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Abstract 

Inland excess water on the Great Hungarian plain is an environmental 

and economic problem that has attracted a lot of scientific attention. 

Most studies have tried to identify the phenomena that cause inland 
excess water and combined them using regression functions or other 

linear statistical analysis. In this article, a different approach using a 

combination of artificial neural networks (ANN) and geographic 

information systems (GIS) is proposed. ANNs are particularly suitable 

for classifying large complex non-linear data sets, while GIS has very 

strong capabilities for geographic analysis. An integrated framework 
has been developed at our department that can be used to process 

inland excess water related data sets and use them for training and 

simulation with different types of ANNs. At the moment the frame-
work is used with a very high resolution LIDAR digital elevation 

model, colour infrared digital aerial photographs and in-situ fieldwork 

measurements. The results of the simulations show that the framework 
is operational and capable of identifying inland excess water inunda-

tions. 
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INTRODUCTION 

Inland excess water is a reoccurring problem in the Great 

Hungarian Plain. At the end of winter large parts of the 

flat terrain are covered by water. These inundations 

cause serious economic and environmental problems.  

 

Several studies have analysed the problem, with varying 

success (Bozán Cs. et al. 2005, Pásztor L. et al. 2006, 

Rakonczai J. et al. 2001, Rakonczai J. et al. 2003). Most 

studies have tried to identify the phenomena that cause 

the inland excess water and combined them using regres-

sion functions or other linear statistical analysis. In this 

article, a different approach using artificial neural net-

works (ANN) is proposed. This approach has many 

advantages compared to other statistical methods. First, 

it is independent of the statistical distribution of the data, 

and there is no need for specific statistical variables. 

Neural networks allow the target classes to be defined in 

relation to their distribution in the corresponding domain 

of each data source, and therefore the integration of 

remote sensing or GIS data is very convenient (Pradhan 

B. – Lee S. 2010). 

Certain types of inland excess water can be forecast 

and those areas or points where action is needed for 

decreasing or even avoiding damage can be directly 

determined with the help of theoretical and practical 

means. This way the risk of inundation can be mitigated 

in numerous occasions, and this could lead to a shift 

from a reactive, defensive-type water management strat-

egy towards a more proactive strategy, in order to de-

crease or even prevent damage. 

 

Fig. 1 A basic artificial neural network 
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ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are computational models 

that imitate the functioning of the human brain. Several 

different types of neural networks exist but their basic 

structure always consists of multiple layers of intercon-

nected nodes (Fig. 1). Every neuron processes the 

weighted sum of all inputs, and, via a so-called activa-

tion function it is determined if the signal is sent further. 

The application of ANNs consists of two phases. 

The first phase is called the training phase. During this 

phase the ANN is fed with an input and an associate 

output data set. The training is an iterative process where 

the weights of the incoming signals are adapted in such a 

way that the overall average error between the requested 

output and the calculated results is minimized. The 

trained network can be used in the second phase where it 

is fed with new input data to calculate new output re-

sults. A more detailed description of ANNs goes beyond 

the scope of this article but can be found in Retter Gy. 

(2006), Hewitson B. C. and Crane R. G. (1994) and 

Zurada J. M. (1992). 

 

ANNs have been proven themselves in many fields 

of science where complex data sets need to be analyzed 

to identify their underlying structures and properties. 

Neural networks have a large potential for analysis of 

complex spatial problems which are common in geo-

graphic research (Hewitson B. C. – Crane R. G. 1994). 

Inland excess water inundations on the Great Hungarian 

Plain are a clear example of such problems. The reoccur-

ring inundations are caused by a multitude of interrelated 

factors. 

The connection between the world of neural net-

works and GIS is still relatively new and needs to be 

developed further (Coleman A. 2008, Sárközy F. 1998). 

Just two GIS software exist that employ fully integrated 

GIS – neural network solutions; ArcGIS and IDRISI. 

These solutions have been investigated but were not used 

in this study because they employ only one type of neu-

ral network architecture, a multi-layer perceptron and a 

radial basis function network, respectively, and they do 

not offer integrated tools for the evaluation of the train-

ing and the simulation results. 

Matlab 7.10.0 has an integrated neural network 

 

Fig. 2 The digital elevation model overlaid with CIR mosaics of 24 March 2010 showing the training (A)  

and simulation (B) area with the GPS fieldwork results in the Tápairét area 
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toolbox that ranges from simple solutions to extended 

neural network implementations. The determination of 

the network architecture constitutes one of the major and 

most difficult tasks in the use of neural networks (Barsi 

Á. 1997, Jafar R. et al. 2010). Since it is not exactly 

known what type of neural network with which settings 

is most appropriate to study the problem of inland excess 

water, it was decided to build a framework that facili-

tates the possibilities to experiment with several neural 

networks and settings in a GIS environment. ArcGIS 9.3 

was used as the GIS environment because of its strong 

capabilities for geographic analysis, and its possibilities 

for customization. 

