner, 1993; Gray, 2002).

System characteristics

Early research on semantic aspects of complex problem
solving investigated the extent to which prior knowledge
could be applied to a given problem. This line of research
demonstrated that misleading semantics are a huge imped-
iment to successful system control (Beckmann, 1994) and
that prior knowledge accounts for a large proportion of per-
formance in some common microworld tasks (Wittmann &
Süß, 1999). Driven by the desire to create psychometri-
cally reliable assessment procedures, a more recent wave of
research introduced semantically lean systems with highly
reduced complexity, an approach termed “minimal com-
plex systems” (e.g., Greiff, Wüstenberg, & Funke 2012).
It emphasizes formal aspects of problem difficulty by de-
scribing systems in a linear structural equation framework.
The main determinant of difficulty is assumed to be the
number of variables and system relations. Studies using
this approach report item difficulties roughly correspond-
ing to this construction principle (e.g., Greiff et al., 2012;
Wüstenberg, Greiff, & Funke, 2012), but the relation be-
tween specific system characteristics and difficulty is usu-
ally not analyzed in detail. Building on Berry and Broad-
bent’s (1984, 1987, 1988) seminal sugar factory and person
interaction tasks, which are conceptually similar to min-
imal complex systems (cf. Fischer et al., 2015), we fo-
cused on the formal system characteristics system size and
presence or absence of oscillatory eigendynamics (OED).
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While system size may seem an obvious determinant of dif-
ficulty, surprisingly few studies have systematically inves-
tigated its effect in a controlled experimental design (e.g.,
Funke, 1985). Although Berry and Broadbent used small
and large systems (e.g., 1984, 1987), they never compared
the difficulty of these size variations in the same study. We
operationalize system size as the number of variables and
relations within a system. We expect large systems to be
more difficult, as the increased number of target variables
and relations makes system exploration and control cogni-
tively more demanding.

Dynamic change over time is another crucial property
of complex problems (Dörner, 1980, 1983). One frequently
encountered type of dynamics in system control tasks is a
form of recurrent feedback termed eigendynamics, in which
an output variable feeds back on itself. The feedback can
be implemented either as a constant multiplier, leading to
exponential growth or decay, or a negative sign of the feed-
back term. The latter may result in an oscillatory pattern
with the output variable autonomously jumping between
two values from one turn to another. The underlying equa-
tion is still linear, although the system’s behavior is not. In
the present study, we applied the same OED as Berry and
Broadbent (1984): We either included or excluded system
relations with an output variable negatively feeding back
on itself, in the form of Yt+1 = 2×Xt −Yt, with Yt+1 = the
new output, Xt = the input given by the participant and
Yt = the previous trial’s output.

OED are quite common to many real-world scenarios
containing negative feedback mechanisms, e.g., predator-
prey systems or economic boom-bust-cycles. Using a cold
store control scenario, Dörner (1996) and Güss (2010) have
shown that systems with oscillatory behavior caused by
negative feedback are indeed difficult to control, possibly
due to the limited utility of simple exploration strategies
such as the systematic variation of isolated variables to
discover contingencies (e.g., Chen & Klahr, 1999). Oscil-
lation due to negative feedback may be more difficult to
discern than simple time-based oscillation, e.g., based on
a sine function, as they can be irregular and change with
different inputs. We therefore expect a main effect of OED
on task difficulty.

As the structure of systems containing OED is appar-
ently difficult to discern and verbalize, they have been la-
beled “non-salient” by Berry and Broadbent (1988). This
term stems from implicit learning research, which postu-
lates two distinct learning systems (e.g., Berry & Broad-
bent, 1988, 1995; Reber, 1989; Sun, Slusarz, & Terry,
2005): an explicit system responsible for forming a con-
ceptual representation and an implicit system that stores
events and contingencies in the form of subsymbolic as-
sociative links. In this approach’s language, “salient” re-
lations are amenable to explicit, analytic reasoning, while
implicit, automatic learning processes are more suited for
acquiring knowledge about “non-salient” relations. What
makes system features more or less salient may depend on
a range of factors, such as whether they have an immediate
effect or are time-delayed, whether random noise makes the
system more intransparent or to what extent system struc-
ture matches participants’ expectations (see Funke, 2003,
for an overview). OED have been used as one paradigmatic
manipulation to reduce a system’s salience (e.g., Berry &
Broadbent, 1984). As the meaning of “salience” is only
loosely specified, we focus on the specific system charac-
teristic of OED.

