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The role of difficulty in dynamic risk mitigation
decisions
Lisa Vangsness and Michael E. Young
Kansas State University, Department of Psychological Sciences

Previous research suggests that individuals faced with
risky choices seek ways to actively reduce their risks. The
risk defusing operators (RDOs) that are identified through
these searches can be used to prevent or compensate for
(here, pre- and post-event RDOs, respectively) negative
outcomes. Although several factors that affect RDO se-
lection have been identified, they are limited to static
decisions conducted during descriptive tasks. The fac-
tors that influence RDO selection in dynamically unfold-
ing environments are unknown, and the relationship be-
tween task characteristics and RDO selection has yet to
be mapped. We used a videogame environment to con-
duct two experiments to address these issues and found
that experienced losses impacted risk mitigation strat-
egy: when the task was difficult, participants experienced
greater losses and were more likely to select preventive
RDOs (Experiment 1). Additionally, risk mitigation be-
havior stabilized as participants gained experience with
the task (Experiments 1 and 2) and could be shifted by
making an RDO easier to use (Experiment 2). Exploratory
analyses suggested that these risk mitigation choices were
not driven by judgments of difficulty (JODs), even though
participants’ JODs were accurate and aligned with task
difficulty. This research suggests that while people seek
preventive RDOs when tasks are difficult and risky, risk
mitigation strategy is shaped by experienced losses; de-
cision makers do not use JODs to anticipate future risks
and inform risk mitigation decisions.
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Most people brush their teeth before work in the morn-
ing. When repeated twice a day, this small preven-

tive measure can significantly reduce the risk of cavities and
improve overall oral hygiene. Despite the positive benefits
of tooth brushing, more than half of Americans report for-
getting to brush their teeth at least once in the past year
(Delta Dental, 2014). Failing to brush your teeth invites
risk but generally does not result in a negative outcome.
Unless you consistently fail to brush or are particularly
susceptible to cavities, you will not require a filling. This
everyday decision is a simplified example of the choices
that are made in high-risk medical, defense, and educa-
tional situations (to name a few) around the world: Is it
better to expend time and energy on preventive measures
or should we wait and minimize the costs of prevention by
taking action only if a negative outcome occurs? Our re-
search studies sought to identify factors that contribute to
when and how risk mitigation strategies are chosen, specif-

ically within dynamic environments that rapidly change
and respond to peoples’ actions.

Previous research involving the use of risk mitigation
strategies has focused on the conditions under which peo-
ple will search for risk defusing operators (RDOs), which
are actions or tools that can be used to reduce the risks as-
sociated with a decision (Huber, Beutter, Montoya, & Hu-
ber, 2001). In these experiments, participants seek RDOs
by asking questions about a vignette. These questions
may emphasize preventive or compensatory strategies that
could be employed before (pre-event RDOs) or after (post-
event RDOs) a decision is made to reduce the likelihood
or severity of a negative outcome (for a review see Hu-
ber, 2012). More than a decade of research with these
vignette-based descriptive tasks suggests that participants’
willingness to seek RDOs depends on information availabil-
ity and environmental pressures. That is, risk mitigation
depends not only on the environment, but also on a per-
son’s ability to detect and interpret environmental cues.
While vignette-based tasks fail to capture the dynamic na-
ture of some real-world decisions, this research illustrates
an important concept: people will actively engage with the
environment to reduce their risks when they perceive the
opportunity to do so (Huber, Beutter, Montoya, & Hu-
ber, 2001). For this reason, we will review research that
uses vignette-based tasks before exploring the implications
these findings have on choices made in dynamic decision-
making tasks and the current studies.

Risk Mitigation in Vignette-based Decision-making
Tasks
Within the context of vignette-based tasks, individuals ini-
tiate a search for RDOs when they recognize that their
desired choice is associated with an unacceptable level of
risk and will discontinue this search when an acceptable
RDO is found (Bär & Huber, 2008). This search hinges
on their experience with a task as well as their knowledge
of risks and RDO availability. When a scenario is unfa-
miliar and includes explicit cues about the detection of a
negative event (e.g., a test that detects the negative side
effects of a medication) or about RDO availability (e.g.,
access to an expert that may be aware of successful risk
mitigation strategies), individuals are more likely to ask
questions about these factors and use this information to
make decisions. This search is less likely to occur when
information cues are absent (Huber & Huber, 2008; Huber
& Huber, 2003) and when individuals have background
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knowledge that precludes the need for additional informa-
tion (Huber & Macho, 2001). Environmental pressures also
appear to play a role in the search for risk mitigation strate-
gies. Under time pressure, questions about RDOs become
more strategic and focused on RDO availability (Huber &
Kunz, 2007), while requiring people to justify their choices
discourages them from taking risks even when RDOs are
available (Huber, Bär, & Huber, 2009). To summarize, in-
dividuals use environmental cues to determine when and
how to search for risk mitigation strategies in the context
of vignette-based tasks.

