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Abstract 
In this study, the effect of protection methods regarding the corrosion decrement of steel in 
concrete was simulated by artificial neural networks (ANNs) and fuzzy logic (FL) approaches. 
Hot dip galvanizing as a protective coating, Ferrogard 901 corrosion inhibitor, a pozzolanic 
component, such as fly ash (FA) and micro-silica (MS), and eventually rebar AISI-304 were 
employed in concrete. Reinforced concrete samples were held under impressed voltage of 
30 V in 3.5 % NaCl electrolyte for 350 hours toward a stainless-steel auxiliary electrode. 
Corrosion currents have been modelled using feed forward back propagation ANNs and FL 
methods. The results demonstrate good consistency between corrosion data and simulated 
models. Furthermore, the correlation coefficient criterion clearly indicates using pozzolanic 
materials, with a combination of MS and FA, can be introduced as one of the best corrosion 
protection methods, with a 35 % contribution factor in reinforced concrete. 
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Introduction 

Ingress of water and aggressive fluids is the main reason responsible for major chemical and physical 

degradation of concrete pavements and structures, which decreases their durability and life span [1-11]. 

Reinforced concrete has a great significance in the durability and stability of marine structures [12]. The 

premature deterioration of concrete buildings and infrastructure due to reinforcement corrosion is a 

severe challenge, both technically and economically [13,14]. Reinforcement corrosion owing to passive 

layer disruption, γ-Fe2O3H2O, accompanying chloride ion diffusion ones through concrete is started. 

Different methods have been suggested to reduce the corrosion rate of steel reinforcements in 

concrete. The most important methods include pozzolanic additives, i.e., micro silica (MS) [15], fly ash 
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(FA) [16,17] and granulated blast furnace slag [18], to prepare very dense and strong types of concrete, 

rebar or concrete coating [19-21], the alteration of the steel alloy composition [22], and corrosion 

inhibitor admixtures [23]. Today, the combination of artificial neural networks (ANNs) and fuzzy logic 

(FL) methods as powerful tools to analyze and simulate phenomena are used to predict concrete 

features, such as compression strength. Moreover, the ability to work with incomplete knowledge, 

prediction of reinforced concrete parameters, and having fault tolerance are some of the advantages of 

using these methods [24-33]. It is worth recalling that there are restricted studies on the simulation of 

the corrosion current of the rebar or the degradation of reinforced concrete by ANNs and FL. In this 

regard, Topcu and coworkers have modeled both the compressive strength and the corrosion current 

of steel in concrete by ANNs regarding the addition of fly ash to the concrete mix design [34]. In another 

study, Ukrainczyk and coworker have analyzed the relationships between numerous input parameters 

and observed damage owing to reinforcement corrosion with ANNs and the fuzzy prediction [35]. 

Parthiban et al. have simulated the corrosion of steel in concrete through potential monitoring in 

accordance with ASTM C876 for a long time only by ANNs [36].  

This study attempts to evaluate the influence of different protection methods on the 

enhancement of corrosion resistance of reinforced concrete by ANNs and FL approaches. These 

protection methods were applied by replacing stainless steel (AISI 304) with carbon steel rebar, 

coating carbon steel reinforcement by the hot dip galvanized film, the addition of pozzolanic 

materials, such as the MS and FA in the optimum content of 10 and 25 wt.% of cement, respectively, 

in concrete [37,38], and finally, the addition of the corrosion inhibitor admixture, Ferrogard 901, to 

the concrete mixing design. In this research, the effects of the aforementioned parameters on the 

corrosion behavior of reinforcement and its durability in the simulated seawater solution (3.5 % 

NaCl) [39] have been predicted by ANNs and FL and compared to the actual results of the accele-

rated corrosion test. AISI-304 rebar, hot dipping galvanized coating, accelerated corrosion test, and 

FL method are the parameters that have not been studied in the previous research. In all cases, the 

accelerated corrosion current at an impressed anodic potential of 32 V, applied between the stain-

less-steel counter electrode and the working electrode (rebar), was monitored at each 30 min inter-

val by the designed data logger. Eventually, the nonlinear response of the galvanic current, as well 

as the performance of each protective method to enhance the corrosion resistance of the reinfor-

cement, was evaluated. The simulated results are in good consistency with the experimental ones. 

