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Abstract—Autoregressive moving average (ARMA) modeling has been used in many fields. This paper 
presents an approach to time series analysis of a general ARMA model parameters estimation. The proposed 
technique is based on the singular value decomposition (SVD) of a covariance matrix of a third order cumulants 
from only the output sequence. The observed data sequence is corrupted by additive Gaussian noise. The system 
is driven by a zero-mean independent and identically distributed (i.i.d.) non-Gaussian sequence. Simulations 
verify the performance of the proposed method.  

Index Terms— Time series forecasting, singular value decomposition, ARMA model, non-Gaussian process, 
parameters estimation. 

 

I INTRODUCTION

 

       In statistical signal processing, parametric modeling of 

non-Gaussian process experiencing noise interference has 

been a very important research area. The use of time series 

models is very effective techniques to model the parameters 

of non-Gaussian systems. Among different time series meth-

ods, one of the most often used procedures is ARMA model. 

The use of ARMA model identification has been applied in 

several areas such as seismic data processing, adaptive filter-

ing, and communication systems [1]. There are several pa-

pers that have been written in the literature to estimate the 

parameters of a general ARMA process using a variety of 

second and higher-order statistics. The second order statis-

tics (SOS) measures work fine if the signal under study has a 

Gaussian probability density function (PDF). That is because 

all of its statistical properties are completely determined by 

the first and second moments. Gaussian distribution is trac-

table and fairly realistic model [2]. However, many real-life 

signals are non-Gaussian. For example, the electromagnetic 

environment encountered by receiver systems is often non-

Gaussian in nature. However, the receiving systems are de-

signed to perform in white Gaussian noise [3]. Also, acoustic 

noise is in many cases highly non-Gaussian. Hence, in prac-

tice, there are situations where we must look beyond the 

autocorrelation of the available data to suppress additive 

noise and extract phase information. While the Gaussian 

random process still plays a great and significant role in sto-

chastic signal processing, non-Gaussian random processes 

and higher order statistics (HOS), or cumulants, are of in-

creasing importance to the researchers. HOS is currently an 

area of intense research and new results are constantly being 

reported. 

 

     In non-Gaussian process identification, the corrupted 

cumulants can be used as important information. This is 

because cumulants are generally asymmetric functions of 

their arguments, as such carry phase information about the 

ARMA transfer function. Therefore cumulant statistics are 

capable of determining the order of ARMA model [4, 5]. In 

addition, they are suitable for order selection when the AR-

MA process is corrupted by Gaussian noise of unknown 

covariance function [6]. Furthermore, HOS can capture the 

non-minimum phase information in the available signal. 

      

     Singular value decomposition (SVD) plays an extremely 

important role in engineering and science problems from 

both a theoretical and a practical point of view. For example, 

SVD is one of the most important tools of numerical signal 

processing. It is employed in a variety of applications in 

scientific computing, signal processing, automatic control, 

and many other areas. For example, SVD techniques have 

been used in spectrum analysis, filter design, system identi-

fication, and for solving linear equations. In linear systems 

of equations, SVD provides robust solution of both overde-

termined and underdetermined least–squares problems. It 

allows one to diagnose the problem in a given matrix and 

provides numerical answers as well. It works also for singu-

lar matrices; for example, SVD can be used to find a solu-

tion of a set of linear equations corresponding to a singular 

matrix that has no exact solution by locating the closest pos-

sible solution in the least square sense. In addition, some 

systems of equations are sensitive to small changes in the 

values. In such systems, the SVD can help with the solution 

of ill-conditioned equations by identifying the direction of 

sensitivity and discarding that portion of the problem. 
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     In system identification, SVD methods have been used 

for autoregressive (AR) and moving average (MA) model 

order determination of general autoregressive moving aver-

age (ARMA) models. Cadzow [7] proposed an algorithm 

that uses the SVD of an extended autocorrelation matrix for 

extracting the AR model order. Giannakis and Mendel [8] 

proposed a method that uses the SVD of a cumulant matrix 

for non-Gaussian processes. Zhang and Zhang [9, 10] pro-

posed two techniques for MA model order determination. 