While the factors influencing RDO search are well-
studied in the context of vignette-based tasks, less is known
about how RDOs are used during situations that are con-
tinuously unfolding. Although participants indicate an in-
terest in using preventive strategies when negative out-
comes are difficult to detect and severe losses are expected
(e.g., a symptomless virus; Huber & Huber, 2003), these
preferences may change when decisions are encountered re-
peatedly within a single context (e.g., Camilleri & Newell,
2013; Hau, Pleskac, Kiefer, & Hertwig, 2008; Hau, Pleskac,
& Hertwig, 2010). Repeated decisions allow participants
to receive feedback in the form of experienced or avoided
losses, which can be used to inform future risk mitiga-
tion decisions. Thus, an RDO’s role in a dynamic task
can change depending on the event to which the decision-
maker anchors their choice. For example, insurance is of-
ten considered a compensatory, pre-event RDO because it
is purchased in advance but only pays out if a negative
outcome occurs (e.g., Huber, 2012); yet some people wait
to purchase insurance until after they have sustained a loss
(Zaleskiewwicz, Piskorz, & Borkowska, 2002), making in-
surance a post-event compensatory RDO. More research
is needed to determine how individuals’ willingness to seek
and employ RDOs is affected by the repeated choices made
within dynamic environments.

Learning from Experience in Repeated-choice Tasks

Initially, repeated-choice tasks involve uncertainty
(Knight, 1921) in that their risks are not yet known: new
homeowners have not yet encountered a flood nor has a
novice physician seen the effects of a deadly virus. As
individuals gain experience in a novel environment, they
sample context-specific information which can be used to
estimate the probability of risk (Hertwig & Erev, 2009)
and calibrate subsequent judgements (cf., Brunswick,
1952). That is, people track experienced losses and
become aware of task-related cues that signal increased
risks. These cues can then be used to inform subsequent
risk mitigation decisions.

One class of cues that signal risk encompasses those re-
lated to task difficulty. On a broad level, difficulty corre-
lates with risk. The more challenging the task, the more
likely a person will be to make errors and experience losses.
The easier the task, the more likely a person is to succeed.
This relationship can be used to inform decision-making:
individuals may use experienced losses to help identify and
calibrate their use of cues to difficulty (e.g., visual com-
plexity present on a radar screen), which can then be used
to infer their level of risk.

Taken together, experienced losses and cues to difficulty
should affect the probability with which an individual will
elect to use either type of RDO. If a task is perceived to
be risky, an individual may become more likely to use an
RDO, especially when the magnitude of the loss associated

with that risk is high (cf., Huber & Huber, 2003). Ide-
ally, preventive strategies will be employed when risks and
losses are large, such as during a challenging task (Huber,
2012); however, upfront costs (e.g., time, money, effort)
may dissuade people from adopting preventive strategies
(Sigurdsson, Taylor, & Wirth, 2013). This is particularly
true of demanding tasks that require many resources to
complete. For instance, the CHEX decision-aid, a tool in-
tended to help air traffic controllers and tactical coordina-
tors improve their situation awareness, does not improve
performance partly because it distracts people from their
primary task of monitoring the airspace. In this case, par-
ticipants rarely used the preventive RDO because it occu-
pied resources that could be used to complete the task itself
(Vallières, Hodgetts, Vachon, & Tremblay, 2016). Thus,
compensatory strategies may be preferred during challeng-
ing tasks because they do not require any effort unless they
must be used.

Converging evidence from cognitive, comparative, and
motivational literature supports the notion that people
weigh the trade-offs between effort and reward when mak-
ing decisions (for reviews see Mitchell, 2017; Walton, Ken-
nerley, Bannerman, Phillips, & Rushworth, 2006; and
Locke & Latham, 2002, respectively). If effort is not com-
mensurately rewarded, people will minimize resource al-
location by abandoning tasks in favor of easier or more
rewarding endeavors. In this way, they strive to maxi-
mize the utility of their limited resources (Kurzban, Duck-
worth, Kable, & Myers, 2013) and may use the effort-
reward trade-off to inform risk mitigation decisions.

The role of expertise. An individual’s ability to judge
task difficulty and estimate risk may be mediated by task-
specific knowledge that is acquired through practice. A
single task can be made difficult in many ways (e.g., the
enemies in a videogame can move more quickly or more
slowly; alternatively, these same enemies could take more
or fewer shots to destroy). Through practice, people be-
come sensitive to the risk-reward relationships present in
their environments (Pleskac & Hertwig, 2014) and will ac-
tively exploit them by selecting strategies that maximize
their successes and rewards (Lovett & Anderson, 1996).
This sensitivity is particularly pronounced when cues to
difficulty are easily discriminable and frequently encoun-
tered (Gaeth & Shanteau, 1984; Shanteau, 1992). When
difficulty is determined by multiple task dimensions or
when decision makers receive limited feedback, expertise
may negatively impact decision making. Under these con-
ditions, experts are more likely to attend to irrelevant cues
and may be poorly calibrated in their estimates of difficulty
and risk (for a review, see Koehler, Brenner, & Griffin,
2002). Studying risk mitigation decisions within a con-
trolled dynamic task will allow us to determine whether
people use cues to difficulty to evaluate risks and whether
these relationships can be learned over time.

Judgments of Difficulty as a Measure of Resource
Demands

Because difficulty, risk, and loss are closely intertwined,
judgments of difficulty (JODs) should reflect peoples’
awareness of changing cues to difficulty and inform the
strategies they pursue as they engage in a challenging task
(Kahneman 1973; Kanfer & Ackerman, 1989; for a review
see Kurzban 2016), JODs should also predict the risk mit-
igation strategies that will allow people to achieve their
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goals (Kurzban et al., 2013). To be successful, people
must evaluate task difficulty frequently enough to detect
changes in the environment that may affect their ability to
effectively allocate resources toward their goals (Brunswik,
1956). Once a task is underway, JODs can be used to re-
allocate resources in response to changing task demands
(Flavell, 1979).