STUDY AREA AND DATA 

The Great Hungarian Plain covers an area of 52,000 km
2
. 

The Tápairét area was selected from this region as a test 

site for the inland excess water research (Fig. 2). This 

study area is about 20 km
2
 large and its maximum differ-

ence in elevation is 10 meters. Mainly agricultural activi-

ty takes place in the area, although there are also several 

oil stations. From the young sediments with high clay 

content of the Maros River, fluvisols and vertisols were 

formed (Marosi S. – Sárfalvi B. 1990). Because of the 

extreme mechanical properties – in large areas, the plas-

ticity index (KA) is above 60 (cm
3
/gr) –, the exceptional-

ly bad permeability characteristics result in accumulation 

of water in the lower areas. 

Table 1 gives an overview of the data used in this 

research. All data were collected in the period 2009-

2010. 

Apart from the bad soil characteristics, the area 

consists of very flat terrain with large local depressions, 

without run-off. The average groundwater level varies 

between 2 and 4 meters below the surface. Remnants of 

river meanders can also be found in the area. Only in the 

former meanders, the groundwater may reach the sur-

face. This research focuses on the genetic type of the 

inland excess water that is caused by a lack of runoff and 

infiltration, and not on the type that is due to high 

groundwater levels. 

FRAMEWORK 

A framework was created to handle input data, interme-

diate results and output data in a flexible way in both 

ArcGIS and Matlab (Fig. 3). In this way, it was possible 

to create the data files, test different network types and 

settings and evaluate the training and simulation results 

efficiently. 

First, different artificial data sets were created in 

ArcGIS. These data sets were used to set up the frame-

work and to evaluate the simulated results. Three artifi-

cial input maps of 100 by 100 pixels were created. Each 

map represented specific inland excess water related 

input parameters (e.g. local depressions, geomorphologic 

structures, soil types, height of the groundwater table, 

land use). A forth artificial map was created to represent 

the occurrences of inland excess water in the same area. 

The files were created using ArcGIS 9.3 and were stored 

in TIFF file format. The TIFF files were read into 

Matlab resulting in a 100x100 cell matrix for each map. 

The neural network analyses were performed with 

the neural network toolbox of Matlab. This is an exten-

sion of the general Matlab functionality incorporating 

many artificial neural network architectures and tools for 

training and evaluation of the results (Demuth H. et al. 

2010). The neural network toolbox needs data in a ma-

trix format where every row represents an input data 

layer. A program was written to convert the separate 

input matrices to arrays and to combine the resulting 

1x10000 arrays into one matrix with 3x10000 cells that 

could be read by the neural network toolbox. The output 

matrix, representing the occurrences of inland excess 

water was converted to an 1x10000 array as well. With 

the artificial data, only the standard neural net in the 

nftool from the neural network toolbox was used. This is 

a two layer feed forward network with maximum 20 

neurons in the hidden layer. A smaller amount of neu-

rons gave similar results but resulted in lower perfor-

mance due to more iterations. The network was trained 

Table 1 Input and output data 

LIDAR /DEM/ local 

depressions 

LIDAR data with a spatial resolution of 1.4 points per m2 were collected from a 70 km2 area during a 

flight campaign on 19 November 2009. Based on this data, a 1 meter resolution digital elevation 

model was created. 

CIR (Colour-InfraRed) 

imagery 

At the maximum of the inland excess water periods, on 24 March and 9 June 2010, flights were 

executed using a data collection system based on the MS3100 digital camera (Tobak Z. et al. 2008) 

to collect 800x600 meter images. From all individual images a 63 cm resolution mosaic covering an 

area of 60 km2 was created. 

Field measurements On 5 March, 2010, a one day fieldwork was carried out in the south-western part of the study area. 

At that moment, the second level on the national inland excess water hazard scale was valid. In total 

7.8 ha of inundated land was accurately measured by walking around them using hand-held GPS 

systems. 
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with 70% of the data, while 15% was used for validation 

and 15% for testing. The optimal network was saved to 

be used in the simulation phase. Simulation data was 

then imported from the GIS, converted to a matrix and 

fed to the neural net. 

 

Fig. 3 Framework showing the workflow in ArcGIS and 

Matlab 

The simulation result was again converted into a 

matrix. During the different conversion steps the data 

had to undergo various types of conversions to be com-

pliant with the particular data formats. Finally, a contin-

uous 8 bit TIFF file was generated which could be visu-

alized in ArcGIS. 

