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Abstract—using the matching method formalism, this work presents the transmission and reflection coefficients 
of coherent phonons in a quasi 2D quantum waveguide perturbed by reticular defects as interstitial impurities. 
Our waveguide is modelled by two infinite atomic chains. The implied interactions refer only to the bonding 
strengths between nearest and next nearest close neighbours. .Numerical results show that the transmission 
spectra exhibit Fano-like resonance features which result from degeneracy of localized-impurity states and 
propagating continuum modes. In addition, the scattering by multiple impurities induces interferences between 
diffused and reflected waves in the defect region giving birth to Fabry-Pérot oscillations. This interference 
phenomenon could provide an interesting alternative to investigate structural properties of materials. The results 
could be also useful for the design of phonon devices. 

Index Terms—Mesoscopic Disordered Systems; Reticular Dynamics; Phonons Scattering; Defect in 
Nanostructures, Matching Method; Numerical Simulation.  

 

I INTRODUCTION

The survey of scattering and localization phenomena in 

the disordered mesoscopic systems interested the researchers 

at all times [1-3] because of the numerous applications 

found in classic metallurgy, in electrochemistry, in catalysis 

and in electronics.  

Our present knowledge of the related phenomena has been 

given by the work of Landauer [4], in which the studied 

sample is represented by a set of scatterers (reticular defects) 

inserted in bulk or on surface of crystalline structure. He 

showed that the conductance of a quantum wire is bound 

directly to the scattering properties of such system, consid-

ered as a waveguide perturbed by defects. His approach has 

stimulated many researchers [5-10] to look for the effects of 

quantum coherence, most of the time by numerical methods, 

in dc transport particularly. Actually these phenomena are of 

renewed interest owing to advances in nanotechnologies, the 

basic motivation being to understand the limitations that 

reticular disorder may have on mechanical and vibrational 

properties of crystalline materials. 

In the present work, we study the phonons scattering by 

an interstitial impurity localized in an infinite double atomic 

chain. We analyze the behaviour of a plan wave which prop-

agates throughout this crystal which is assimilated to a qua-

si-planar crystallographic waveguide. We concentrate in 

calculating the reflected and transmitted parts of the inci-

dental wave, the phononic conductance as well as the dis-

placements of the irreducible atoms composing the per-

turbed region. We are also interested by the determination of 

the localized induced impurity states especially important 

for transmission spectra interpretation. Different defect con-

figurations are considered. The mathematical treatment of 

the problem resorts to the matching method [7,11] in the 

harmonic approximation framework [12-14] while using 

scattering boundary conditions.  

II STRUCTURAL MODEL 

The considered model consists of two linear parallel pe-

riodic chains of masses, assimilated to a quasi-one-

dimensional planar waveguide in which interstitial impuri-

ties are incorporated. The parallel chains are composed of 

specific masses aligned along the direction of propagation (x 

axis). The situation is depicted in Figure 1. Each mass is 

linked to its nearest and next nearest neighbours by harmon-

ic springs of stiffness constants k
1
 and k

2
. The additional 

constants as K
lv

, k
l
 and k

v
, are represented on the figure. To 

simplify, the distances between adjacent masses are consid-

ered equal in the two Cartesian directions x and y of the 

plan. Also, to take account of the modification of the bond-

ing strength field in the perturbed region (grey area M), we 

introduce a proportionality factor λ which indicates the ratio 

of the different force constants between the defect zone 

masses and those of the perfect lattice areas G (left) and D 

(right-hand side) located in sites separated by equivalent 

distances. 

III MATCHING METHOD PRINCIPLE 

Initiated by Feuchtwang in the sixties then revisited by 

Szeftel and al. in the eighties, the matching method returns 

account in a satisfactory way for the phonons dispersion 

curves [7-9] and for surface resonances. It gives also a more  
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general definition of the resonance concept and allows a 

more transparent analysis of the displacements behaviour in 

the vicinity of the Van Hove singularities [15]. However, its 

execution requires the crystal subdivision in three distinct 

regions having all the same periodicity along the surface. 

The procedure was described in details in references [8]. We 

will just present the necessary stages to the comprehension 

of the results analysis.  