Historically, researchers interested in metacognitive eval-
uations of difficulty have used knowledge assessments (e.g.,
multiple-choice questionnaires; comprehension) to deter-
mine the degree to which people accurately estimate the
disparity between their abilities and those that the situ-
ation requires (e.g., Ozuru, Kurby, & McNamara, 2012).
However, JODs made in static environments differ signifi-
cantly from those that must be made repeatedly as situa-
tions rapidly unfold over time. Recent research involving
dynamic tasks suggests that people integrate multiple cues
to difficulty when making JODs, and that the weighting
of these cues can change over time (Desender, Van Opstal,
& Van den Bussche, 2017; Koriat, 1997). Peoples’ ability
to identify, integrate, and update cues is an integral part
of selecting appropriate problem-solving strategies (Lovett
& Schunn, 1999); thus, JODs may be related to RDO se-
lection in dynamic tasks. An illustration of this purported
relationship can be found in Figure 1.

Figure 1. While it is likely that cues to difficulty, level of risk, and
the magnitude of losses directly influence risk mitigation decisions,
it is also possible that these factors are captured by individuals’
Judgments of Difficulty (JODs). Evidence from two experiments
revealed that JODs are unaffected by the magnitude of losses in-
curred by an individual, and that JODs do not impact risk mitiga-
tion decisions.

Studying RDOs in a Dynamic Environment

We wished to understand the influence that task difficulty
and JODs have on risk mitigation strategies during a dy-
namic task. Our dynamic task was a third-person shooter
videogame designed using the Unity game engine (Unity,
2016). Interested parties can find a video and brief descrip-
tion of this task at http://youtu.be/q6AHSWfAyyY.

Previous literature suggested competing hypotheses re-
garding the relationship between task difficulty and risk
mitigation. If experienced losses and anticipated risks
underlie RDO selection, preventive measures (pre-event
RDOs) should be selected more frequently when perfor-
mance is expected to worsen. In the context of this
task, pre-event RDOs might be selected more often when
a player’s in-game losses are greater and more frequent.
However, it is also possible that current resource availabil-
ity dominates risk mitigation decisions. If this holds true,

compensatory strategies (post-event RDOs) should be fa-
vored during difficult tasks that negatively impact perfor-
mance. That is, players should allocate greater attention
and working memory to improve their performance during
a difficult level of the videogame rather than invest these
resources in a pre-event RDO. These perspectives can be
summarized in the following way:

H1a (risk estimation): participants will be more likely to
select pre-event RDOs as their task performance becomes
impaired.

H1b (resource minimization): participants will be less
likely to select pre-event RDOs as their task performance
becomes impaired.

If risk estimation underlies RDO selection, then peo-
ple should be cognizant of the relationship between dif-
ficulty and risk and can track this relationship through
repeated decisions. Support for this hypothesis would sug-
gest that risk mitigation in dynamic tasks mirrors that of
vignette-based tasks and can be conceptualized as a form of
problem-solving. If resource minimization underlies RDO
selection, then individuals should be less capable of mini-
mizing the risks they encounter due to task difficulty. This
finding would provide a simple explanation for peoples’ ten-
dency to violate workplace safety precautions when tasks
are difficult (e.g., Sigurdsson, Taylor, & Wirth, 2013), even
though such behavior is suboptimal. However, such be-
havior could also be explained by H1a if risk estimation
is driven by experienced losses and cannot be anticipated;
an exploratory model comparison will address this issue if
H1a is supported.

Because the cues to difficulty within our environment
were relatively straightforward and varied along a single
dimension, we anticipated that previous videogame expe-
rience would change the way in which these strategies were
adopted. Namely, if expertise enhances participants’ abil-
ity to identify and use cues to difficulty and informs the
selection of RDOs, participants who report significant ex-
perience with videogame tasks should display early risk
mitigation preferences and be less likely to sample alterna-
tive strategies at the onset of the task (H2). In other words,
participants with previous videogame experience should
have adopted the RDO strategies outlined by H1a and H1b
more quickly. We also believed that risk mitigation be-
havior would stabilize as time-on-task increased, regardless
of participants’ previous experience with videogame tasks
(H3). If these hypotheses are supported, it would suggest
that expertise improves the calibration of risk mitigation
activities.

Experiment 1

Participants

Seventy-nine participants (43 female) from the General
Psychology pool at Kansas State University completed
the experimental task and received 1 hr of research
credit compensation to fulfill a course requirement.
One participant experienced a computer malfunction
and needed to restart the videogame. The remaining
data from this participant is included in the analyses.
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Design and Procedure

Participants completed a 40-min session of a third-
person shooter videogame in which they controlled the
avatar of a young boy who had shrunk to miniature
size and was pursued by stuffed-animal zombies inside
his bedroom. During each level, stuffed-animal zom-
bies appeared at semi-random locations and pursued
the boy throughout the room. Participants guided
their avatar across the bedroom floor using the ar-
row/ASWD keys and eliminated enemies with a laser
cap gun that was controlled by moving and clicking
with the computer mouse. The goal of the videogame
was to successfully pass through as many levels as pos-
sible before the session was finished. Experimenters
encouraged participants to pursue this goal by stating
that “most participants clear eight levels before the
session ends.”
Successful completion of this goal required partici-

pants to prioritize their performance in the game be-
cause death was a time-costly event that occurred once
the avatar’s health was fully depleted by enemy at-
tacks, which occurred each time a stuffed-animal zom-
bie touched the avatar. Each enemy attack depleted
20 hit points of the avatar’s 100 hit points of health.
When the avatar’s hit points dropped below 0, the
avatar died and the game was paused for 30 s while a
loading screen appeared. The purpose of this waiting
period was to serve as an aversive consequence that
discouraged players from using death as a gameplay
strategy to avoid enemy characters. Following this de-
lay, the avatar was restored to full health and placed
at a random location within the game space.