Apart from several pre-processing steps, the same 

workflow, as described above with the artificial data, 

was followed using the new, real data set as well (Fig. 

4). The training data consisted of 4 input and one output 

layers. The colour infrared images were split in three 

bands; green, red and near infrared. Using the fill tool in 

ArcGIS, the local sinks in the LIDAR based digital ele-

vation model were filled (Tarboton D. G. et al. 1991). 

The original height values were subtracted from the sink 

map, resulting in a layer with the local depressions. The 

depression map was reclassified into three classes: very 

small depressions (<15 cm), middle (15-60 cm) and deep 

(>60 cm) depressions. The resulting map was used as the 

forth input layer in the training phase. The fieldwork 

measurements were rasterized and used as output map 

during the training. That time only two output classes 

were defined: open water and dry soil. Every data layer 

had a spatial resolution of 1 meter and was covering an 

area of 1000x1000 meter. 

During the simulation phase the same type of CIR 

imagery and elevation data were used. The same pre-

processing steps were executed as in the training phase; 

just the location of the data was several hundreds of 

meters further to the north (Fig. 2). 

 

Fig. 4 The pre-processing of the training data 

RESULTS 

Several settings for the number of neurons in the 

hidden layer were tested. With an increase of the neu-

rons, the RMSE decreased, however, the performance of 

  

Fig. 5 The results of the training (left) and the simulation (right) 
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the training also decreased sharply. An optimum of 10 

neurons was selected resulting in an overall RMS train-

ing error of 0.74. The result of the training is shown on 

the left side of Fig. 5. 

The right side of Fig. 5 shows the result of the sim-

ulation using the trained network. The yellow areas were 

classified as inland excess water. In the northern and 

north-western part of the area the results are good. The 

open water along the levee and the roads was detected. 

The inland excess water in the southern part of the imag-

es is not properly classified. Some pixels are correctly 

indicated as inland excess water but the majority is clas-

sified as dry land. These errors are probably due to the 

composition of the training set, where only water was 

incorporated but saturated soil and vegetation in water 

were omitted. 

A second simulation was executed using the same 

trained ANN, but this time with different multi-spectral 

data. In this simulation, the colour infrared images collect-

ed on 9 June were combined with the same local depres-

sion data that was used in the first simulation (Fig. 6). 

Although in general, the inland excess water areas 

that were identified on the images taken on 24 March, 

were also classified as water on the images taken on 9 

June, on the second date much more inland excess water 

was detected. Furthermore, the second simulation shows 

that there is scattered water on the large parcels in the 

centre of the images. This may indicate that the soil in 

this area was completely saturated with water. Since no 

ground truth was collected for the area at the time of the 

data acquisition, it is not possible to quantify the simula-

tion differences. 

 
Fig. 6 The simulation results of two different times: 24 March 2010 and 9 June 2010 

 

 

Fig. 7 Comparison of different classification methods: maximum likelihood (left), minimum distance (middle), artificial 

neural network (right). White colour indicates inland excess waters, all other areas are in black. The training data is shown 

with a red-coloured boundary 
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A comparison has been executed among the training 

results of the ANN and two traditional classification 

methods: maximum likelihood and minimum distance 

(Fig. 7). The ANN classification clearly shows the white 

area overlapping with the training area. Several other 

patches of inland excess water were also classified. For 

these areas no ground data was collected but they can 

easily be identified visually on the CIR images (Fig. 

2/A). For the other two classifications only the pixels of 

the training area were used during the supervised train-

ing. For both traditional classifications this results in 

accurate classification of the inland excess water in the 

training data, but also in an extreme over-classification 

in the areas outside this area. 

CONCLUSIONS 

The framework works as expected with a small arti-

ficial test data set. The larger real data set also resulted in 

proper delineation of inland excess water, but further 

development is still needed. Due to the nature of spatial 

data, very large matrices are created as input data for the 

network. This results in performance problems. By re-

ducing the amount of input pixels in the input data sets, 

the performance of the system can be improved. The 

result of the simulation shows a clear distinction between 

water and dry soils. In reality this is a fuzzy boundary. 

Intermediate classes like saturated soil and vegetation in 

water also exist. These classes were not taken into ac-

count in the training set. Extra field data will be needed 

to incorporate these classes and to be able to derive them 

in the simulation. This fieldwork data is also needed to 

be able to quantify the differences in results between the 

different classification methods. Furthermore, other 

input data sources, like soil maps, hydrological maps can 

be incorporated to extend the base of the training set. 

Finally, the integration between the GIS and the neural 

network has to be improved. The framework now con-

sists of several loosely coupled programs and Matlab 

functions. To facilitate the most efficient prototyping 

their integration is inevitable. 
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