Cognitive abilities

Personal factors relevant for dynamic system control may
include a broad range of characteristics from cognitive abil-
ity to motivation and personality (Funke, 1991). Here, we
investigate the aspect of cognitive abilities. While initially
evidence was mixed (Stadler et al., 2015), by now it can be
considered a well-established finding that intelligence (of-
ten operationalized as reasoning ability) is a good predictor
of performance for many dynamic system control tasks. In
a recent meta-analysis, Stadler et al. (2015) report a mean
effect size of Hedge’s g = .43 for the relation of intelligence
and performance in a set of 62 studies. However, except
for the attenuation of effect sizes due to measurement er-
ror, little is known about moderating factors and boundary
conditions of this relation (Stadler et al., 2015).

We expect that systems including OED are not only
harder to control but also that reasoning ability is less
predictive for performance in this case. This may seem
counter-intuitive, as superior intelligence and reasoning
ability are generally associated with excelling at difficult
tasks. However, reasoning is not a void process, but adds
value to existing knowledge by transforming and recombin-
ing it according to the rules of logic. Therefore, without
explicit knowledge about the problem at hand, reasoning
processes lack the “raw material” to operate on (Goode
& Beckman, 2010). If we combine this insight with the
observation by Berry and Broadbent (1984) that OED re-
stricts the amount of explicit system knowledge acquired,
it follows that reasoning cannot unfold its full potential in
this case. This interpretation is in line with the Elshout-
Raaheim hypothesis, according to which the utility of rea-
soning may be limited by the amount of knowledge avail-
able (Leutner, 2002).

Studies in which explicit information about system
structure is provided consistently found that reasoning
ability and control performance are correlated (e.g., Putz-
Osterloh & Lüer, 1981; Kröner, Plass, & Leutner, 2005;
Wüstenberg et al., 2012). However, the most convinc-
ing line of evidence for the moderating effect of struc-
tural knowledge stems from Goode and Beckmann (2010;
also Goode, 2011). In these studies, the amount of struc-
tural knowledge available to participants was experimen-
tally manipulated. Goode and Beckmann (2010) observed
a notable difference in the correlation of intelligence and
control performance depending on the amount of informa-
tion provided. Due to a relatively small sample in combi-
nation with a conservative analysis strategy, this difference
was not statistically significant. In a later study using a
larger sample the pattern of correlations was replicated and
clearly reached statistical significance (Goode, 2011).

System size in contrast should not play a major role
for the effects of reasoning provided that structural system
knowledge can be acquired. Again, this is supported by
the results reported in Goode (2011), as modifying system
complexity by adding variables and relations did not result
in an interaction of intelligence and complexity for predict-
ing performance. Larger systems may be more difficult to
control, but the cognitive processes required do not funda-
mentally differ from those required for controlling smaller
systems. We therefore expect no effect of system size on the
predictiveness of reasoning for control performance. The
validity of this analysis is of course contingent on the ab-
sence of artificial restrictions by ceiling or floor effects, but
there were no indications for such restrictions in Goode
and Beckman (2010) or Goode (2011).
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We further included cognitive reflection (Frederick,
2005) in our study, due to its good predictiveness for var-
ious judgment and decision making tasks (e.g., Toplak,
West, & Stanovich, 2014; Weber & Johnson, 2009). As cog-
nitive reflection is a reasoning-related disposition, we ex-
pect a pattern similar to reasoning ability, i.e., a main effect
on control performance and interactions with OED. Ad-
ditionally, we investigated the effects of working memory
on control performance. Although reasoning and working
memory are highly correlated, we expect that the predic-
tors are not completely exchangeable. Gonzalez, Thomas,
and Vanyukov (2005) found that both constructs were
good predictors of performance in the “Water Purification
Plant” scenario and showed statistically separable unique
contributions to performance. However, we expect the ef-
fect of working memory on performance to be moderated
less by OED and more by system size and concurrent dual
tasking (see below).

Context factors
Context factors neither relate to structure or semantics of
the system to be controlled, nor directly to characteristics
of the person working on the task (cf. Funke, 1991). They
can, for example, include to what extent additional infor-
mation about the system is provided (e.g., causal relation
diagrams) or the goals given to participants (e.g., under-
standing systems structure versus reaching given control
goals). In the present study, we investigated the effect of
concurrent cognitive load on task performance as a relevant
context factor.