Participants advanced to a new level by eliminating
enemies. Each enemy elimination earned the player 1
point. Once participants eliminated 30 enemies from
the game space (raised their score from 0 to 30 points),
their score reset and the game advanced to a new level
with an identical layout that could be easier or harder
than the last (how this was accomplished is detailed
later): unlike a traditional video game, the degree of
difficulty was randomly assigned at the beginning of
each level. Participants’ ability to track changes in
task difficulty was assessed using a pop-up window
that appeared at the beginning of each level and ev-
ery 2 minutes during the game. This pop-up window
contained two buttons that allowed participants to in-
dicate whether the videogame was “easier” or “harder”
than it was before. This format allowed participants
to make comparative assessments without interpreting
scale anchors and without making assumptions about
the scaling of JODs (for additional information, see
Böckenholt, 2004). Once participants selected an op-
tion with the computer mouse, the pop-up window dis-
appeared from the screen. Gameplay remained paused
for 3 s before and after the pop-up window appeared
to reduce the performance costs associated with task
interruption (Altmann & Trafton, 2007).

After 40 mins of gameplay, the videogame ended and
participants completed a demographic questionnaire
that included questions about sex and videogame ex-

perience. Participants also completed a modified ver-
sion of the Game Engagement Questionnaire (Brock-
myer et al., 2009).

RDO selection. In an effort to ensure that all par-
ticipants anchored their risk mitigation actions to the
same event, RDOs were made available at the begin-
ning of each level and every subsequent 5 mins. At
these times, a pop-up window invited participants to
“select a tool” that they could use to improve their per-
formance during the game. Participants could select
one of two tools, a shield (a pre-event RDO) or a health
pack (a post-event RDO). Either tool could be used to
mitigate 20 hit points of damage from an enemy char-
acter by preventing an enemy attack (shield) or restor-
ing the avatar’s health (health pack). Additionally,
these tools differed in how difficult they were to use.
While post-event RDOs could be used at any point fol-
lowing an enemy attack, pre-event RDOs needed to be
timed to the enemy attack because they only shielded
the avatar for up to 5 s and needed to be redeployed
once an enemy character touched the shield.

Selecting a tool placed five of these items into the
avatar’s inventory, which was indicated by a set of
icons in the lower left corner of the screen. Although
participants received an opportunity to restore their
inventory every 5 mins, they could neither stockpile
items nor could they hold items of more than one type.
Thus, participants needed to use their experiences in
the game to develop a risk mitigation strategy that
considered the strengths and weaknesses of both the
tools and themselves.

Participants could use these tools at their discretion
by pressing the F key on the keyboard. Each time
participants used a tool, they received notification by
visual and auditory cues: a 250-ms sound and a 3-D
bubble accompanied each RDO use. Both the sound
and the bubble were specific to the tool and could be
used to differentiate tool choice. After a tool restored
hit points or deflected an enemy attack, one of the five
icons disappeared from the bottom of the screen. For
a screenshot of the videogame task, see Figure 2.

Task difficulty and risk. Task difficulty was manip-
ulated as a between-subjects variable (difficulty type)
by adjusting one characteristic of the enemy charac-
ters’ behavior at the start of each level. This char-
acteristic was automatically adjusted within-subjects
by a programmed algorithm that randomly selected
a value from a uniform distribution that represented
a wide range of difficulty, as determined through par-
ticipants’ performance during pilot testing (Vangsness,
2017). This randomly selected value was held through-
out the level, while all other characteristics of the
enemy characters’ behavior remained constant dur-
ing the session. For example, participants assigned
to the “speed” condition saw the enemy characters’
rate of movement change between levels but did not
experience changes in the enemy characters’ hit points
or population rate. Similarly, participants assigned
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Figure 2. A screen shot from the videogame task depicts the player’s avatar surrounded by three enemy characters. The player’s health
and remaining shields are depicted in the lower left corner.

to the “population” condition experienced changes in
how quickly enemy characters appeared in the level,
but did not see changes in the enemy characters’ speed
or hit points. A brief description of the characteristics
and their sampling values can be found in Table 1.
Previous analyses of gameplay data showed that dif-

ficulty was inversely related to gameplay performance
(Vangsness, 2017). That is, participants were attacked
more frequently and experienced greater losses when
the manipulated difficulty parameter took values near
the upper limit of the range. Conversely, participants
experienced fewer losses when this parameter took on
smaller values. These analyses suggest that risk is
higher during more difficult levels and is lower during
easier levels. While it is theoretically possible to es-
timate the moment-by-moment risks incurred by each
participant, this estimation would require knowledge
of many factors (e.g., skill of the individual player; lo-
cation, velocity, and enemies’ expected time of arrival;
etc.) that fluctuate considerably during the task. As
we were interested in broad, robust patterns of behav-
ior that transcend a single, specific context, we defined
risk as it varied with task difficulty.

Tutorial level. The videogame included a tutorial
level to familiarize participants with the layout and
controls of the game. The tutorial level was identical
to the videogame task in all respects but only con-
tained three enemy characters which participants were
required to eliminate before progressing to the first
level of the game. Because the tutorial level differed
significantly from the remainder of the videogame,
data from this portion is excluded from subsequent
analyses.