Experimental  

Materials 

In the experiments, Tehran cement type II represented in Table 1, double washed sand in the 

range of 4.5 to 9 mm, river sand, Ferrogard 901 as a corrosion inhibitor admixture (Table 2), carbon 

steel, A-20 grade, and stainless steel, AISI-304 grade, as reinforcements (Table 3) and 3.5 wt.% NaCl 

solution for electrochemical tests was employed. Besides, MS and FA, as shown in Table 1, in the 

optimum content of 10 and 25 wt.% cement regarding the improvement of concrete properties 

were added to the mix design, respectively [40]. 

Concrete mix design  

Three types of concrete (Table. 4) were prepared, which in the mixing patterns of A and B, 

controlling samples accompanied with concrete concerning corrosion inhibitor admixture with a w/c 

of 0.4 were presented. Furthermore, in the third mixing design, the simultaneous effect of FA and 

MS at a percent of 25 and 10 wt.% cement was utilized, respectively.  
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Table 1. Chemical composition of cement type II, FA and MS 

MS FA Cement type II 
 

Content, wt.% 

3 4.62 62 CaO 
94 51.5 21 SiO2 

0.4 30.5 3.3 Al2O3 

0.7 6.7 1.5 Fe2O3 

0.1 3 5.5 MgO 
0.15 0.4 1.7 SO3 

0.23 0.43 0.14 Na2O 
0.44 0.55 0.64 K2O 

0.002 0.007 0.012 Cl 
2.87 2.17 7.13 Loss of ignition 
0.11 0.14 1.84 Free lime 
1.98 2.78 2.96 Specific gravity 

Table 2. Inhibitor admixture specification 

pH Working temperature. oC Color Density, kg/l Chemical composition Production name 

10 1-35 green 1.06 2-dimethyl tetra amino ethanol Sika Ferrogard 901 

Table 3. Chemical composition of reinforcements 

Mo Cr Ni Mn (max.) Si (max.) P (max.) S (max.) C (max.) 
 

Content, % 

 - 18-20 8-10.5 2 1 0.045 0.03 0.08 AISI 304 

 -  -  -  -  -  - 0.03 0.18-0.21 A-20 

Table 4.  Amounts of used materials in mixing designs 

Concrete mixing 
design 

Curing time, day 
Amount of used materials, kg m-3 

Cement Water MS FA Sand Crushed stone Inhibitor SP1 

A 28 400 160  -  - 736 1064  1 
B 28 400 160  -  - 736 1064 12  
C 28 400 216 0 100 736 1064  1.35 

1Superplasticiser (SP) was used 0.25 % by weight of binder (cement+FA+MS). 

Sample preparation 

Reinforcement preparation 

Steel rebar with 10 mm of diameter was cut to 120 mm of length and so to intensify acid pickling 

and degreasing, reinforcements were ultrasonically cleaned in a 15 % HCl solution with 0.005 % 

urotropin (as a corrosion inhibitor) for 20 min and in acetone for 3 min, respectively. 

Concrete molding 

Concrete samples with 10×10×10 cm dimensions were prepared according to BS 1881 Part 116 

standards [41] to perform compression strength tests. Samples of corrosion experiments with a 

cylindrical shape were prepared exactly such that the reinforcement with 10 mm diameter is 

centrally embedded (as shown in Figure 1). 

To seal the reinforcement, Teflon tape was utilized, and epoxy paint was used over it. The 

effective surface of the reinforcement in concrete was chosen to be 18.85 cm2 (S = 2πrh, where  

r = 5 mm and h = 60 mm). Concrete samples after 24 hours were brought out of the 120 mm height 

molds and were placed in the curing room at a relative humidity of 90±5 for 28 days to complete 

the hydration reaction. The outer surface of the concrete was covered with a 2 mm height wax from 

both sides (top and bottom) to limit the diffusion of chloride ions only in the radial direction and 

also prevent corrosion in the common interfaces of concrete and reinforcement and atmosphere.  

http://dx.doi.org/10.5599/jese.1220
http://de.wikipedia.org/wiki/Urotropin
http://www.techstreet.com/products/1100509


J. Electrochem. Sci. Eng. 12(3) (2022) 511-527 SIMULATION OF CORROSION PROTECTION METHODS 

514  

 

(1) Epoxy coat used for reinforcement sealing 
(2) Wax used in order to concrete sealing 
(3) Effective surface (18.85 cm2) 
(4) Concrete 

Figure 1. Schematic of concrete sample for the impressed current experiment 

Reinforcement coating 

To create hot dip galvanized steel (HDGS), prepared rebar was placed in the ammonium chloride 

flux solution for 30 seconds and subsequently was immersed in pure zinc, with 0.3 % aluminum, a 

melt bath at 470 °C for 2 minutes. After quenching in water, the average thickness of the galvanizing 

from the 3 points was reported at approximately 100±5 µm.  