A Perfect lattice dynamics 
For an atom occupying the site (l) and vibrating at the 

frequency  , the equations of motion can be written, using 

the harmonic approximation framework [14], in the follow-

ing form: 
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where   and   represent the yx,  directions of the plan; 

  mlm   indicates the atom mass located at site l ; r  is 

the component of the relative position vector between sites 

l  and 'l , d  the distance separating them and  ',llk  the 

bonding strength constant between the two atomic sites.  

Taking into account the problem symmetry and applying 

the scattering boundary conditions for which we get plan 

wave solutions, the perfect lattice atom equation of motion 

(1) rewrites itself in following matrix system: 

 

   0, 2
2


 urZDI                            (2)    

                                    

where 1
22 km  is the dimensionless frequency, I the 

identity matrix, )2,( rZD  the )33(   dynamical matrix of 

the perfect lattice and u  the vector displacement. The 2r  

parameter denotes the force constants ratio between nearest 

and next-nearest neighbours. 

The scattering problem in presence of defects imposes the 

knowledge of both propagating modes ( 1Z ) and eva-

nescent ones ( 1Z ) of the perfect waveguide. In other 

words, for a given frequency, all solutions are necessary 

even those whose module is lower than unity. These solu-

tions can be obtained by increasing the eigenvectors basis: 
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We then rewrite equation (4) in the Z eigenvalue problem 

form, 
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where A  and B  are (44) matrices coming from the basis 

change. Let us note that the dimension of this generalized 

eigenvalue problem is twice as large as the original problem. 

B Coherent phonons scattering at defects 

Since the perfect waveguides do not couple between 
different eigenmodes, we can treat the scattering problem for 
each vibratory eigenmode separately. Generalization to 
every combination of these modes does not pose a particular 
problem. For an incoming wave from the left of Figure 1 in 
the eigenmode  , form must accompany your final 
submission. Authors are responsible for obtaining any 
security clearances.  

 

1;)(  iuZV ii
in 


,                                          (5) 

 

where Z  is the attenuation factor of the entering mode, 

u


 its eigenvector;  the superscript )1( i  indicates the 

site occupied by the atom with respect to the direction of 

propagation. 

…     -2            -1                0                                              N           N+1        N+2  ... 

    G                                                                                           D 

                                                   M 
 

 Matching Régions 

Figure 1: Schematic representation of a planar quasi-1D waveguide made up of two linear infinite chains 

perturbed by interstitial defects. The grey area M indicates defect region, G and D two semi infinite 

perfect waveguides. 
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The resulting scattered waves are composed of a reflected 
and transmitted parts, which can be expressed as a superpo-

sition of the eigenmodes of the perfect waveguide at the 

same frequency, i.e.,   
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,           (7) 

 

where r  and t  indicates the reflection and transmis-

sion coefficients normalized beforehand by group velocities 

(slopes of the dispersion curves) of the plan wave, set equal 

to zero for the evanescent modes.  The evanescent modes are 

needed for a complete description of scattering in presence 

of defect, although they do not contribute at all to the energy 

transport. 

 
With the definitions (6) and (7), we can rewrite the dynam-

ical equations for the perturbed double chain. Since there are 

perfect waveguides in regions G and D, we only need to 

solve Eqs. (1) for the masses inside the perturbed zone M 

and in the boundary columns (-1) and (2), which are 

matched to the rest of the perfect waveguide by Eqs. (6) and 

(7). Isolating the inhomogeneous terms describing the inci-

dental wave, we obtain an inhomogeneous system of linear 

equations 

 

     inff VrDXRrD


),,(),,( 22     (8) 

 
where ),,( 2 rD f   indicates the dynamical defect matrix, 

X


 the vector gathering all the problem unknowns, inV


 the 

incidental vector and R  the matching matrix. 

As example, for an isolated defect we obtain a dynamical 

matrix  2618fD ; from where a matching matrix

 1826R  is deduced. Then the vector X


 will be com-

posed of eighteen unknowns including the ten displacements

)(lu  of the irreducible atoms, the four transmission coef-

ficients and four reflection ones. 

IV IRREDUCIBLE ATOMS VIBRATION 
SPECTRA 

In combining the matching procedure to the Green’s 

functions and for a given wave vector parallel to the direc-

tion of propagation [16], the matrix phonon spectral density 

reads 
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where (l) ands (l’) are two atomic sites, α and β designate 

two different Cartesian directions and
l
iP  is the component 

in direction α of the polarization vector of the atom (l) for 

the mode having a frequency Ωm.  