Results

Risk Mitigation Strategy. We explored the factors
underlying participants’ risk mitigation strategies with
a multilevel logistic regression model that predicted
the probability that a participant would select ei-
ther tool (Health pack, Shield) using participants’
game performance, time-on-task, previous videogame
experience, and difficulty type (Population, Speed,
Strength) in the fixed effect structure. Game perfor-
mance was defined as the rate of damage from en-
emy characters that had elapsed since the most recent
RDO selection ("total damage since last RDO choice
÷ time since last RDO choice" ), videogame experi-
ence as the summed responses to relevant items from
the demographic questionnaire, and time-on-task as
the amount of time that had elapsed since the be-
ginning of the first level of the videogame task. The
random effect structure was selected using AIC com-
parisons (Akaike, 1973), which supported a structure
that included the intercept, game performance slope,
and time-on-task slope. This specification allowed the
model to account for participant differences in overall
ability, perceptions of difficulty, and rate of learning.
A full disclosure of random effect comparisons can be
found in the appendix.

The findings from this analysis are illustrated by
Figure 3. The slope in each time-slice panel illustrates
that risk mitigation strategy was significantly affected
by participants’ damage rate since last RDO selection,
and that this relationship changed over time. Early in
the game, participants had little preference for either
RDO but as time-on-task increased they learned to use
preventive RDO strategies to compensate for heavy
losses. When participants performed well during the
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Table 1. Both experiments included a between-subjects manipulation in which participants experienced different difficulty types.

condition description randomly selected
values

constant values

Population rate (n = 26) The rate at which enemies appeared in the game
space

1 – 25 s 10s

Speed (n = 23) The speed at which enemy characters could
travel.

0.2 – 15.0 Unity
units

5.0 Unity units

Strength (n = 30) The number of hit points enemies had when they
first appeared in a level.

20 – 400 hit points 115 hit points

Note. Unity units are an arbitrary measure that can be used to scale game objects with respect to one another.

later stages of the game they became increasingly
likely to select post-event RDOs. This pattern of be-
havior aligns with our hypothesis that risk estimation
underlies RDO selection (H1a). Specifically, partici-
pant selected risk mitigation strategies that would pre-
vent losses when they were likely to occur rather than
choosing to conserve resources for task completion by
selecting the less-effortful post-event RDO. This rela-
tionship became more pronounced over time, suggest-
ing that risk mitigation strategies stabilize as individ-
uals become more familiar with available RDOs (H3).
The other main effects included in the model were non-
significant (p’s > .05), suggesting that there is not a
strong relationship between previous videogame expe-
rience and RDO selection (H2). All estimates and sig-
nificance values are disclosed in Table 2.

Table 2. Model estimates from Experiment 1 reveal that game
performance and time-on-task significantly predict participants’ risk
mitigation strategy during gameplay.

predictor B SE z p

intercept 0.77 0.28 2.74 .01

game performance -0.34 0.16 -2.11 .04

time-on-task 0.82 0.29 2.82 .005

previous videogame experi-
ence

0.03 0.02 1.32 .19

Population 0.22 0.22 1.01 .31

Speed -0.09 0.23 -0.39 .69

performance x time-on-task -0.40 0.19 -2.13 .03

Note. Performance (M = 1.32, SD = 1.53) was centered around
1.17, a value halfway between the means of Experiments 1 and
2. Previous videogame experience (M = 8.93, SD = 7.40) was
centered around its mean, and time-on-task (M = 1088.25, SD =
723.64) was centered around its mean and scaled by dividing by
1,000 prior to analysis. Experimental condition was effect coded,
with Strength serving as the -1, -1 baseline.

To evaluate participants’ ability to use JODs as a
measure of resource demands, we used AIC values to
compare the existing model with one that included
participants’ perceptions of task difficulty as a main
effect. Adding this predictor did not significantly im-
prove the predictions of our earlier model (∆AIC =
-2.87). We interpreted this finding to have one of two
meanings: either participants’ JODs were highly cor-
related with damage rate, suggesting that participants
used the magnitude of their losses as a cue to game dif-

ficulty, or participants did not incorporate their JODs
in risk mitigation decisions.

Exploratory analysis. To address the multiple inter-
pretations of our model comparison, we conducted
an exploratory analysis to determine whether damage
rate was responsible for participants’ JODs, or if per-
ceptions of difficulty were based on additional unmea-
sured factors. This was accomplished by comparing
two multilevel logistic regression models that included
either a measure of participants’ game performance
(damage rate since last JOD question) or of objective
game difficulty (task difficulty parameter standardized
across experimental condition). Both models included
time-on-task, previous videogame experience, and ex-
perimental condition (Population, Speed, Strength)
in the fixed effect structure. AIC comparisons sup-
ported a random effect structure that included inter-
cept, standardized difficulty slope, and time-on-task
slope to account for participant differences in ability,
experiences of difficulty, and rate of learning. A full
disclosure of random effect comparisons can be found
in the appendix.