To this end, we introduced a dual task manipulation us-
ing a concurrent 2-back working memory task (cf. Kirch-
ner, 1958). A comparable manipulation using a random
letter generation task has previously been used with vari-
ants of the person interaction task by Hayes and Broadbent
(1988). They hypothesized that dual tasking should in-
terfere with the working-memory intense selective process-
ing in the salient condition more strongly than the nearly
automatic unselective learning process in the non-salient
condition. Contrary to expectations, Hayes and Broad-
bent did not find such a selective impairment of learning
in the “salient” condition under dual tasking, although re-
sponse times were slowed down significantly. Dual task-
ing only had an effect when learned responses had to be
adapted for transfer to a modified second task. The au-
thors suggest that the secondary task might not have been
demanding enough to impair performance in the original
system control task. However, another possibility is the
very small sample (N = 18), resulting in low statistical
power. For more robust evidence on this question, we in-
cluded a dual task manipulation using a concurrent 2-back
working memory task. We follow Hayes and Broadbent’s
original hypothesis and expect dual tasks conditions not
only to be more difficult, but to specifically impair the se-
lective learning processes necessary to successfully control
the stable, non-oscillatory systems.

Summary
In this comprehensive study we aim to analyze three types
of performance determinants in dynamic system control
and their interactions. First, we quantify the relative ef-
fect of system size and oscillatory eigendynamics (OED)
system relations on control performance. Second, we ana-
lyze the predictive validity of reasoning ability and working
memory capacity for control performance, particularly the

interaction of these predictors with system size and the
presence of OED. Third, we study the effect of a cognitive
load manipulation on control performance, again with a
view toward its interactions with system characteristics.

Method

Participants

One hundred and twenty-eight university students vol-
unteered to participate in the study. One partici-
pant did not complete the system control tasks and
was excluded from analysis. Of the remaining par-
ticipants, 103 were female, age ranged from 18 to
35 years with a median of 21 years, all were na-
tive German speakers. The experiment took about
90 minutes on average. Participants received either
e12 or course credit as compensation. For multi-
variate and repeated-measures analyses missing values
were imputed using the expected maximization proce-
dure (2.7% of data for the system control tasks).

Design

Each participant completed eight dynamic system con-
trol tasks and several tests of cognitive ability. In the
systems control tasks, three experimental factors were
manipulated within-subjects (two levels each: system
size, presence of OED, cognitive load) in a fully crossed
design. Serial order of conditions was balanced using a
Latin square design. The cognitive load manipulation
was applied block-wise, i.e., either to tasks one to four
or to tasks five to eight. As an exploratory interven-
tion, we gave half of the participants a brief instruction
encouraging either explicit, rule-based exploration or
an intuitive strategy. Cognitive abilities measured in-
cluded working memory, cognitive reflection and rea-
soning. Using a within-subjects design with 127 partic-
ipants yields 97% power to detect medium-sized effects
at α = .05 (according to Cohen, 1988).

Materials

We designed four different basic types of dynamic sys-
tem control scenarios in two parallel versions for a total
of eight tasks. All scenarios were semantically framed
as experiments in a biology laboratory where different
substances (input variables) with fictitious labels, e.g.,
“Dilarin” or “Berophal”, could be added to cell cul-
tures to produce different cell characteristics (output
variables), e.g., nutrient requirement or temperature
sensitivity, see Fig. 1. The scenarios were turn-based,
i.e., participants first changed the value of input vari-
ables using increment and decrement buttons (12 steps
per variable) and then clicked a button to proceed to
the next turn. The value of input variables remained
stable unless manipulated by the participant, the value
of output variables was determined by a set of simple
linear equations (cf. Funke, 2001) with a small ran-
dom component (see Table 1 for equations). Values
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of system variables were capped at predefined min-
imum/maximum values to prevent participants from
maneuvering systems into irrecoverable states. Each
scenario consisted of an exploration phase of 1.5 min-
utes followed by two control phases with different tar-
get values for 20 turns (or at most 2 minutes). Suc-
cessful system control required participants to first ex-
periment with different input values and their effects
on the output variables during the exploration phase.
In the subsequent control phases, they had to apply
their knowledge and manipulate the input variables to
reach given target values.