Impressed voltage experiment 

An accelerated corrosion test under constant potential was accomplished through a DC power 

source, an experimental sample, and a plastic dish containing 3.5 wt.% NaCl solution, two steel 

plates, and a designed data logger to collect the current data of reinforced concrete every five 

minutes [42-46]. Indeed, a working electrode, reinforcement embedded in concrete as an anode, 

directly connected to the positive pole of the DC power source such that the auxiliary electrode, two 

stainless plates as a cathode, connected to the negative terminal, afterward a 30 V impressed 

voltage between the counter and the working electrode to fix stress is put on. The destruction 

happened when a longitudinal crack with a 0.5-1 mm width was observed in the concrete sample 

[47]. The impressed-voltage test setup was demonstrated in Figure 2. 

 
Figure 2. Impressed voltage experiment setup for accelerating of steel corrosion in concrete 
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Fundamentals of intelligent systems 

ANNs structure 

Artificial neural networks (ANNs) are mathematic algorithms based on the behavior of human brain 

abilities and belong to dynamic systems which, by processing on the experimental data, transfer 

hidden knowledge or rule behind the data to the network structure. Then the neural network on the 

basis of acquired knowledge, can respond to a set of new data [47] and maintain a good connection 

between nonlinear data relations [34]. 

To accomplish a safe artificial neural network modeling, the following steps must be precisely 

defined [49]. These stages concern data gathering, defining input variables, analyzing, and pre-

processing data, creating a network architecture, training the network, testing the trained 

network, and using the trained network for calculation and prediction. Indeed, in designing the 

network architecture step, the number of hidden layers, the number of neurons in the hidden layers, 

and the transfer function type in the hidden layer must be created. No rule exists to determine the 

optimum amount of parameters for designing network, and they must be obtained via trial and error 

[50]. In the network training step, an algorithm undergoes the trend in which the matrix of connection 

weights and network bias vectors are adjusted. Briefly, the training procedure is as follows: initial 

biases and connection weights are estimated, then with the output results of the network, initial 

biases and connection weights are modified so that it converges to real output results. This 

modification continues until the error reaches the desired value. The more the network is trained the 

more the error trend in each epoch tends to zero and when the error parameter reaches its minimum 

value, the training operation stops [37,49]. However, a low error is not always a good indicator of a 

better network. Cross-validation is a highly recommended criterion to stop network training [51]. The 

training algorithm is shown in the flow chart of Figure 3 [52].  

Among different ANN architectures, the backpropagation learning algorithm is one of the simplest 

methods and has a more applicable learning algorithm, and is closer to human task behavior, such as 

predicting and categorizing. ANNs can be designed in different ways. One of the most popular ones is 

Multilayer’s feed-forward neural networks [48,51]. 

This method is slow learning and needs more iterations before convergence. To obtain a 

performance index, a bellow performance index can be used. Predicted and experimental values are 

compared with the root mean square error (RSME), the mean absolute percentage error (MAPE), and 

the correlation coefficient (R). RSME, MAPE and R are calculated by the equations (1) to (3): 
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where ti is the experimental values, oi is the predicted values, and p is the number of data 

points [50]. In this work, the feed-forward backpropagation algorithm from the MATLAB neural 

network toolbox is used. 
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Figure 3. Flowchart encompassing data pre-processing and ANNs training [52] 

FL background 

Expert systems as technology started in the early 1950s and remained in research laboratories, 

and never broke through to the consumer market. FL theory which was introduced by Lotfi A. Zadeh 

extends conventional Boolean logic (0 and 1) [53]. The fuzzy set theory provides a means to 

represent uncertainty, and everything is based on a degree. So, an object can be, to some extent, a 

member of a set. The membership function of a fuzzy set is allowed to have values between 0 and 

1, which denotes the degree of membership of an element in a given set. The continuum of logical 

values between 0 (completely false) and 1 (completely true) are used. In contrast to the crisp theory 

with a sharp boundary, the fuzzy set theory has no sharp boundary. Usually, fuzzy set and 

membership information is illustrated by equation (4): 

μA(X) = z (4) 

This says the membership (µ) of X in fuzzy set A is z [54]. The membership function can be an 

arbitrary curve, but there are several common membership functions for use in engineering 

applications, such as piecewise linear functions, the Gaussian distribution function, the sigmoid 

curve, and quadratic and cubic polynomial curves, etc. Fuzzy inference is the process of formulating 

the mapping from a given input to an output using fuzzy logic. There are two types of fuzzy inference 

systems used extensively: the Mamdani-type and the Sugeno-type. The Sugeno or Takagi-Sugeno-