Table 3. Model estimates from an exploratory analysis reveal that
an objective measure of difficulty and time-on-task predict partici-
pants’ JODs in Experiment 1.

predictor B SE z p

intercept 0.43 0.15 2.76 .01

standardized difficulty 3.50 0.37 9.41 <.001

time-on-task -0.47 0.14 -3.33 <.001

previous videogame experi-
ence

0.01 0.02 0.48 .63

Population 0.001 0.19 0.01 .99

Speed -0.12 0.21 -0.55 .58

Note. Standardized difficulty (M = 0.51, SD = 0.30) and previ-
ous videogame experience (M = 9.16, SD = 7.22) were centered
around their means. Time-on-task (M = 1214.01, SD = 713.03)
was centered around its mean and scaled by dividing by 1,000 prior
to analysis. Experimental condition was effect coded, with Strength
serving as the -1, -1 baseline.

Model comparisons using AIC strongly supported a
model that included objective game difficulty as a fixed
effect (∆AIC = 82.95). The findings from this model
(see Figure 4) suggest that cues to difficulty unrelated
to the magnitude of losses (e.g., the number of enemies
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Figure 3. During Experiment 1, participants’ risk mitigation strategies were not initially sensitive to changes in task difficulty. As the
experimental session continued, participants began to compensate for changes in task difficulty by selecting preventive tools (i.e., the
shield) when they experienced greater losses and compensatory tools (i.e., the health pack) when they experienced fewer losses. Error
ribbons represent one standard error above and below the model estimates.

visible on the screen; how quickly enemy characters
move) underlie participants’ JODs. Despite this, the
positive slope in each time-slice reveals that partici-
pants’ JODs were well-calibrated to the difficulty level
of the game. Participants were more likely to indicate
the game was “harder than before” when they were
playing levels that were objectively harder, and were
more likely to indicate the game was “easier than be-
fore” when playing levels that were objectively easier.
We also found that participants’ JODs were influenced
by time-on-task such that they became less likely to
say that the game was “harder than before” later in
the game; however the size of this effect was small.
The other predictors included in the model were not
significant (p’s > .05). All estimates and significance
values are disclosed in Table 3.

Discussion

Participants’ risk mitigation strategies were affected
by the interaction between their experienced losses
and time-on-task. Initially, participants’ risk mitiga-
tion strategies were unaffected by experienced losses,
but over time, pre-event RDOs (i.e., the shield) were
preferred following heavy losses. These results sug-
gest that people respond to environmental changes by
adopting risk mitigation strategies that reflect experi-
enced losses (here, damage rate since last RDO ques-
tion) and that these strategies change as people gain
experience with a task. This behavior lends support
to the hypothesis (H1a) that risk estimation drives
the selection of risk mitigation strategies because par-
ticipants actively compensated for their losses with a
most costly pre-event RDO rather than allocating all
their resources toward task completion. Participants’
behavior was unaffected by their level of videogame
experience (H2), but did stabilize over time lending
support to hypothesis H3. Our results also demon-

strated that people actively and accurately monitor
the environment for cues that reflect changes in task
difficulty, but that these cues are not determined by
the magnitude of participants’ losses and may instead
focus on cues to difficulty within the videogame itself
(e.g., the number of on-screen enemies). Because par-
ticipants’ risk mitigation strategies were predicted by
experienced losses while JODs were predicted by cues
to difficulty, we believe that the shifts in risk mitiga-
tion strategy are caused by individuals’ awareness of
experienced losses, and that the cues used to select a
risk mitigation strategy differ from those used to make
JODs. This would seem to suggest that individuals’
risk mitigation strategies do not anticipate risks but
respond to them after they have occurred.

Although our results support the risk mitigation
hypothesis (H1a), they do not completely discount
the resource optimization account of human behavior
(e.g., Kurzban et al., 2013; Vallières, Hodgetts, Va-
chon, & Tremblay, 2016). While losses led participants
to select resource-intensive pre-event RDOs, they did
shift toward selecting post-event RDOs when losses
were infrequent. Perhaps participants recognized that
preventing losses, while strategic, came with inherent
costs and therefore effectively navigated the trade-off
between effort and reward. We reasoned that if partic-
ipants engaged in trading off effort and reward, they
would shift toward preventive risk mitigation strate-
gies when this tool was made easier to use (H4a). How-
ever, if resource optimization did not underlie partici-
pants’ behavior, tool selection would not be influenced
by the pre-event RDO’s ease-of-use (H4b). We tested
these competing hypotheses in Experiment 2 by ma-
nipulating the coordination required to effectively use
the shield tool and measured the impact this had on
tool selection throughout the videogame task.
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Figure 4. Participants’ judgments of difficulty (JODs) were well-calibrated to the difficulty level of the videogame (parameter values
standardized across difficulty types). JODs were also consistent across both experiments. Error ribbons represent one standard error
above and below the model’s estimates.

Experiment 2

Participants

Eighty-eight participants (41 female) from the General
Psychology pool at Kansas State University completed
the experimental task and received 1 hr of research
credit compensation to fulfill a course requirement.

Design and Procedure

Participants completed a 40-min session of the
videogame task in which we manipulated the diffi-
culty of the shield’s use as a between-subjects con-
dition variable (RDO type), but held the reward for
using this tool (avoiding an enemy attack) constant. In
the Steady condition, pre-event RDOs were less costly:
participants that selected the shield needed only to de-
ploy it a single time. Once active, the shield protected
the participants’ avatar from five enemy attacks. In
the Sporadic condition, the shield was more costly be-
cause behaved as it did in Experiment 1. That is,
it remained active for five seconds and participants
needed to deploy it multiple times to remain protected
from enemy attacks. Furthermore, the timed activa-
tion window required participants to coordinate the
shield’s deployment with an anticipated attack.
Because the between-subject difficulty manipulation

(Population, Speed, Strength) was not a significant
predictor in the Experiment 1 analyses, we included

only two levels of the difficulty manipulation (difficulty
type: Strength, Speed), in Experiment 2. We counter-
balanced the four possible combinations of difficulty
type and RDO type across experimental sessions. In
all other respects, the videogame task was identical to
that used in Experiment 1.