Figure 1. Task environment for a 2 × 2 mixed system (STA/OED,
see Table 1) during the exploration phase with dual-tasking.

System size and presence of OED were experimen-
tally manipulated with two levels each. System size
was either small with one input and output variable
(1 × 1 systems) or large with two input and output
variables (2 × 2 systems). The OED factor was ma-
nipulated by either excluding or including OED in the
system (cf. Berry & Broadbent, 1984, 1988). In the
large systems, the OED was implemented for one of
the output variables only. We refer to output vari-
ables excluding OED as stable (STA), because their
values remain constant without the participant’s in-
tervention (except for a small random term). Taken
together, the factors size and OED resulted in four ba-
sic system types for which two parallel versions each
were constructed using different labels and numerical
ranges (see Table 1). The structure of the small OED
system was identical to Berry and Broadbent’s (1984)
tasks.
We employed a 2-back parallel task to create a con-

stant but not overwhelming load on working memory
in half of the system control tasks. Participants saw
a sequence of large random letters on the top of the
screen. Each letter was presented for 2.5 seconds, fol-

lowed by a 500 ms inter-stimulus interval. Every time
the current letter was the same as the second last let-
ter back in the sequence, participants had to press the
space key. We configured the task in such a way that
a positive response was required in 30% of the trials.
On errors, i.e., a false positive or a missed response
(after 2500 ms), an acoustic beep was sounded.

Taken together, every participant completed eight
scenarios: small and large systems including and ex-
cluding OED, once with and once without a parallel
dual task (a 2 × 2 × 2 fully crossed within-subjects
design controlled for effects of task order).

Scoring of control performance

The control score was calculated by determining the
proportion of turns during a control phase in which
all variables of a system were within the target range.
We chose the target range so that perfect control was
in principle possible for every turn despite the random
fluctuations. Scores were averaged over the two control
phases for each system control task.

Cognitive Tests

We assessed working memory capacity using an
adapted version of the Memory Updating (MU) task
described in Lewandowsky, Oberauer, Yang, and
Ecker. (2010). The task requires participants to si-
multaneously encode a set of three to five digits and se-
quentially apply simple arithmetic operations on them.
Participants need to replace the memorized numbers
with the results of the operation and recall them in a
subsequent retrieval phase. In three validation exper-
iments, the authors obtained high internal consisten-
cies (average α = .87) and showed that MU was the
best single predictor of general working memory ca-
pacity in a battery of commonly used WM tests. The
correlation with intelligence was found to be r = .67.

As an indicator of general reasoning ability, we used
a short form of the Raven Advanced Progressive Ma-
trices Test (Raven, Court, & Raven, 1985) developed
by Arthur and Day (1994). In the present study we
administered the short form with a time limit of 10
minutes. The original APM has been argued to be one
of the purest available measure of analytical (fluid) in-
telligence (e.g., Raven, 1989; Carpenter, Just, & Shell,
1990). The short form shows an internal consistency
of α = .72, its retest-reliability is rtt = .75, and it is
strongly correlated with the APM long version, r = .90
(Arthur & Day, 1994).

The original Cognitive Reflection Test (CRT; Fred-
erick, 2005) is a three-item questionnaire measuring
the tendency to override a prepotent but incorrect re-
sponse alternative and to engage in further reflection
that leads to the correct response. The three questions
are designed to make an intuitive yet erroneous answer
spring to mind. For instance, the first question is “A
bat and a ball cost $1.10. The bat costs $1.00 more
than the ball. How much does the ball cost?” The
correct answer (5 ct) requires the suppression of the
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Table 1. Basic equations used in the system control tasks.

Oscillatory eigendynamics

System size Absent (STA) Present (OED)

1 × 1 Y = X − 2 + R Y = 2X − Y ′ + R

2 × 2 Y1 = 1.8 × X1 − 0.45 × X2 + R Y1 = 1.8 × X1 − 0.45 × X2 + R
Y2 = 0.8 × X2 + 0.45 × X1 + R Y2 = 1.3 × X2 + 0.95 × X1 − Y ′

2 + R

Note. X = input value; Y = current trial’s output value; Y ′ = preceding trial’s output value; R = random noise. Equations
adapated from Berry and Broadbent (1984, 1987, 1988).

impulsive answer (10 ct). The CRT was designed to
assess a cognitive style related to readiness to engage
in deliberate reflection, as postulated by dual process
theories (see Stanovich & West, 2000; also Evans &
Frankish, 2009). It has been shown that the CRT is
closely related to measures of fluid intelligence (Fred-
erick, 2005; Toplak et al., 2014) and particularly nu-
merical reasoning ability (e.g., Campitelli & Gerrans,
2014). We used the expanded 7-item version as pro-
posed by Toplak et al. (2014). Its correlation with the
original CRT is r = .86 and its internal consistency is
α = .72.