The first approach [9] uses the SVD of an autocorrelation 

matrix, while the second approach [10] uses the SVD of a 

cumulant matrix of non-Gaussian process. Reddy and Bira-

dar [11] proposed an information theoretic approach to mod-

el selection using SVD. Al-Smadi [17] used SVD in ARMA 

model parameters estimation. 

  

     Several methods have been proposed to estimate the 

ARMA model parameters using HOS such as the methods in 

[12, 13]. In [12] Giannakis and Mendel (GM) developed a 

residual time series method for estimating the ARMA pa-

rameters using second and third order cumulants. The meth-

od starts by estimating the AR parameters using 1-D slice of 

the third order cumulants. Then using the AR parameters and 

the observation measurements, a residual time series is com-

puted. Finally, the MA parameters are estimated using the 

residual time series in which case the residual satisfies an 

MA model. They developed a special structured matrix that 

contains both second and third order statistics of the output 

to satisfy this condition. The RTS method was described in 

[14] as being one of the best-known methods for estimating 

the coefficients of ARMA models. However, the estimation 

goes through three stages, and any error in the estimation 

will carry to next stage, which will result in an inaccurate 

estimation. In [13] Swami and Mendel developed a method 

for estimating the ARMA parameters using q 1-D slices of 

the cumulant of the observation measurements. Hence, this 

algorithm is called the “q-slice” (QS) solution.  The method 

assumes that the AR parameters are available. The method 

starts by obtaining the impulse response of the system. It 

requires q-slices of the cumulants to estimate the first q coef-

ficients of the impulse response. Then, the MA parameters 

are estimated using the AR parameters and the impulse re-

sponse. Swami and Mendel stated that their method usually 

works for moderate SNR. 

 

     In this paper, we present a novel technique to estimate the 

parameters of a general ARMA(p,q) process using the SVD 

of a special covariance matrix formed from the third order 

cumulants of the output sequence only. Section 2 presents 

the formulation of the problem. Simulation examples are 

discussed in Section 3. Section 4 draws some conclusion 

remarks. 

 

 

 

           

II PROBLEM FORMULATION  

Let {x(t)}  denote a stationary ARMA(p,q) system given by 
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where x(t) is the observed time series, w(t) is the input se-

quence which is not observed, ai and bi are parameters, p 

and q are the order of the model. By expressing the transfer 

function of the model in z-domain while the model is as-

sumed free of pole-zero cancellations and exponentially sta-

ble, it can be formulated as follows. 
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Now, for identifying the time series with non-Gaussian pro-

cess, a driving noise sequence w(t) is assumed to add in the 

ARMA model, which is a zero mean, stationary and non-

Gaussian independent identically distributed (i.i.d.) noise. 

The output signal, y(t), becomes 

 

                                       y(t)=x(t)+v(t)                               (3) 

 

where v(t) is a Gaussian noise independent of input w(t), and 

hence of output x(t). With this model, cumulants can be 

used.  

Under the assumption that x(t) is stationary, the third order 

cumulants of the noisy output y(t) is  

                  

                   )]()()([),(3 mtyntytyEmnyc             (4) 

 

As the cumulants of higher than second-order found in a 

Gaussian process is identical to zero, then 

 

                     ),(3),(3 mnycmnxc                               (5) 

 

That is, the cumulant of third order (and higher) is insensi-

tive to the additive Gaussian noise of unknown covariance 

function. The cross-cumulant between x(t) and w(t) is  

            ])()()([),( mtxntxtwEmnwxxc     
 
           (6) 

 

Now, multiplying both sides of Equation (1) by 

x(t+n)x(t+m), yields  

 