Kang (TSK) method of fuzzy inference was introduced in 1985 [53,54]. The output membership 

function of the Sugeno-type fuzzy inference system is linear or constant. Clustering involves the task 
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of dividing data points into homogeneous classes or clusters so that items in the same class are as 

similar as possible and items in different classes are as dissimilar as possible. Subtractive clustering 

is a fast, one-pass algorithm to estimate the number of clusters and cluster centers in the data set 

[53,55]. Subtractive clustering is an effective approach to estimating the number of fuzzy clusters 

and cluster centers [56]. To predict the corrosion current by fuzzy logic experimental of corrosion 

current, the corrosion time and the concrete type are loaded in the MATLAB fuzzy logic tool, and 

the corrosion current model is constructed. Detailed steps of the corrosion current model 

construction with fuzzy logic are described next. 

Results and discussion 

Compressive strength and corrosion analysis in concrete 

The results of the compressive strength experiment and the cracking initiation time of three mix 

proportions are depicted in Table 5. According to the outcomes, the compressive strength of mix 

design C, the pozzolanic concrete, compared with the control concrete, mix proportion A, is decreased 

from 57.64 to 54.29 MPa, while the usage of corrosion inhibitor admixture, mix proportion C, suggests 

less decreasing of the compressive strength of concrete. It is worth mentioning that a similar 

decrement in concrete strength is also shown elsewhere [57,58]. Indeed, completing the hydration 

reaction of pozzolanic materials is a time-consuming process and mainly using the pozzolanic 

component can delay the process [57]. However, seeing a porosity decrement, they are expected to 

increase the corrosion resistance of steel reinforcement in the concrete [59].  

Table 5. Compressive strengths and damage occurrence times 

C B A Mix proportion 

A-20 A-20 HDGS AISI-304 A-20 Reinforcement type 

183 154 38 56 26 Cracking initiation time, h 

54.29 56.12 57.64 Concrete compressive strength, MPa 

  

In accordance with Table 5, due to rebar corrosion in control, concrete destruction only can take 

place after 26 hours after applying a constant anodic voltage of 30 V. Furthermore, corrosion 

initiation came about when the passive and protective surface layer on the reinforcement was 

broken, and the corrosion progression continued with high velocity through the environment to the 

reinforcement surface. Basically, the formation of the corrosion products and subsequently the 

volume enhancement of corrosion layers approaching the reinforcement can be imposed a high 

degree of internal stress equal to 450 MPa to concrete and eventually bring about the failure of the 

concrete [44,60]. Concrete failure is shown in Figure 4. 

In the mixed designs of B and C, which were introduced as protection methods, the failure time 

of concrete was increased to 154 and 183 hours, respectively. It is important to mention that in this 

condition, a reinforcement type of A-20 grade was selected and only the effect of the concrete 

additive needs to be explained. Fundamentally, the effect of the pozzolanic materials to improve 

the corrosion resistance of steel in concrete can be explained by the effective role of the pozzolanic 

component in closing or decreasing concrete porosity [61]. Equivalently, Ferrogard 901 corrosion 

inhibitor admixture, through its reaction with the free chloride ions and the decrement of their 

concentration over the rebar surface, reduces the corrosion product amount in reinforcement 

concrete [62]. 

http://dx.doi.org/10.5599/jese.1220
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Figure 4. Destruction of concrete samples after accelerated corrosion test 

The influence of changing the rebar type concerning HDGS and AISI-304 was evaluated at mix 

design A. Outcomes directly extracted from Table 3 obviously illustrate using HDGS and AISI-304 as 

an alternative to A-20 rebar can improve the destruction time to 38 and 41 hours, respectively. 

Although stainless AISI-304 is more sustainable to pitting corrosion regarding chloride ions and 

easily broken the passivation film, some corrosion-resistant elements, such as Ni, Cr and Mn, 

postpone corrosion advancement and, as a result, crack propagation can be delayed [63,64].  

Zinc coated steel rebar or HDGS shows approximately 38 hours of failure resistance to 30V 

impressed voltage in the NaCl solution, which is clearly more than ordinary steel and less than 

stainless steel AISI-304. Mainly Zn element appears as a sacrificial anode and, with consumption 

during the electrochemical reaction, likely protects the steel from corrosive ions [65,66]. 