Procedure

After participants gave written informed consent they
received a short oral instruction explaining the tasks
and the set-up of the experiment. System control tasks
were presented first, followed by the assessment of cog-
nitive predictor variables. As an exploratory manip-
ulation, we varied the instruction type by presenting
one of two different task descriptions to participants.
In the rule-based instruction condition, we instructed
participants to “carefully observe the experiments’ re-
sults and try to form a rule in order to predict them
accurately”. In contrast, in the intuition-based instruc-
tion condition, we encouraged them to “just take the
presented results in and [...] not try to calculate or
form a rule” and to instead “observe the results atten-
tively and use [their] intuition”. This was repeated be-
fore every block for both conditions. The instructions
aimed at eliciting a more selective (explicit) or uns-
elective (implicit) learning mode, respectively. Past
research has shown similar wordings to affect partici-
pants’ approach to learning in dynamic system control
tasks (cf. Berry & Broadbent, 1988; Gebauer & Mack-
intosh, 2007).

After completing all system control tasks, we em-
ployed a manipulation check and asked participants
to rate in which way they processed the tasks on a
one-item nine-level Likert scale ranging from entirely
intuitive to entirely rule-based. Furthermore, all par-
ticipants completed a computer-based Serial Reaction
Time task (Robertson, 2007), which was intended as a
measure of implicit learning ability. Due to technical
problems data from this task were unusable and had
to be excluded from analysis.

Results

Exploration

The median exploration time per task was 80.9 sec-
onds (IQR = 95.8) with a median of 26 exploration
turns (IQR = 43). Exploration was completed more
quickly for the small systems (median 68.1 and 75.1
seconds for STA and OED) than for the large sys-
tems (median 95.9 and 96.5 seconds for STA/STA and
STA/OED). The median number of exploration turns
was comparable (24 and 25 turns versus 28.5 and 25
turns). Dual tasking had no effect on exploration time
(median 78.23 seconds with dual tasking, 83.7 sec-
onds without), Wilcoxon W (127) = 4300, p = .57,
but a detrimental effect on the number of exploration
turns (20 turns with dual tasking, 33 turns without),
Wilcoxon W (127) = 7001.5, p < .001.

System characteristics and context factors

The effect of system characteristics and context fac-
tors on control performance was analyzed using a four-
factor mixed ANOVA with system size (small or large)
and OED (present or absent) as system characteris-
tics, which were varied within-subjects. The context
factors were dual tasking (present or absent, within-
subjects) and instruction (rule-based or intuition-
based, between-subjects). To reduce the inflation of
Type I errors in multifactorial designs, we only report
main effects and interactions for which hypotheses had
been formulated. Fig. 2 illustrates the characteristic
behavior of systems with STA (stable) or OED (oscilla-
tory) dynamics. The mean control performance scores
for the four different system types were .69 (SD = .16)
for STA, .27 (SD = .08) for OED, .24 (SD = .12) for
STA/STA, and .09 (SD = .05) for STA/OED. As dis-
played in Fig. 3, system size showed a strong main
effect, F (1, 125) = 1673.06, p < .001, η2

g = .55, as
did OED, F (1, 125) = 870.55, p < .001, η2

g = .52.
Both factors interacted, F (1, 125) = 310.77, p < .001,
η2

g = .19, indicating that the effect of OED partially
depended on system size. Comparing performance for
the two target variables within the large mixed sys-
tem (STA/OED) replicated the pattern of the separate
STA and OED systems, F (1, 126) = 197.28, p < .001,
η2

g = .38.
The context factor dual tasking exerted a small but

statistically significant main effect on performance in
the expected direction, F (1, 125) = 5.55, p = .02,
η2

g = .01. Contrary to expectation, it did not interact
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Figure 2. Dynamics of a 1 × 1 STA (stable) and a 1 × 1 OED (oscillatory) system showing the development of the target variable over
20 control turns. The horizontal line indicates the given target value. Each dotted line represents the output values of one participant.

