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Abstract 
Diazinon (DZN) was first registered as an insecticide in the U.S. However, it was categorized 
in the limited group of pesticides due to its high toxicity for birds, aquatic animals, and 
humans. Like other organophosphorus pesticides, this compound exhibits inhibitory effects 
on the acetylcholinesterase enzyme. The inhibition of the enzyme leads to the accumulation 
of acetylcholine and causes the death of insects. DZN is considered a toxic compound for 
humans due to its high adsorption via skin and inhalation, which leads to the emergence of 
different symptoms of toxicity. When DZN is used for plants, the compound residues in crops 
enter the food chain bringing about different health problems. Moreover, the compound is 
easily washed by surface water and enters the groundwater. Its entrance into aquatic envi-
ronments can negatively affect a wide range of non-targeted organisms. Thus, researchers 
seek to find fast and precise methods for the analysis of DZN. The electrochemical method 
for recognizing the compound in real samples is preferable to other analytical methods. 
Because this method can be used without spending time preparing the sample, it is simple, 
fast, and cost-effective. Since such determinations may be made by using electrochemical 
sensors and biosensors, numerous researchers have developed such sensors for DZN 
detection, and different sensitive materials were used in order to improve the selectivity, 
sensitivity, and detection limit. The present study aims to present the main progress and 
performance characteristics of electrochemical sensors and biosensors used to detect DZN, 
as it is reported in a number of relevant scientific papers published mainly in the last decade. 
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Introduction 

Pesticides are used worldwide to protect agricultural crops and avoid plant damage caused by 

pests. Organophosphates are the most extensive and diverse class of pesticides [1]. The organo-

phosphorus pesticides (OPPs) and organic ester derivatives of phosphorus are widely used as 

insecticides in agriculture [2,3]. Diazinon (DZN) with the scientific name O,O-diethyl-O-(2- isopropyl-

4-methyl-6-pyrimidinyl)-O,O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidinyl)-phosphorothioate is 
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widely used as an insecticide in agriculture. DZN is ranked as the most common organophosphorus 

pesticide globally after malathion [4-6]. Although DZN is a thiophosphoric ester, it shares a common 

mechanism of toxicity with other organophosphorus insecticides like chlorpyrifos, malathion and 

parathion [7]. DZN inhibits acetylcholinesterase (AChE) and prevents acetylcholine (ACh) hydrolysis 

in cholinergic synapses and neuromuscular junctions. Therefore, it leads to abnormal accumulation 

of ACh in the nervous system [8]. Since that pesticide is chemically stable, its improper application 

can result in environmental contamination [9] and ultimately threaten human health [10,11]. The 

compound belongs to the contact insecticide group and kills the insects by altering typical 

neurotransmitters in their nervous system [7]. U.S. Environmental Protection Agency (EPA) canceled 

all residential uses of DZN in 2004. Nowadays, it is only allowed to be used in agricultural 

environments [12]. DZN is relatively stable and mobile and cannot be absorbed by soil [13,14]. 

Microbial degradation in the soil is the most important process for DZN removal from the 

environment [7]. Conducted studies demonstrated that half-lives of DZN in soil were 21 to 103 days 

depending on the type of soil [15]. A compound called diazoxon is formed by DZN hydrolysis and is 

rapidly hydrolyzed to oxypyrimidine, which is more mobile in the environment than the original 

compound [7]. In addition, DZN can be decomposed by the photolysis process. In this case, the half-

life of this compound on the soil surface is estimated to be between 17.3 to 37.4 hours [14]. DZN 

and its metabolites can be contaminated the groundwater considering their stability and mobility 

[13]. In the atmosphere, DZN is transformed into diazoxon, which is a more powerful AChE inhibitor 

compared to DZN, with a half-life of 4 hours [16]. Low levels of DZN applied outdoors can be carried 

indoors through airflow, dust, soil, and pets exposed to the compound [17].  