NN structure design and its parameters 

This study attempts to simulate the effect of time duration on steel corrosion in the concrete mix 

design, then evaluates the addition of pozzolanic materials type to concrete in the second model, and 

eventually compare the results with other proposed protection methods at the third network, i.e., as 

mentioned earlier changing the reinforcement type, coating, and influence of corrosion inhibitor. 

Three models are discussed so that in the first network, the interval time imported as an input 

parameter and the galvanic corrosion current under a rapid chloride diffusion experiment acted as 

an output result in which one hidden layer with ten neurons and a log-sig transfer function has been 

used. Figure 5 schematically represents the first neural network architecture. 

The second model is designed to simulate the pozzolanic additive in concrete. Built ANNs 

structure in the first simulation was used to predict the missing corrosion current in the second 

simulation. This model is more general to predict corrosion current on the basis of more inputs, such 

as cement type, i.e., cement type II, FA and MS, and corrosion time. Thus, in this model, ANNs have 

2 inputs and one output, and the built structure consists of one hidden layer with 10 neurons and a 

log-sig transfer function observed in Figure 6. About 356 data points were obtained from 

experiments and 75 % of them were used for training and the remaining were used for testing and 

network validation. 

In the third prediction, the influence of changing reinforcement type, reinforcement coating, and 

the corrosion inhibitor admixture were verified, and in each case, the corrosion current was measured. 

In this model, ANNs have 4 inputs and one output and the built structure consists of one hidden layer 

with 20 neurons and the tan-sign transfer function, which can be observed in Figure 7.  
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Figure 5. Used system in the ANNs model for the first simulation 

 
Figure 6. Used system in the ANNs model for the second simulation 

 

Figure 7. Proposed architecture to simulate the third part 
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About 2492 data points were obtained from experiments and 75 % of them were used for training 

and the remaining were used for testing and network validation. Regarding the log-sig transfer 

function, the upper and lower limits of the network input and output must be between zero to one, 

so input and output data must be normalized. After network training, it must be tested.  

Corrosion behavior analysis by ANNs  

All parameters in the three described simulations are summarized in Table 6. Indeed, results 

obtained by performance and error indicators were represented in Table 6. 

Table 6. Performances of ANNs to predict the galvanic corrosion current  

MAPE MSE Rtotal Rvalidation Rtesting Rtraining Parameters 

0.0520 4.9578 0.99648 0.99284 0.9952 0.99799 A 

M
ix

 
d

es
ig

n
 

(I) Corrosion time 

Si
m

u
la

ti
o

n
 

0.1101 4.5632 0.99632 0.99682 0.99699 0.99788 B 

0.1600 4.0097 0.99654 0.99845 0.99861 0.99517 C 

1.4789 7.9966 0.99595 0.99709 0.99641 0.99546 (II) Cement type 

0.5834 5.4654 0.98933 0.99216 0.98476 0.99011 (III) Protection methods 

 

According to performance and error indicators, it can be stated that the ANN model provides a 

precise answer for the corrosion current simulation. As an example, in case C in Table 6, the simulation 

regression coefficient is R = 0.99654. Since 0 ≤ R ≤ 1, the higher R represents a better match between 

the predicted corrosion current and the experimental corrosion current [67]. A typical result of the 

predicted corrosion current data and the experimental corrosion current data versus the corrosion 

time in mix design C according to the first simulation model are shown in Figure 8.   

 
Time, h 

Figure 8. Experimental and predicted corrosion current by ANN versus time for first simulation (mix design C) 

Also, the results of the predicted corrosion current data versus the experimental corrosion 

current data for simulations I and III are typically shown in Figure 9. The distribution between the 

predicted values and the experimental values has been modeled by the linear approach and its best 

linear equation was obtained. This equation is also shown in Figure 9. 

It can be observed in Figures 8 and 9 that trained ANNs structure in the nonlinear deviated regions 

predicts a successful and precise response. Also, to demonstrate the precision of the proposed 

models, an error criterion as the difference between the predicted and experimental data versus time 

is suggested in Figure 10, which illustrates the high precision of the modeled network.  
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 a b 

   
 Experimental corrosion current, mA  Experimental corrosion current, mA 

Figure 9. Typical predicted data versus experimental corrosion currents by ANN, also best linear fit, (a) first and  
(b) third simulation 

 
Time, h 

Figure 10. Typical error of corrosion versus time of corrosion by ANNs for the second simulation 

Fuzzy logic results 

Similar to the earlier simulation, neural network data of each corrosion setup were combined, 

and a comprehensive data set was formed. Data were grouped into two sets: training data (75 % of 

data) and testing data (25 % of data), which were randomly selected. Training data were used to 

generate and train a sugeno-type FIS and testing data were used to validate and verify the model. 