with OED, F (1, 125) = 0.45, p = .50. Mean control
performance was .33 (SD = .09) without dual task-
ing and .31 (SD = .08) with dual tasking. Different
instructions (encouraging rule formation or an intu-
itive approach) also showed a small but statistically
significant effect on performance, F (1, 125) = 6.87,
p = .01, η2

g = .01 and no interaction with OED,
F (1, 125) = 1.94, p = .17. Mean control performance
with rule-based instructions was .34 (SD = .06) and
.31 (SD = .08) with intuition-based instructions. The
self-rated processing style was not affected by the type
of instruction given, t(125) = 0.15, p = .88.

Cognitive abilities

A regression analysis for predicting overall system con-
trol (averaged over all tasks) with the cognitive ability
variables APM, CRT, and MU showed that in total
24.5% of performance variance could be explained by
these predictors, F (3, 123) = 13.29, p < .001. CRT
was the strongest overall predictor, β = .41, p < .001,
followed by APM, β = .20, p = .05, while MU did not
significantly contribute, β = –.11, p = .25.
Table 2 lists the bivariate correlations between indi-

vidual predictors and the different system types, sup-
porting that CRT was a good predictor throughout,
while MU was comparatively weak. To test whether
the predictiveness of cognitive variables interacts with
the presence or absence of OED in the tasks as hypoth-
esized, we conducted William’s tests for comparing
dependent correlation coefficients for the small STA
and OED systems. CRT showed the expected differ-
ence, t(127) = 2.85, p < .01, with a lower correlation
in the OED condition, but APM and MU did not,
t(127) = 1.64, p = .10, and t(127) = 0.08, p = 0.93.
Combining all cognitive variables into a single gen-
eral ability score by averaging z-standardized scores re-

vealed that this overall ability variable also interacted
with the absence of presence of OED, t(127) = 2.03,
p = .04.
Correlations between cognitive ability variables and

control performance may be attenuated by low reli-
abilities of the system control tasks. Cronbach’s α
for the two small STA system was only .42, and .28
for the two small OED systems. We therefore re-
peated the William’s tests applying a one-sided correc-
tion for attenuation to the control performance scores
before comparing correlation coefficients. Results sup-
port the initial analysis, even accentuating the inter-
action effects. CRT showed the expected difference,
t(127) = 6.94, p < .01, and with correction for attenu-
ation so did APM, t(127) = 3.94, p < .001, while there
still was no effect for MU, t(127) = 0.86, p = .39. For
the combined general ability score this analysis also
yielded a significant effect, t(127) = 4.83, p < .001.
For the large systems, correlations of performance

with cognitive abilities were not significantly different
between those including or excluding OED, t’s < .40,
p’s > .69. However, the analysis of whole systems
may mask differences between the two target vari-
ables in the mixed system (STA/OED). We therefore
conducted the comparisons of correlations of cognitive
predictors and control performance just for the STA
and OED variables within the mixed system (see Ta-
ble 2). Similar to the results for the independent STA
and OED systems, we found that the variable involv-
ing OED showed significantly lower correlations with
two of the three cognitive predictors, t(127) = 2.16,
p = .03 for the CRT and t(127) = 2.09, p = .04 for
MU. For APM correlations did not significantly dif-
fer, t(127) = .41, p = .68. Again, these results were
accentuated when correcting correlations for attenua-
tion due to low reliabilities of the system control tasks
(Cronbach’s α= .41 for STA variables and .17 for OED
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Figure 3. Performance by target variable, averaged over parallel
task versions. Error indicators represent standard deviations. The
value of each target variable is either controlled by a salient (light
gray) or a non-salient relation (dark gray). (STA = 1 × 1 stable
system, OED = 1 × 1 system containing oscillatory eigendynam-
ics, STA/STA = 2 × 2 system with two stable target variables,
STA/OED = 2 × 2 mixed system with one stable and one oscilla-
tory target variable, see Table 1).

variables).
To investigate whether dual tasking moderates the

predictiveness of working memory in this task, we com-
pared the correlation of MU and performance between
dual tasking conditions. For all four system types, the
correlation coefficients did not differ with and without
dual tasking, t’s < 1.46, p’s > 0.14.

