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Abstract 
In the current study, a glassy carbon electrode (GCE) modified with graphene-CoS2 nanocomposite 
was investigated for electrochemical sensing of ascorbic acid. The electrochemical performance of 
the modified electrode was examined using differential pulse voltammetry (DPV), linear sweep 
voltammetry (LSV) and chronoamperometry (CHA) techniques. The electrochemical behavior of 
ascorbic acid at the graphene-CoS2/GCE displayed a higher oxidation current and lower oxidation 
potential than bare GCE. Under the optimal experimental conditions, the sensor presented a good 
linear response between the current and the ascorbic acid concentration range of 0.15–245.0 μM, 
with a low detection limit of 0.05 μM. Finally, the graphene-CoS2 nanocomposite-modified GCE was 
applied for the determination of ascorbic acid in real samples and displayed excellent recoveries. 
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Introduction 

Ascorbic acid, also known as vitamin C, is a natural water-soluble vitamin broadly existing in a 

variety of fruits and vegetables [1]. Ascorbic acid is one of the most common small biological 

molecules found in human blood, and it plays an integral part in the body’s general physiological 

functioning [2]. Ascorbic acid acts as a neuro-modulator and critical nutrient for the human body, 

with a daily dose of 100 mg necessary for good health [3]. Ascorbic acid plays crucial role in many 

physiological reactions and biochemical processes, including the synthesis of collagen and wound 

healing as well as its redox functions [4-6]. It promotes cellular immunity by increasing the number 

of immune cells, including lymphocytes and neutrophils. Ascorbic acid guards against any oxidative 

damage to DNA, membrane lipids, and proteins, which has been implicated as a major factor in the 

development of chronic diseases such as cataracts, cancer, and cardiovascular diseases [7]. This 

vitamin is also considered an indirect antioxidant by regenerating other biologically important 

antioxidants such as vitamin E and glutathione to their active state [8]. Ascorbic acid is included in 
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the biosynthesis of collagen and acts as a co-factor in the biosynthesis of cholesterol, L-carnitine, 

catecholamines, amino acids, and some peptide hormones [9,10]. Ascorbic acid deficiency reduces 

resistance to bacterial, viral and fungal infections and is associated with symptoms of scurvy such 

as muscle weakness, tooth loss, rash, tiredness, and joint pain [11]. Therefore, developing an 

approach for the detection of ascorbic acid is an essential step. Until now, several techniques, 

including electrophoresis [12], spectrophotometry [13,14], chemiluminescence [15], fluorescence 

and chromatography [17,18] have been investigated and applied. Although these techniques are 

superior in accuracy and selectivity, they require sample purification steps and skilled technicians 

and are expensive. The alternative methods developed for the detection of ascorbic acid are 

required to be sensitive and precise.  

At this point, the electrochemical techniques that provide highly sensitive data with precision, as 

well as ease of experimental setup and rapid response, attracted great attention [19-27]. Glassy 

carbon electrode (GCE) is a relatively pure material, highly inert to chemical attack, gas 

impermeable, electrically conductive, and easily modified [28].  

The electron transfer efficiency and detection sensitivity of electrochemical sensors will be 

improved with the selection of suitable sensor surface modification materials [29-38]. Advances in 

nanotechnology and nanomaterials bring new perspectives to various fields [39-44]. Their unique 

properties, such as physical, chemical, biological, optical, and magnetic properties, nanoscale 

materials have high surface/volume ratios that facilitate the recognition of molecules and 

contribute to the enhanced signal transmission between the interface and the target molecule. 

Hence, many research efforts have been devoted to the modification of electrodes by nanomaterials 

to improve analytical performance [45-53].  

Carbon-based compounds are commonly used because of their biocompatibility, good chemical 

stability, high surface area, unique electrical properties, good electron transfer kinetics, and low cost. 

Graphene is one kind of two-dimensional carbon-based nanomaterial, and it has received 

considerable interest since it was discovered [54]. Because of extraordinary physicochemical 

properties, including large surface area, excellent conductivity, and good biocompatibility, 

inexpensive graphene-based materials have been widely employed as electrode materials for 

constructing electrochemical sensors [55-60]. Furthermore, electrodes modified with integrated 

graphene-based materials and transition metal sulfides nanoparticles can generally retain the 

properties of each material, increase surface area and improve the analytical performances for analyte 

determination [61]. Transition metal sulfides such as cobalt sulfide and their composites have 

attracted considerable attention in electrochemical due to their fascinating properties, including high 

specific capacity, improved electric conductivity, and desirable electrochemical activity compared to 

their corresponding oxides [62-64]. These marvelous properties endow them with more outstanding 

electrochemical performance, providing the tremendous potential for a modified electrode. 

This paper illustrates the development of an electrochemical sensor to measure ascorbic acid. 

The modification of GCE with graphene-CoS2 nanocomposite provided a sensitive platform for the 

quantitative analysis of ascorbic acid by DPV technique. 