The vibration density of states (DOS) per atomic site 

Ni(Ω) in the perturbed defect region could be calculated by 

summing over the trace of the spectral density matrix (G 

(Ω
2
+jε) = ((Ω

2
+jε)I-Df (r2,λ))

-1
 being the Green operator), i. e 

for (l)= (l’), 
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 We strongly encourage authors to carefully review the 

material posted here to avoid problems with incorrect files 

or poorly formatted graphics. 

V RESULTS AND DISCUSSION 

Phonons scattered by impurity are analyzed relatively to an 

incidental wave coming from the left of Figure 1, with unit 

amplitude and a zero phase on the border atom (-1) located 

just at the beginning of the defect region M. 

A Single impurity scatterer 
 The numerical results for the transmission and reflection 

coefficients in terms of the incident phonon frequency are 

consigned in Figure 2 in the case of an impurity mass

mm 5.1' .  

We notice that the presence of the interstitial defect leads 

to a general decrease of the probability amplitude. As ex-

pected, the influence of the impurity is relatively small in the 

acoustical regime because of the low implied frequencies. 

For 0 , we get 1T ; the subscript   (=1 to 4) refers 

to the number of eigenmodes characterizing the double at-

tomic chain [7-9]. Moreover, the transmission spectra are 

marked by pronounced typical Fano-like resonances (null 

transmission in Figures 2). These asymmetric resonances 

can be attributed to the presence of impurity-induced reso-

nant states, whose frequency depends on the value of the 

bonding forces in the defect region M. Consequently, these 

resonances take place at low frequencies for heavy defects 

and inversely for the light ones. These findings are in good 

agreement with those of Tekman and Bagwell [2], who used 

a two mode-mode approximation. 
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Figure 2: Transmission (full line) and reflection (doted line) coefficients 

vs. the phonon frequency for an isolated interstitial impurity mass 

m’=1.5m. The dashed curve shows the good complementarity between the  

two coefficients. 
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Lastly the well known theoretical relation translating the 

conservation of energy principle, 

  1  TR                       (11) 

 
is fortunately satisfied and always checked for each frequen-

cy (dashed lines in Figures 2). Besides, this condition consti-

tutes an effective control method of the results. 

The results of the conductance )(  are shown on Fig-

ure 3. In addition to the curves of conductance relating to 

each impurity mass considered, we also represented that of 

the perfect lattice (dash-dotted histogram). In this case, the 

entering wave is totally transmitted in each propagating 

mode. The conductance of the system becomes then more 

important where the modes overlap. For this reason, its val-

ue reaches more than unity in the concerned frequencies 

ranges. Otherwise the conductance spectrum is much more 

affected in the case of light impurity mass (dashed curve). In 

addition to resonances, this influence is translated by a less 

amplitude compared to for bigger masses at weak frequen-

cies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B Extended defect  

The increase of the defect region width doesn't bring any-

thing of qualitatively new in relation to the case of the single 

impurity. The addition of impurities results solely in the 

increase of the size of the linear system (8), but the matrix

D
~

keeps its structure. The supplementary blocks have the 

same shape as those characterizing a single defect. We have 

limited our study to only ten interstitial impurities which 

already generates a ( 8072 ) defect matrix dimension. The 

effects described previously in the case of isolated step ap-

pear, but they are even more difficult to isolate because of 

the biggest number of peak-dip structures near in frequen-

cies. It is why we are not going to study in details these 

regions. On the other hand, we will limit ourselves to pre-

sent a more global change of the transmission curves, pro-

voked by the Fabry-Pérot oscillations issued from interfer-

ences between the multiple scatterings of propagating states 

in the perturbed region. 

The phonon scatterings, considered for an extended defect 

composed of several interstitial impurities, are presented in 

Figure 4 for heavy impurity mass (m’=1.5m) in the anti-

symmetric mode 1 [8]. It can be seen that the transmission 

curves structure became richer of several peaks. We observe 

a drastic dependence of Fabry-Pérot oscillations with the 

number of impurities. However, the number of main dips 

remained the same corresponding to the total number of 

lattice parameter a contained in the width of the perturbed 

region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that their number seems to be lower on the figures 

is simply related to a resolution problem in the implied fre-

quency range. Same results are observed by V. Pouthier and 

al. [17] on the transmittance spectrum of a nanowire con-

taining a set of linear clusters separated by different spacing. 