Further analyses

Performance in the 2-back secondary task was gener-
ally low with an average hit rate of .34 (SD = .20),
although consistent (Cronbach’s α = .86). A 2 × 2
ANOVA showed a strong effect of system size on sec-
ondary task performance, F (1, 126) = 68.00, p < .001,
but no effect of OED, F (1, 126) = 0.06, p = .80, and no
interaction, F (1, 126) = 0.01, p = .93. This suggests
that the larger systems were more working-memory
demanding, thereby reducing cognitive resources for
the secondary task.
In addition to the effect on system control per-

formance reported above, we also observed a clear
effect of dual tasking on response latency: With-
out dual tasking participants took an average of
2.20 (SD = 0.92) seconds per control turn and 2.77
(SD = 1.22) with dual tasking, F (1, 126) = 38.40,
p < .001.

Discussion

We observed that manipulating the presence of oscil-
latory eigendynamics (OED) and system size changed

difficulty as expected, while manipulating cognitive
load and the instructions only had a small effect on
control performance. Furthermore, we found that
OED not only make system control more difficult, but
that they can also reduce the effect of cognitive abili-
ties on control performance.
Regarding system characteristics, we found that

OED apparently were difficult to discern and con-
trol for most participants, in line with the results of
Berry and Broadbent (1988). The small OED sys-
tem was about as difficult as a stable system twice
the size (STA/STA). What makes this finding partic-
ularly striking is that the mathematical change to the
system structure was minimal, just an additional nega-
tive term in the linear equation. The difficulty pattern
was replicated for the different target variables in the
large mixed systems (STA/OED). The target variables
behaved very similar to the small STA and OED sys-
tems, with the OED variable being much harder to
control. These results show that operationalizing sys-
tem complexity merely in terms of number of variables
and relations does not fully cover complexity from a
cognitive perspective. The emergent dynamic com-
plexity of the system as a whole seems to be just as
important, if not more so (e.g., Brehmer & Dörner,
1993; Gonzalez et al., 2005).
In their seminal work, Berry and Broadbent (1984)

and Reber (1967) referred to systems which are easy,
respectively difficult, to explore and control using
deliberate reasoning strategies as “salient” or “non-
salient”. However, we think that the effects of dynamic
complexity produced by negative feedback go beyond
Berry and Broadbent’s suggestion that low salience
simply makes it less likely that participants focus their
exploration on the relevant parts of the system. Even
when non-salient relations are detected and perhaps
even partially understood (e.g., that there is oscilla-
tion), the system still may be more difficult to ex-
plore and control. Simple exploration strategies such
as control-of-variables (Chen &Klahr, 1999) are harder
to apply due to the prior system state’s influence and
the resulting instable system behavior. Furthermore,
for the same reason it is difficult to derive the correct
control interventions even if the system structure is
understood.
We replicated the finding that cognitive ability is a

good predictor of control performance (Stadler et al.,
2015). Considering specific abilities, we found cog-
nitive reflection to be the strongest overall predictor,
followed by reasoning ability, while working memory
capacity was a comparably weak predictor. This result
is somewhat surprising, given the conceptual overlap
between reasoning and working memory. As the mea-
sure of working memory employed, memory updating,
is a well-established and reliable indicator, one possi-
ble explanation is that the relatively simple systems
used in this study do not pose high working memory
demands. This explanation is supported by the fact
that the concurrent working memory load only had a
small effect on performance.
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Table 2. Correlations of reasoning ability, cognitive reflection, and working memory with control performance.

System type Target variable in STA/OED

STA OED STA/STA STA/OED STA OED

Reasoning ability .33 .17 .23 .27 .32 .18
Working memory .16 .09 .17 .20 .30 .08
Cognitive reflection .45 .16 .28 .31 .39 .18
Note. N = 127. Correlations for the target variables in the 2x2 mixed system (STA/OED) are shown separately.
Correlations with p < .05 shown in bold. Coefficents above .23 are significant at p < .01, above .29 at p < .001.

Beyond their overall effects, cognitive abilities inter-
acted with specific task characteristics. As expected,
the predictors most closely related to abstract reason-
ing (APM, CRT) interacted with the presence or ab-
sence of OED. Specifically, these predictors were less
correlated with performance in the small systems in-
cluding OED. We found the same pattern in the large
mixed system (STA/OED) when both target variables
were analyzed separately. Working memory capacity,
in contrast, did not show an interaction with the pres-
ence of OED, possibly due to its generally low pre-
dictiveness in this paradigm. These results also hold
when statistically controlling for the low measurement
reliability of the systems including OED. The only pre-
dictor interacting with system size was cognitive reflec-
tion, a statistically significant, but very small effect.