Experimental 

Apparatus and chemicals  

All the electrochemical measurements were carried out on a PGSTAT302N potentiostat/gal-

vanostat Autolab consisting of a traditional three-electrode system: a bare or modified GCE as the 

working electrode, an Ag/AgCl as the reference electrode and a Pt wire as a counter electrode. 
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Solution pH values were determined using a 713 pH meter combined with a glass electrode 

(Metrohm, Switzerland). Ascorbic acid and other chemicals used were analytical grade and were 

purchased from Merck. 

Synthesis of graphene-CoS2 nanocomposite 

In the synthesis of the graphene-CoS2 nanocomposite, 80 mg of graphene oxide powder was ultra-

sonically dispersed in 100 mL of deionized water to form a clear suspension. 0.2022 g CoCl2·6H2O and 

0.1294 g thiourea were then dissolved into the above suspension. Subsequently, the prepared 

suspension was transferred into a Teflon-lined stainless-steel autoclave with heat at 160 °C for 12 h. 

Eventually, the product was obtained by centrifuging and washing with deionized water and then 

dried at 70 °C in vacuum. The FE-SEM image of the graphene-CoS2 nanocomposite is shown in Fig. 1. 

 
Figure 1. FE-SEM image of the graphene-CoS2 nanocomposite 

Preparation of graphene-CoS2/GCE 

Prior to modification of GCE with graphene-CoS2 nanocomposite, a GCE was polished with alumina 

slurries and rinsed with acetone, ethanol, and deionized water under sonication for 2 min. Then, 1 mg 

graphene-CoS2 nanocomposite was dispersed in 1 mL aqueous solution within 20 min ultrasonication. 

Then, 4 µl of the prepared suspension was dropped on the surface of the working electrode. It remains 

at room temperature until it becomes dry. The surface area of graphene-CoS2/GCE and the bare GCE 

were obtained by CV using 1 mM K3Fe(CN)6 at different scan rates. Using the Randles-Sevcik formula 

for graphene-CoS2/GCE, the electrode surface was found 0.13 cm2 which was about 4.1 times greater 

than bare CPE. 
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Results and discussion 

Electrochemical behavior of ascorbic acid at the surface of various electrodes 

The effect of the electrolyte pH on the oxidation of 35.0 μM ascorbic acid was investigated at 

graphene-CoS2/GCE using DPV measurements in the PBS in the pH range from 2.0 to 9.0. According 

to the results, the oxidation peak current of ascorbic acid depends on the pH value and increases 

with increasing pH until it reaches the maximum at pH 7.0, and then decreases with higher pH 

values. The optimized pH corresponding to the higher peak current was 7.0, indicating that protons 

are involved in the reaction of ascorbic acid oxidation. 

The electrochemical behavior of ascorbic acid was investigated by DPV. The differential pulse 

voltammograms obtained using the bare GCE, and graphene-CoS2/GCE in 0.1 M PBS (pH 7.0) in the 

presence of 100.0 μM ascorbic acid are shown in Figure 2. At the bare GCE, a weak oxidation peak 

current (Ipa = 3.9 μA) could be seen at 0.43 V. In contrast, graphene-CoS2/GCE exhibited an enhanced 

sharp anodic peak current (Ipa = 17 μA) at a much lower overpotential Ep = 0.32 V. These results 

confirmed that the graphene-CoS2 nanocomposite improved the sensitivity of the modified electrode 

by enhancing peak current and decreasing the overpotential of the oxidation of ascorbic acid. 

 
Figure 2. Differential pulse voltammograms of (a) bare GCE and (b) graphene-CoS2/GCE in 0.1 M PBS (pH 

7.0) in the presence of 100.0 μM ascorbic acid at the scan rate 50 mV s-1 
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Effect of scan rate on the determination of ascorbic acid at graphene-CoS2/GCE 

The influence of the scan rate (ʋ) on the peak currents (Ipa) of ascorbic acid at graphene-CoS2/GCE 

was investigated by LSV. Figure 3 shows the voltammetric response of 70.0 μM ascorbic acid at 

graphene-CoS2/GCE at different scan rates in the range of 10 to 600 mV s-1. The oxidation peak 

current of ascorbic acid increases linearly with increasing scan rate. A linear regression equation was 

obtained from the plot Ipa vs. 1/2 as follows; Ipa = 1.7128  1/2 – 2.0173 (R2 = 0.9991) for the oxidation 

process, which indicates the reaction of ascorbic acid at graphene-CoS2/GCE is diffusion controlled. 