The main problem of DZN application is that it can be absorbed by plant roots in soil [18]. The 

compound can degrade in leafy vegetables, forage crops, and grass with half-lives ranging from 2 to 

14 days. However, low temperature and high oil content cause the half-life of DZN to increase in 

plants [18]. Pyrimidinol, as well as hydroxypyrimidinol, are the compounds resulting from DZN 

hydrolysis in plants. Since diazoxon can also be found in plants, the measured pyrimidinol may be a 

product of diazoxon hydrolysis rather than DZN hydrolysis [19]. DZN poses relatively high toxicity to 

vertebrates. Once entering the body, DZN is decomposed to diazoxon by oxidation which is more 

toxic than DZN and mainly inhibits acetylcholinesterase (AChE) [20]. The oxidation of DZN to 

diazoxon is carried out by the liver microsomal enzyme and requires O2 and NADPH. DZN can also 

be decomposed through oxidation in the liver. Both reactions are likely to be catalyzed 

nonspecifically by the same mixed-function oxidase. Hydrolases further decompose DZN in the 

microsomal and other intracellular functions inside the liver. Mammals metabolize diazoxon with 

an estimated half-life of 2 to 6 weeks. Insects lack the hydrolysis step, and hence, the toxic substance 

is rapidly accumulated in their bodies. 

The toxic compound can enter the body through skin contact, feeding, and inhalation [21]. The 

signs and symptoms of toxicity by DZN are similar to other toxins inhibiting AChE. Depending on the 

exposure period, different symptoms emerge, including colic, diarrhea or vomiting, vertigo, 

headaches, miosis, bradycardia, sudden drop in blood pressure, convulsion, and apnea after several 

minutes to hours of exposure [22,23]. Since DZN is lipid-soluble, it has the potential to be stored in 

fat tissues so that it can heighten delayed toxicity. It is important to detect and control 

organophosphorus chemicals regarding their toxicity and adverse effects on human life.  

So far, various in vitro methods have been proposed to detect those compounds, such as high-

performance liquid chromatography (HPLC)  [24,25], liquid chromatography coupled with mass 

spectroscopy (LC-MS) [26], gas chromatography-mass spectrometry (GC-MS) [27], capillary gas 
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chromatography [28], electrochemical analysis [29-32], and colorimetric method [33]. However, the 

above methods suffer from several inherent flaws. For example, despite their high precision, 

instrumental analysis methods are usually time-consuming and expensive. Some methods require 

complicated isolation processes, careful washing steps, and reagent addition. The colorimetric 

assays are not sensitive enough to detect pesticide traces [34].  

However, electrochemical analysis has many advantages, including simplicity, repeatability, good 

stability, high sensitivity, and no need to sample preparation steps compared to other detection 

techniques mentioned above [35-49]. A drawback of this method is that it suffers from weak 

selectivity, which is resolved by modifying the electrode surface to improve the sensitivity and 

selectivity of electrochemical sensors and avoid surface fouling [50-63]. Chemical modification of 

electrodes is a quite useful technique for detecting organophosphorus toxins [64]. Such 

technologies are appropriate alternatives to increase the electron transfer rate in electrochemical 

sensors [65-70].  

Nanotechnology has been considered a technology of general use, being common in almost all 

technological sectors. This is due to the fact that the interactions between different materials when 

they are at the nanoscale (10−9 m), are able to generate new properties where unique phenomena 

may occur, different from those observed at the macroscopic scale, thus giving rise to the possibility 

of new applications for these materials [71-90]. Various materials such as carbon-based 

nanomaterials, metal oxides, metals complex, polymers, and biological compounds can be used to 

modify electrode surfaces [91-107].  

This work aims to explain the current developments in electrochemical sensors and biosensors 

for monitoring DZN. 

Development of electrochemical DZN sensors 

Electrochemical sensors are the most rapidly growing group of chemical sensors among presently 

available systems for practical applications. The most common electrochemical system used for 

laboratory study is made up of a reference electrode, counter electrode, and a working electrode 

(sensing electrode) immersed in an electrolyte which measures the potential and current generated 

from oxidative or reductive reactions. The working principle behind electrochemical sensors 

involves the generation of electrical signals from the analyte of interest, which is affected by the 

concentration of the analyte [108-112].  

DZN is an electrochemically-active molecule, but its direct determination is difficult because of 

the weak response of DZN in conventional electrochemical sensors. Different types of electrode 
modifications for electrochemical methods have been developed for the determination of DZN 

because they possess high sensitivity, short analysis time, good handling convenience and low cost.  

This section introduced examples of developed electrochemical DZN sensors. Then, Table 1 

tabulates information about the electrochemical sensor, electrochemical method, limit of detection 

(LOD), and linear range, which have been reported by various works. 