The interaction of cognitive abilities and system
characteristics is in line with previous findings by
Goode (2011), who showed that reasoning ability is
less predictive for highly complex systems. The ex-
planation given by Goode (2011, also Goode & Beck-
mann, 2010) is that reasoning ability can only unfold
its effect if structural knowledge is acquired. However,
as Berry and Broadbent (1984) have shown before, the
presence of OED dramatically reduces the amount of
structural knowledge acquired. Consequently, reason-
ing ability should be less predictive in systems includ-
ing OED. Given that our results confirm this hypothe-
sis, we conclude that, somewhat paradoxically, reason-
ing ability may be more helpful for relatively simple
dynamic problems with an obvious structure. How-
ever, this result was obtained under laboratory con-
ditions with a strict time limit and may be different
when further opportunity for exploration or additional
information sources are available.

Another conceivable criticism is that control perfor-
mance in the OED systems is simply less reliable in
psychometric terms and correlations with other con-
structs are therefore limited. We calculated correc-
tions for attenuation as one approach to rule out this
possibility. Furthermore, this criticism is based on the
assumption that there is a stable trait or ability re-
flected in performance, which does not need to be the
case. Alternatively, the performance scores can be con-
sidered a formative measure, i.e., they directly repre-
sent the degree of successful system control, which is
the criterion to be predicted.

An alternative candidate for an ability underlying
performance in tasks with OED would have been im-
plicit learning ability, as suggested by the observa-

tion that implicit learning takes place in these systems
(Berry & Broadbent, 1984). Although our measure
of implicit learning ability was unusable for technical
reasons, it is uncertain whether it would have added
much explanatory value as a predictor. In a study us-
ing a relatively complex dynamic system, Danner et al.
(2011) showed that the latent correlation (corrected for
measurement error) between implicit learning ability
and control performance was just r = .26 compared to
r = .86 for intelligence. Furthermore, implicit learn-
ing as a unitary ability is not undisputed (Gebauer
& Mackintosh, 2007) and its reliability seems to be
generally low (Reber & Allen, 2000). Moreover, the
time restrictions in our study and the tasks’ superfi-
cial similarity despite their structural differences may
have prevented implicit, instance-based learning (cf.
Kaufman, 2011). The correlations between reasoning
and system control performance in our study suggest
that mainly explicit, deliberate learning was required.
This interpretation is supported by studies that simi-
larly found such correlations in explicit learning con-
ditions but not in implicit learning conditions (shown
for intelligence by Gebauer & Mackintosh, 2007, and
for working memory capacity by Unsworth & Engle,
2005).

Supporting earlier findings by Hayes and Broadbent
(1988), our results show that dual tasking slowed par-
ticipants down, but only had a negligible effect on con-
trol performance. While in some reasoning tasks cog-
nitive load affects both accuracy and response latency
(e.g., Gilhooly, Logie, Wetherick, & Wynn, 1993), a
dissociation of the two is also sometimes observed (e.g.,
Baddeley & Hitch, 1974). Our findings imply that in
the present task it is possible to compensate experi-
mentally reduced mental capacity by proceeding more
slowly, and that participants seem to give priority to
accuracy over speed. This pattern of results was the
same for STA and OED systems. If performance in
OED conditions was purely based on implicit learn-
ing, it should have been less affected by dual tasking.
However, this was not the case, further supporting the
interpretation that explicit learning may have been rel-
evant in all conditions.

In summary, the present study demonstrates that
the presence of oscillatory eigendynamics in a system
has a strong effect on difficulty and can act as a moder-
ator on the effect of reasoning and cognitive reflection
on control performance. System size has an effect on
difficulty, but shows only limited interaction with cog-
nitive abilities. Furthermore, we found that analyzing
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target variables in the mixed (STA/OED) large sys-
tems separately mirror the pattern from comparing the
separate small STA and OED systems. We therefore
recommend the separate analysis of system parts for
future cognitive research in dynamic system control.
Our results may also be informative for the psycho-
metric application of dynamic system control tasks, as
they contribute towards a more differentiated under-
standing of the effects of system characteristics and
cognitive abilities on task performance.
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