 
Figure 3. Linear sweep voltammograms of graphene-CoS2/GCE in 0.1 M PBS (pH 7.0) containing 70.0 μM 

ascorbic acid at various scan rates; a-i correspond to 10, 30, 70, 100, 200, 300, 400, 500, and 600 mV s-1, 

respectively. Inset: variation of anodic peak current vs. 1/2 

Chronoamperometric analysis 

The analysis of chronoamperometry for ascorbic acid samples was performed by use of 

graphene-CoS2/GCE vs. Ag/AgCl/KCl (3.0 M) at 0.37 V. The chronoamperometric results of different 

concentrations of ascorbic acid in PBS (pH 7.0) are demonstrated in Figure 4. The Cottrell equation 

for the chronoamperometric analysis of electroactive moieties under mass transfer limited 

conditions is as in equation (1): 

I = nFAD1/2Cbπ-1/2t-1/2 (1) 

1/2 / mV1/2 s-1/2 
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where D represents the diffusion coefficient (cm2 s-1), and Cb is the applied bulk concentration 

(mol cm-3). Experimental results of I vs. t-1/2 were plotted in Figure 4A, with the best fits for different 

concentrations of ascorbic acid. The resulting slopes corresponding to straight lines in Figure 5A, 

were then plotted against the concentration of ascorbic acid (Figure 4B). The mean value of D was 

determined to be 9.3×10-5 cm2/s according to the resulting slope and Cottrell equation. 

 
t / s  a 

Figure 4. Chronoamperograms obtained at graphene-CoS2/GCE in 0.1 M PBS (pH 7.0) for different 

concentrations of ascorbic acid; a-d correspond to 0.1, 0.4, 1.0, and 1.5 mM of ascorbic acid.  
Insets: (A) Plots of I vs. t-1/2 obtained from chronoamperograms a-d.  

(B) Plot of the slope of the straight lines against ascorbic acid concentration 

Calibration curve 

Because DPV commonly has a higher sensitivity than the CV technology, the DPV technique was 

applied for the quantitative detection of ascorbic acid. Figure 5 shows the differential pulse 

voltammograms of ascorbic acid at various concentrations using graphene-CoS2/GCE (Step 

potential=0.01 V and pulse amplitude=0.025 V). As seen, the oxidation peak currents of ascorbic 

acid enhance gradually by increasing its concentration. The oxidation peak currents (Ipa) show a good 

linear relationship with the concentrations of ascorbic acid ranging from 0.15 M to 245.0 μM. The 

linear equation is Ipa = 0.1552CAscorbic acid + 1.1919 (R2 = 0.9994) (Figure 5 (inset)). Also, the detection 

limit, Cm, of ascorbic acid was obtained using the equation (2):  

Cm = 3sb / m  (2) 

In the above equation, m is the slope of the calibration plot (0.1552 μA μM-1) and sb is the 

standard deviation of the blank response obtained from 20 replicate measurements of the blank 

solution. The detection limit is 0.05 μM. 

t-1/2 / s-1/2 

CAscorbic acid / mM 

y = 32.966x + 8.5256 
R2 = 0.9976 
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Figure 5. DPVs of graphene-CoS2/GCE in 0.1 M (pH 7.0) containing different concentrations of ascorbic acid. 

Numbers 1–9 correspond to 0.15, 2.0, 7.0, 15.0, 45.0, 70.0, 100.0, 150.0, 200.0, and 245.0 µM of ascorbic 
acid. Inset: plot of the electrocatalytic peak current as a function of ascorbic acid concentration in the range 

of 0.15-245.0 µM 

Analysis of real samples  

The real samples for the analysis were prepared and quantified by DPV method. The developed 

sensor was applied to detect ascorbic acid in effervescent tablets, vitamin C ampoules and 

multivitamin syrup samples. The results are summarized in Table 1. Each measurement was 

repeated five times. The recovery and relative standard deviation (RSD) values confirmed that the 

graphene-CoS2/GCE sensor has a great potential for analytical application.  

Table 1. Application of graphene-CoS2/GCE for the determination of ascorbic acid in real samples (n=5 

Sample 
Concentration, μM 

Recovery, % RSD,  % 
Spiked  Found 

Effervescent tablet 

0 2.5 - 3.2 

2.5 4.9 98.0 1.9 

3.5 6.1 101.7 2.5 

Vitamin C ampoule 

0 5.0 - 1.7 

1.0 6.2 103.3 2.9 

2.0 6.9 98.6 3.3 

Multivitamin syrup 

0 2.0 - 2.6 

2.5 4.6 102.2 3.0 

3.5 5.4 98.2 2.1 

Conclusion 

In this work, the modification of a GCE with graphene-CoS2 nanocomposite and its use as a sensor 

for ascorbic acid in a PBS (pH 7.0) were reported. The modified electrode exhibited good 

CAscorbic acid / M 
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electrochemical performance in the determination of ascorbic acid. The DPV demonstrated a linear 

range of ascorbic acid concentration from 0.15 to 245.0 μM, with a calculated detection limit of 

0.05 µM. Also, the diffusion coefficient of ascorbic acid was obtained 9.3×10-5 cm2/s. Moreover, the 

practical analytical application of the graphene-CoS2/GCE was assessed by measurement of ascorbic 

acid in the real samples with satisfactory results. 
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