By extracting membership functions and fuzzy if-then rules, the Takagi-Sugeno fuzzy model was 

constructed. A comparison between predicted and experimental corrosion current results was 

made with the same performance and error indicators used in the ANN simulation. The results of 

the trained network performance and error indicators are shown in Table 7. 

Table 7. Performances of the fuzzy logic built 

R MAPE MSE Parameter 

0.9992 0.9729 4.2166 Training 
(I) Corrosion time 

Si
m

u
la

ti
o

n
 0.9991 0.5394 5.2223 Testing 

0.9993 1.3245 3.9966 Training 
(II) Cement type 

0.9934 1.1974 4.5646 Testing 

0.9938 1.4799 1.0197 Training 
(III) Protection methods 

0.9937 1.2990 2.0200 Testing 

 

Results of the trained network performance and error indicators show the good accuracy of the 

fuzzy logic. Also, to show the results and network performance predicted corrosion current versus 

the values of experimental corrosion current in training and testing is shown in Figure 11.  
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Figure 11. Typical predicted data versus experimental corrosion currents of fuzzy logic model: (a), (b) training and 
testing for the first model (c), (d) training and testing for the third model 

To show model precision, an error criterion, as the difference between predicted data and 

experimental data versus time, is shown in Figure 12, which confirms the successfulness and high 

precision of the modeled network. 

 
Time, h 

Figure 12. Error of corrosion versus time of fuzzy logic model 

The contribution factor (CF) measures the importance of the respective parameter in predicting 

the network’s output relative to other network input parameters. The higher the absolute sum of 

those weights is, the more the parameter contributes to classification. However, neural networks 

can also find patterns among several parameters, none of which is highly correlated with output, 

but which together form a pattern that uniquely determines the output [68]. The CF for individual 

input parameters in predicting the corrosion current was evaluated in Figure 13. 
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 Time Concrete type 

Figure 13. Contribution factor for individual input parameters in predicting the damage of reinforcement concrete 

The CF predicts which model more effectively reduces corrosion damage. Clearly, Figure 13 

demonstrates the effect of corrosion protective methods, such as the addition of FA and MS in the 

preferred percent to mix design, altering the reinforcement type, coating steel by the zinc element 

or the galvanizing method and corrosion inhibitor admixture to concrete. Undoubtedly, all options 

besides interval time are so important in selecting the best state, but as described, the contribution 

of each approach to decrease corrosion here is important. Predictions show using FA and MS as 

pozzolanic materials with a CF of approximately 35 % is the most important parameter to reduce 

steel corrosion in concrete. After that, controlling the elapsed time from construction is crucial. In 

other protective ways, utilizing the corrosion inhibitor, changing reinforcement with AISI-304, and 

coating the reinforcement with galvanizing are the next options  

Using ANNs and FL in special concretes like reinforced self-compacting concrete (SCC), including 

nano-clay particles and coated rebars (polyurethane and alkyd top coating) is an area that needs to 

be studied in the future. There are various publications in the supercapacitor in terms of energy 

density, different materials, microstructures, output current density, life cycle, etc. However, uti-

lizing the ANNs and FL methods to predict the effects of the aforementioned parameters on the 

efficiency of supercapacitor and its practicality has not been studied yet, and it would be a great 

area to implement these methods [69-73]. 

Conclusion 

Steel corrosion in concrete is a complicated process that can be predicted through powerful 

artificial intelligence tools, such as ANNs and FL. In this study, the influence of different protection 

methods to enhance the corrosion resistance of reinforced concrete as addition of FA and MS in the 

preferred content to concrete, approximately 25 and 10 wt.% cement respectively, replacement 

stainless steel (AISI-304) with carbon steel, the coating of rebar by the hot dip galvanizing method, 

and the usage of Ferrogard 901 to concrete mixing design, were analyzed and corrosion current results 

were simulated by ANNs and FL. The ANN and FL are responsive even when the corrosion current 

shows deviational and nonlinear behavior. It can be concluded that ANNs and FL could be appropriate 

techniques to model the corrosion current of rebar in concrete. Predictions from the three designed 

networks show the utilization of FA and MS as pozzolanic materials with a CF of approximately 35 % 

is the most important parameter to reduce steel corrosion in concrete. 
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