In 2003, a simple and easy electrochemical method was used by Erdogdu for the determination 

of DZN. In this method, the surface of the glassy carbon electrode was coated with Nafion-

perfluorinated ion-exchange powder (NCGCE), and square-wave voltammetry (SWV) was used for 

the quantitative estimation. The author demonstrated that the peak current slightly changed in the 

potential range from 0 to 0.35 V because DZN could not be reduced in this potential range. However, 

a sudden increase was observed in the peak current at 0.40 V. The effect of SW response was studied 

in the mentioned conditions because the peak current for DZN obtained in SWV depended on 
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different parameters such as SW amplitude, SW frequency, and step height. Hence, modulation 

amplitude, 25 mV; modulation frequency, 14 Hz; modulation step, 4 mV s-1 were considered optimal 

conditions for DZN detection. The results of the Erdogdu study showed that combining the SWV and 

electrode surface modification with Nafion film worked excellently for DZN detection. Thus, the 

proposed voltammetric procedure for DZN detection could be useful in many different applications. 

In this method, the minimum LOD for diazinon was reported to be 75 nM. The results of 20 

successive measurements showed a coefficient of variation of 1.9 % for NCGC electrodes. Therefore, 

the modified electrode possessed a good reproducibility surface [113]. 

Arvand et al. [114].used the differential pulse voltammetric (DPV) methods to investigate the 

electrochemical behavior of DZN at carbon paste electrode modified with tris(ethylenediamine) 

cobalt(II) iodide (Co-CPME). Cobalt complex showed an anodic peak at 620 mV (vs. Ag/AgCl, in KNO3 

0.1 M as supporting electrolyte) at Co-CPME. In the presence of DZN, anodic peak intensity 

increased with increasing concentration of DZN that confirming the electrocatalytic activity of cobalt 

complex for oxidation of DZN (EC’ mechanism). Under optimized conditions, a linear calibration 

curve for diazinon was obtained in the range from 0.05 to 27.0 µg/L with a detection limit 0.015 nM 

(3Sb/m). Applications of the modified electrode to the determination of DZN in different water 

samples were also tested. The results showed a very good precision (RSD < 0.04 %) and a very stable 

voltammetric response towards DZN [114]. 

In a study by Motaharian et al. an electrochemical sensor based on molecularly imprinted poly-

mer (MIP) nanoparticles for selective and sensitive determination of DZN pesticides was developed. 

The nanoparticles of DZN imprinted polymer were synthesized by suspension polymerization and 

then used to modify carbon paste electrode composition to prepare the sensor. Cyclic voltammetry 

(CV) and SWV methods were applied for electrochemical measurements. The obtained results 

showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CPE) has a much 

higher adsorption ability for DZN than the CPE-based non-imprinted polymer nanoparticles (nano-

NIP-CPE). Under optimized extraction and analysis conditions, the proposed sensor exhibited 

excellent sensitivity (95.08 μA L μmol-1) for DZN with two linear ranges of 2.5 to 100 nmol L-1 (R2 = 

0.9971) and 0.1 to 2.0 mol L-1 (R2 = 0.9832) and also a detection limit of 0.79 nmol L-1. The sensor 

was successfully applied for the determination of DZN in well water and apple fruit samples with 

recovery values in the range of 92.53–100.86 % [115]. 

Ghodsi and  Rafati described a voltammetric sensor for DZN pesticide determination based on 

DZN reduction on glassy carbon electrode surface modified with multi-walled carbon nanotubes 

covered by TiO2 nanoparticles (MWCNTs/TiO2NPs/GCE). Voltammetric investigations were carried 

out by CV, linear sweep voltammetry (LSV), DPV and SWV. MWCNTs/TiO2NPs nanocomposite was 

characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy 

dispersive X-ray analysis (EDX) techniques. The MWCNTs/TiO2NPs nanocomposite showed suitable 

synergic electrocatalytic properties in DZN reduction, which resulted in the completely sensitive 

determination of DZN in the laboratory and real samples, including city piped water and agricultural 

well water. Linear range, LOD and LOQ obtained by MWCNTs/TiO2NPs/GCE sensor were 11.0 to 

8360.0 nM, 3.0 nM and 10.0 nM successively. Also, the sensor was successfully examined for DZN 

determination in real water samples, including agricultural well water and city piped water and 

obtained results showed acceptable recovery amounts [116]. 