Results

We again used multilevel logistic regression to predict
the probability that a participant would select either
tool (Health pack, Shield) using participants’ game
performance, time-on-task, previous videogame expe-
rience, difficulty manipulation (Strength, Speed), and
RDO type (Sporadic, Steady). Game performance,
videogame experience, and time-on-task were included
in the fixed effect structure and operationalized using
the measures outlined in Experiment 1. AIC com-
parisons supported a random effect structure that in-
cluded the intercept, game performance, and time-on-
task which allowed the model to account for partici-
pant differences in overall ability, perceptions of dif-
ficulty, and rate of learning. Because we were inter-
ested in replicating the effects found in Experiment 1,
we included the three-way interaction between game
performance, time-on-task, and RDO type.

The results of our analysis are depicted in Figure
5. The stark difference in risk mitigation patterns be-
tween the Sporadic and Steady RDO type is clear;
only RDO type and its two-way interaction with time
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affected participants’ risk mitigation strategies during
the game (see Table 4). This effect intensified as time-
on-task increased and became most apparent in the
final time-slice panel. Including participants’ percep-
tions of task difficulty as a main effect again did not
significantly improve our model’s predictions (∆AIC
= -2.97), complementing our results from Experiment
1. The results of the two- and three-way interactions
involving game performance, time, and RDO type also
align with our previous analysis. Although these ef-
fects did not reach significance, the model estimates
for the “Sporadic” RDO type fall within the 95% con-
fidence intervals established in Experiment 1. As this
subset of the data represents only half of that included
in our previous experiment, we expect that the increas-
ing sensitivity to damage rate observed in Experiment
1 would have replicated had we included more partic-
ipants.

Table 4. Model estimates from Experiment 2 demonstrate that the
ease-of-use manipulation overshadowed all other factors in predict-
ing participants’ risk mitigation strategy.

predictor B SE z p

game performance -0.03 0.18 -0.19 .85

time-on-task -0.43 0.36 -1.19 .23

previous videogame ex-
perience

0.02 0.03 0.71 .48

Sporadic 1.49 0.43 3.46 <.001

Speed -0.28 0.19 -1.53 .13

performance x time-on-
task

-0.13 0.18 -0.71 .48

performance x Sporadic 0.001 0.18 0.01 .99

time x Sporadic 1.15 0.38 3.07 .002

performance x time-on-
task x Sporadic

-0.07 0.19 -0.39 .69

Note. Performance (M = 17.53, SD = 34.01) was centered around
1.17, a value halfway between the means of Experiments 1 and
2. Previous videogame experience (M = 6.30, SD = 9.76) was
centered around its mean, and time-on-task (M = 1285.87, SD =
846.32) was centered around its mean and scaled by dividing by
1,000 prior to analysis. RDO type and difficulty type were effect
coded, with Steady and Strength coded as -1.

Exploratory analyses. We again conducted an ex-
ploratory analysis to determine whether participants’
JODs reflected changes in damage rate, or if a dif-
ferent factor was responsible for their perceptions of
difficulty. We used AIC values to compare two mul-
tilevel logistic regressions that included either game
performance (damage rate since last JOD question)
or objective game difficulty (task difficulty parame-
ter standardized across experiment condition). Both
models included time-on-task, previous videogame ex-
perience, difficulty type (Speed, Strength), and RDO
type (Steady, Sporadic) in the fixed effect structure.
AIC comparisons supported a random effect structure
that included intercept, standardized difficulty, and
time-on-task slope to account for participant differ-
ences in ability, experiences of difficulty, and rate of

learning. A full disclosure of random effect compar-
isons can be found in the appendix.

Model comparisons again supported the second
model (∆AIC = 171.99), replicating our finding that
the participants did not use the magnitude of losses
to make JODs. As before, positive slopes across
each time-slice (see Figure 4) reveal that participants’
JODs were well-calibrated to the objective difficulty of
the game. Time-on-task again affected participants’
JODs: participants became less likely to say the game
was “harder than before” as time progressed (see Table
5).

Table 5. Model estimates from an exploratory analysis reveal that
an objective measure of difficulty and time-on-task predict partici-
pants’ JODs in Experiment 2.

predictor B SE z p

intercept 0.09 0.14 0.61 .54

standardized difficulty 4.07 0.40 10.24 <.001

time-on-task -0.29 0.11 -2.69 .01

previous videogame ex-
perience

-0.03 0.02 -1.30 .19

Sporadic 0.10 0.13 0.73 .46

Speed 0.13 0.15 0.89 .37

Note. Standardized difficulty (M = 0.71, SD = 0.31) and previ-
ous videogame experience (M = 6.39, SD = 5.69) were centered
around their means. Time-on-task (M = 1242.38, SD = 775.39)
was centered around its mean and scaled by dividing by 1,000 prior
to analysis. RDO type and difficulty type were effect coded, with
Steady and Strength coded as -1.