 )()()( mtxntxtx  )()()1(1 mtxntxtxa  
 )()()( mtxntxptxa p                                                   

 )()()( mtxntxtw  )()()1(1 mtxntxtwb  

)()()( mtxntxqtwbq                                                    (7) 

 

Taking the expected value for Equation (7), we obtain 

 

      )333 ,()1,1(1),( pmpncpamncamnc xxx   

    ),()1,1(1),( qmqncqbmncbmnc wxxwxxwxx    (8) 
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By stacking Equation (8) for several of n and m ranging 

from –  to   where   denotes the range of the third 

order cumulants to be used, the system in (8) can be ex-

pressed in matrix format as follows  

 

                    qbCpaCc wxxx  3                          (9) 

 

The vector c contains third order cumulants at n = m= 0, the 

vectors ap and bq contain the parameters for the process in 

Equation (1). The matrix C3x contains the cumulants of the 

output sequence and the matrix Cwxx contains the cross-

cumulants of the input and output sequences given by   
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In these equations,  = max (p,q). Equation (9) can be writ-

ten as 

 

                  dCc                                                         (12) 

 

Where 

 

                                 C= [ C3x   Cwxx],                                 

(13) 

 

θ is a vector represents the parameters 

  

         θ =[1, a1 ,, ap,  1, b1 ,, bq]T                                                 (14) 

 

The vector d represents the residual errors in fitting the 

model Cθ to the data c. For a given estimate of θ, the 

squared error between c and the model Cθ is  

 

                ]))([(2 TCcCctre    
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Where tr denotes the trace. To obtain the least square esti-

mate, we minimize Eq (15) by taking the gradient of e2 with 

respect to θ  
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The least squares estimate equates the gradient to zero. Then  

 

                       CCcC TT   

or 

                       cCCC TT                                          (17) 

 

Now, we can write the matrix C as the singular value de-

composition as follows. 

 

 

                       TVUC                                                 (18) 

 

where U and V are orthogonal matrices,  is a matrix whose 

elements are zeros except possibly along the main diagonal 

(the singular value of C). That is, the singular values of C 

are the diagonal elements of . 

 

                 ),,,( 21 rdiag                             (19) 

such that   

     

                021  r                                  (20) 

 

Notice that i  are called the singular values and are 

nonnegative numbers. The matrix U contains the left singu-

lar vectors of C; the matrix V contains the right singular vec-

tors of C.  

Then, the normal equation in (17) may be written as 

 

                  cUVVV TTTT  ̂                                (21) 

 

These equations can be solved as follows. 
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Where 
1  is the inverse and is found as 

 

                 ]1,,1
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To test the optimality of the proposed algorithm, the mean 

and the variance measures were considered. The signal-to-

noise (SNR) was computed as follows. 
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Where 
2
x the signal is power and  

2
v  is the measurement 

noise power. It should be noticed that the only available data 

in the ARMA modeling is the output sequence. However, the 

input sequence is necessary to compute the cross-cumulants, 

which is an intermediate step in the identification process. 

Hence, the observed output data was modeled by a high or-

der AR model [15]. Thus, the system in (1) could be rewrit-

ten as 
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Where i are the parameters of the high AR model and are 

estimated as follows. 
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             (k) = [-x(k-1)  -x(k-2)  - … - x(k-M)]T             (27) 

 

and M is the order of the high AR model. In this estimation 

γ0 has been assumed to be one without loss of generality. 

Now, using )(ˆ nw in the place of w(n), the identification pro-

cedures developed in this paper can be used.  

III SIMULATION EXAMPLES 

Simulation studies are presented to test the proposed ARMA 

model parameters estimation approach using SVD. Several 

examples were simulated at different levels of signal-to-

noise ratio (SNR) on the output.  The input sequence was 

generated as a zero-mean, i.i.d., and exponentially distribut-

ed random process. The length of the signal is N=1500. A 

comparison of the performance of the proposed algorithm 

with the GM and the QSS methods were made at different 

SNRs on the output signal. To guarantee statistical inde-

pendence, all the results are a mean of 100 Monte Carlo 

runs, using different seed in each case. The computations 

were performed in MATLAB. In addition, armaqs and ar-

marts commands were used from the higher-order spectral 

analysis toolbox [16] to estimate the ARMA parameters us-

ing QS and GM methods, respectively. 