Otherwise, the upper level of the Fabry Pérot oscillation can 

merge with the Fano-resonance peak. It should be noted that 

on average the global shape of the transmission curves is 

quite similar to that obtained in the case of an isolated impu-

rity (in dashed line on the figures). 

The transmission curves are turned into a number of 

peak-dip structures, the reason is that the modes will inter-

fere with each other due to the multiple reflections of the 

phonon waves in the perturbed region. In general, the multi-

ple interferences in the perturbed waveguide imply the more 

complex transmission spectra. These interferences between 

multiply scattered waves result in Fabry–Pérot oscillations 

of increasing amplitudes with the frequency and whose 

number depends intimately of the number of impurities. 

Similar results are obtained in the study of adatomic defects 

[8,9,17-20] and substitutional defect columns [8] in the 

perturbed double quantum chain. Defects are separated by 

Frequency Ω 

Figure 3: The total transmission probability vs phonon frequency for impu-

rity masses m’=0.5m (dashed line), m’=m (dotted line) and m’=1.5m  (full 

line) in the case of a single impurity scatterer. The dashed-dotted histogram 

represents the total hypothetical phonon transmission capacity of the sys-

tem. 
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Figure 4: Transmission coefficient as a function of the phonon frequency 

for an extended defect composed of N defects of impurity mass m’=1.5m. 

The dashed curve refers to an isolated scatterer having the same mass. 
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different spacing in both configurations. 

C Phonons densities of states 

In Figure 5 are shown the phonon densities of states (DOS) 

versus the non-dimensional frequency for defect irreducible 

atoms (see Fig. 1). The results were calculated, according to 

Eq. (10), for two inhomogeneity masses light (m’=0.5m) in 

dashed line and heavy (m’=2m) in full line in the case of 

stiffened force constants. Due to obvious symmetry effects, 

analogous behaviors are observed for both columns (0) and 

(1). Therefore, the density of states is shown only for atom 

(0,0). It can be seen that spectra for this kind of lattice atoms 

is quite similar and present five main features as in the over-

all transmission spectrum, mainly at resonant frequencies 

Ω≈1, 1.4, 1.7, 2.0 and 2.3 for heavy impurity mass. For light 

mass, the resonant peaks happened at frequencies Ω≈1.0, 

1.4, 1.7 and 2.4. These resonances can be attributed to the 

presence of defect-induced resonant states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The phonon modes of the impurity atom reveal four signifi-

cant resonant peaks (two for light impurity mass) at high 

frequency. These strongly localized modes are due to inter-

stitial defect induced states. These peaks correspond mainly 

to the longitudinal modes near the high Brillouin zone 

boundary. The low-frequency peaks are mainly contributed 

by the transverse modes. As previously, these resonant 

peaks shift to higher (lower) frequencies for smaller (larger) 

impurity mass as expected. 

V  CONCLUSION 

In this work, we have analyzed the behaviour of elastic waves 

propagating through a quantum waveguide perturbed by inter-

stitial impurities. Our calculation resorts to the matching proce-

dure based on the Landauer-Büttiker approach. The scattering is 

considered for isolated and extended impurity defects. In both 

configurations, strong asymmetrical resonances are observed in 

the transmission spectra; these structures, identified to Fano 

resonances, describe usually the interference between a 

propagating transmitted mode and a local defect mode. The 

resonance frequency depends closely of the impurity mass 

(or of the bonding force constants) in accordance with the 

relation Ω
2
=(k/m) defining the harmonic oscillator frequen-

cy. 
For extended defects, resonance peaks and their number are 

determined by the perturbed region width given by the number 

of impurities. Moreover, the transmission spectrum is also 

characterized by other oscillations of Fabry-Pérot type due to 

the interferences between transmitted ant reflected waves in the 

perturbed region. Also their number depends closely of the 

defect region width. 

The transmission spectra can thus be used for identifying 

defects of specific structures and then being used for their char-

acterization. The interference effects are of interest for im-

provements in the design of transducers and noise control [21] 

whereas Fano-type resonances are commonly used to build 

filters [22]. The results could be also useful for the design of 

phonon devices. 
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