Discussion

The results of Experiment 2 strongly confirm the hy-
pothesis that people attempt to balance effort and re-
ward during challenging tasks (H4a). Indeed, when we
manipulated the effort-reward trade-off and included
the pre-event RDO’s ease-of-use as a predictor in our
model it attenuated the effects of many other pre-
dictors, including game performance. This suggests
that people prioritize the immediate conservation of
resources only when it does not negatively impact their
performance goals: unlike the participants in Experi-
ment 1, participants in Experiment 2 were willing to
use pre-event RDOs exclusively because they were eas-
ier to use and no longer presented a resource cost. The
findings from our exploratory analysis, which revealed
that JODs were affected by the difficulty manipula-
tion but not by the ease-of-use manipulation, further
illustrates that the factors used to select RDOs are
different from those used to make overall judgments of
task difficulty.

General Discussion

Our study provides conclusive evidence that decision-
makers balance effort and reward to select appropri-
ate risk mitigation strategies. In Experiment 1, par-
ticipants developed risk mitigation preferences as the
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Figure 5. Participants’ behavior in Experiment 2 differed as a function of RDO type. Although participants in the sporadic condition
behaved similarly to those in Experiment 1 (to which it is identical), participants in the steady condition developed a strong preference
for the shield which was easier to use in this condition. Error ribbons depict one standard error above and below model estimates.

task progressed. Later in the session, participants se-
lected more resource-intensive pre-event RDOs when
losses were likely and preferred easier-to-use post-event
RDOs when losses occurred less frequently. This pref-
erence shifted in Experiment 2 among participants for
whom pre-event RDOs were made easier to use. In
both experiments, behavior stabilized over time as par-
ticipants gained familiarity with each tool. Together,
this evidence suggests that while experienced losses in-
fluence the risk mitigation strategy an individual pur-
sues, preferences can also be affected by how difficult
an RDO is to use.

Although people recognize and respond to elevated
risks and severe consequences by adopting pre-event
RDOs (c.f., Huber, 2012; Huber & Huber, 2003), they
are sensitive to the effort-reward trade-off presented
by the RDO’s ease-of-use (c.f., Sigurdsson, Taylor, &
Wirth, 2013). While JODs do not contribute to peo-
ples’ risk mitigation strategies, people are affected by
how easy RDOs are to use. Harder-to-use pre-event
RDOs, which require an upfront investment of effort
to employ, were only favored when they are necessary
to reduce experienced losses. When pre-event RDOs
were made easier to use, people relied upon them more
often regardless of their experienced losses. This find-
ing supports the theoretical opinion of Kurzban et al.
(2013), in that participants will avoid unnecessary risk
mitigation strategies if they are difficult to use. This
finding is particularly relevant to situations that in-
volve infrequent but costly risks during which preven-
tive actions may be undervalued with respect to the
efforts they require, such as natural disaster prepared-
ness (Douglas, Leigh, & David, 2005) and responding
to variations in air traffic control workload (Desmond
& Hoyes, 1996).

The specificity of cues to difficulty and JODs was
further revealed in our analysis of participants’ JODs.
Although objective measures of task difficulty pre-
dicted JODs, damage rate (a measure of a partic-
ipants’ experienced losses) did not produce a good
model fit. This suggests that participants used other
cues to produce JODs (see the right side of Figure 1),
an assertion that is supported by the difference across
RDO manipulations in Experiment 2. Thus, it is likely
that the magnitude of losses was responsible for or me-
diated the relationship between level of risk and RDO
selection but did not provide a cue to task difficulty
overall; however, this relationship should be explored
more directly before strong claims are made.

Unlike previous research, which showed that partic-
ipants discontinued their search for RDOs when they
had previous experience in an area (Huber & Ma-
cho, 2001), we found that participants’ behavior was
unaffected by domain-specific background knowledge
(videogame experience). However, participants devel-
oped a systematic adoption of risk mitigation strate-
gies over time, supporting previous research that suc-
cessful strategies are pursued once they are learned
(c.f., Lovett & Anderson, 1996). This result also sup-
ports Huber and Huber’s (2008) assertion that people
use their expectations to determine the availability and
efficacy of RDOs, as evidenced by the shifts in behavior
that occurred over time and resulted in stabilization
of risk mitigation strategy. Although general aspects
of risk mitigation behavior appear to be consistent,
behavior in experiential tasks does differ from that of
descriptive tasks in important ways.

Recent research has suggests that people can be
trained to attend to certain task-related cues more
strongly than others when making JODs (Desender
et al., 2017). It may be possible to encourage indi-
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viduals to use task-related cues to select risk mitiga-
tion strategies and to down-weight the influence of an
RDO’s ease-of-use. Similar means might be achieved
by architecting an environment that emphasizes cer-
tain task cues above others. Together, these lines of
research will clarify the factors that influence risk mit-
igation decisions and help people mitigate risks strate-
gically.
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Appendix

AIC comparisons suggested that the random effect structures for
the models used to analyze Experiment 1 data could include inter-
cept and time-on-task or intercept, performance, and time-on-task.

Random effect structure AIC

Experiment 1 – RDO selection

intercept only 706.33

intercept and performance 706.09

intercept and time-on-task 668.57

intercept, performance, and time-on-task 674.18

Experiment 1 – JODs

intercept only 1199.64

intercept and performance 1181.73

intercept and time-on-task 1199.13

intercept, performance, and time-on-task 1180.63

Experiment 2 – RDO

intercept only 877.10

intercept and performance 861.21

intercept and time-on-task 769.85

intercept, performance, and time-on-task 767.62

Experiment 2 – JODs

intercept only 1767.43

intercept and performance 1755.55

intercept and time-on-task 1764.33

intercept, performance, and time-on-task 1753.60
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