 

A   Example 1 

The time series to be considered is given by 

 

 x(t) + 0.7907x(t–1) + 0.042x(t–2) –0.5556x(t–3) – 

0.0247x(t–4) + 0.3846x(t–5)+0.3026x(t–6) = w(t) + 

0.3452w(t–1) + 0.53w(t–2) +0.3985w(t–3)  

+0.8138w (t–4)                                                              (28) 

      

This is an ARMA (6, 4). It has six poles and four zeros. The 

poles are located at 0.7102±j0.41, -0.43 ± j0.7448, and   -

0.6755 ± j0.39. The zeros are located at 0.485 ± j0.84 and -

0.6576 ± j0.6576. The signal x (t) is observed in additive 

Gaussian noise y (t) =x(t) + v(t). The input sequence was 

drawn from a zero-mean non-Gaussian distribution; namely, 

exponential distribution. Then the input signal was passed 

through the filter in Equation (28). After that, the output of 

the filter was corrupted with additive Gaussian noise at SNR 

of 20dB on the output sequence. It is assumed that the only      

available data is the output measurements. To estimate the 

ARMA model parameters, the cumulant matrix C in Equa-

tion (13) must be formulated. As it can be seen from (13), 

the matrix C consists of two matrices concatenated together. 

The matrix C3x contains the cumulants of the observed out-

put sequence, whereas Cwxx contains the cross-cumulants of 

the unobservable input and the observed output sequences. 

To estimate the input signal, Durbin [15] method was used. 

The ARMA parameters were estimated using the QS, the 

GM, and the proposed SVD methods. Table 1 shows the 

average estimate results of 100 Monte Carlo simulations at 

SNR of 20 dB on the output sequence. The performance 

measures considered for estimating the parameters are the 

arithmetic mean and the variance. 

 

TABLE 1 

True and estimated ARMA(6,4) parameters  

(mean± variance). 

 

 True QS GM Proposed 

a(1) 0.791 0.728 ±0.173 0.687±0.019 0.764±0.007 

a(2) 0.042 -0.029± 0.102 -0.027±0.022 0.028 ± 0.005 

a(3) -0.551 -0.599± 0.030 -0.516±0.009 -0.554± 0.004 

a(4) -0.025 -0.022± 0.053 -0.035±0.007 -0.029 ± 0.003 

a(5) 0.385 0.388 ± 0.017 0.366±0.011 0.391±  0.004 

a(6) 0.306 0.291 ±0.023 0.293±0.011 0.308± 0.003 

b(1) 0.3452 0.728±  0.297 0.282±0.066 0.382 ± 0.008 

b(2) 0.53 -0.029± 0.208 0.630±0.309 0.474 ± 0.005 

b(3) 0.3985 -0.599± 0.155 0.429±0.033 0.266 ±0.006 

b(4) 0.8138 -0.022± 0.843 0.703±0.031 0.685 ± 0.005 

 

 

B Example 2 

The time series to be considered is given by 

 

 x(t) – 1.5x(t–1) + 1.2x(t–2) –0.455x(t–3) = w(t) + 0.2w(t–1) 

+ 0.9w(t–2)                                                                        (29) 

 

This is an ARMA (3,2). It has three poles and two zeros. The 

poles are located at 0.3939±j0.6955 and 0.7121. The zeros 

are located at -0.1 ± j0.9434. The data was generated and 

analyzed as in Example 1. The ARMA parameters were es-

timated using the QS, the GM, and the proposed SVD meth-

ods. Table 2 shows the average estimate results of 100 Mon-

te Carlo simulations at SNR of 20 dB on the output se-

quence.   

 

TABLE 2 

True and estimated ARMA(3,2) parameters  

(mean± variance). 

 

 True QS GM Proposed 

a(1) -1.5 -1.489 ± 0.015    -1.483±0.015    -1.495±0.011 

a(2) 1.2 1.197  ± 0.027     1.191 ± 0.028     1.195 ±0.015 

a(3) -.455 -0.451±0.009    -0.449 ±0.009    -0.449± 0.003 

b(1) 0.2 0.201± 0.084     0.195 ± 0.028    0.186 ± 0.011 

b(2) 0.9 0.901± 0.111     0.866 ± 0.003     0.857 ± 0.043 

 

C Example 3 

The time series to be considered is given by 

 

 x(t) +0.39x(t–1) + 0.3x(t–2) +0.2x(t–3) = w(t) – 1.85 w(t–1) 

+ 0.825w(t–2)                                                                    (30) 

 

This is an ARMA (3,2). It has three poles and two zeros. The 

poles are located at 0.0711±j0.6088 and -0.5323. The zeros 

are located at 1.1 and 0.75. Notice that this is a non-

minimum phase model since it has one of its zeros outside 

the unit circle. The data was generated as in the previous 

examples. The ARMA parameters were estimated using the 

QS, the GM, and the proposed SVD methods. Table 3 shows 
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the average estimate results of 100 Monte Carlo simulations 

at SNR of 20 dB on the output sequence.  

 

TABLE 3 

True and estimated ARMA(3,2) parameters  

(mean± variance). 

 

 True QS GM Proposed 

a(1) 0.39 0.408±0.015 0.395± 0.014 0.340±0.006 

a(2) 0.3 0.290±0.009 0.284±0.009 0.270±0.004 

a(3) 0.2 0.197±0.005 0.193±0.005 0.179 ±0.002 

b(1) -1.85 -2.124±7.542 -3.956±42.061 -1.4794±0.005 

b(2) 0.825 0.943±1.521 0.768±0.149 0.600±0.006 

 

IV DISCUSSION  

In the above examples, ARMA parameters were estimated 

using the proposed SVD method and compared with two 

well known methods; namely, GM and the QS methods. The 

computations were performed in MATLAB. In addition, 

armaqs and armarts commands were used from the higher-

order spectral analysis toolbox [16] to estimate the ARMA 

parameters for the QS and GM methods, respectively. Tables 

1, 2, and 3 show the average estimate results of 100 Monte 

Carlo simulations at SNR of 20 dB on the output sequence. 

The performance measures considered for estimating the 

parameters are the arithmetic mean and the variance.  It can 

be seen that the proposed ARMA parameters estimation 

technique performs better than the GM and the QS methods. 

The proposed SVD method in this paper was more computa-

tionally efficient than the other two methods since the AR 

and MA parameters are estimated in one step only. That is 

Equation (22) has both AR and MA coefficients. However, 

in the other two methods the AR coefficients must first be 

estimated and then the MA coefficients can be estimated. It 

should be emphasized that the main reason for using HOS 

for ARMA parameter estimation is the fact that additive 

Gaussian noise of unknown variance does not affect the the-

oretical cumulant statistics. However, when dealing with 

finite-length data observations, the computed cumulants do 

not vanish but will be very small. From the author’s experi-

ence with higher-order cumulants, these cumulants have 

little effects on these results at moderate SNR. However, the 

performance deteriorates at low SNR.  

V  CONCLUSION 

This paper  presents an approach to estimate  ARMA param-

eter of a given system using the singular value decomposi-

tion of a covariance matrix of a third order cumulants of the 

observed output sequence only. A comparison of the perfor-

mance of the proposed algorithm with the QS and the GM 

methods was made at 20 dB SNR on the output signal. The 

presented simulation results demonstrate the effectiveness of 

the proposed method. 
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