Khadem et al. introduced the composition of carbon paste electrodes modified with MIP and 

MWCNTs as the easy-to-use electrochemical sensor (MWCNTs-MIP/CPE) for selective and sensitive 

determination of DZN pesticide in environmental and biological samples. The MWCNTs enhance the 
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sensor responses due to increasing of the electrode surface area, as well as improving the electron 

transfer between the electrode and the supporting electrolyte. The presence of MIPs can greatly 

increase the selectivity of the electrode. Instrumental parameters affecting the square wave 

voltammetric response were adjusted to obtain the highest current intensity. The obtained linear 

range was 0.5 nM to 1.0 M. The detection limit of the sensor was 0.13 nM and the relative standard 

deviation for analysis of the target molecule by the proposed sensor was 2.87 % [117]. 

Akyuz and Koca constructed a mimic enzymeless electrochemical sensor (M-Eless-ES) based on 

the terminal alkynyl substituted manganese phthalocyanine (MnPc-TA) and 4-azido polyaniline (N3-

PANI) hybrid and tested as a sensitive and selective pesticide sensor. During the construction of 

ITO/MnPc-TA/N3-PANI electrode, MnPc-TA was firstly deposited on indium tin oxide coated glass 

substrate (ITO) with Langmuir Blodgett (LB) technique. Then 4-azidoaniline (N3-ANI) was bonded to 

the terminal alkynyl substituents of MnPc-TA (ITO/MnPc-TA/N3-ANI) with click chemistry (CC), and 

finally, ANI groups of the solid MnPcTA/N3-ANI hybrid film was electropolymerized on ITO surface 

to form ITO/MnPc-TA/N3-PANI electrode. The structure of the modified electrode was characterized 

by SWV, XRD, FT-IR and SEM analyses. The result of the analyses indicated successful construction 

of ITO/MnPc-TA/N3-PANI electrode. ITO/MnPcTA/N3-PANI electrode was tested as a potential 

sensor for various pesticides and the results showed that it was used as a sensitive sensor for the 

DZN with LOD of 0.062 µmol dm-3 and a wide linear range [118]. 

Accordingly, Zahirifar et al. employed a carbon paste electrode modified with multi-walled 

carbon nanotubes (MWCNT/CPE) to detect DZN in solutions and real samples (fruit juices). The 

obtained results showed that CNTs increased the sensor response due to their large surface area, 

improved electrocatalytic activity, and enhanced electron-transfer rate between electrode and 

electrolyte. The MWCNT/CPE electrode could recognize DZN in fruit samples with a desirable LOD 

with little interference of other compounds. Because the thickness of CNT can affect the electrode 

response, Zahirifar et al. recorded the amount of CNT used to make an optimized CNT/CPE electrode 

and its effect on the peak current of DZN. The results showed that the peak current rose as the 

quantity of CNT increased. The maximum peak current level was observed when the amount of CNT 

increased up to 10 %. However, any amount higher than 10 % negatively affected the sensor 

response in DZN detection. The researchers introduced the sensor as a proper candidate for the 

recognition of DZN in foodstuffs regarding its ability to detect DZN in the concentration range of 0.1 

to 10 nM by the designed electrode. The limit of detection for DZN in this sensor was determined 

by the DPV technique, and it was found to be 0.45 nM [119]. 

Tadayon and Jahromi constructed a sensitive and selective electrochemical sensor based on 

bimetallic gold and palladium nanoparticles coated on a mixture of reduced graphene oxide and 

multiwall carbon nanotube nanocomposite modified glassy carbon electrode (Au–Pd/rGO– 

–MWCNTs/GCE)for determination of an organophosphorus insecticide, DZN. The effect of various 

parameters includes pH of the solution, scan rate, accumulation time and potential, and 

instrumental parameter was optimized. Under optimized conditions, the proposed sensor showed 

that the stripping oxidation peak current of DZN was linearly proportional to its concentrations in 

an appropriate range of 0.009 to 11.3 µM with a LOD and LOQ of 0.002 and 0.009 µM, respectively. 

Finally, the Au–Pd/rGO–MWCNTs/GCE was successfully used for measurement of DZN in water, 

apple and cucumber samples recoveries ranging from 96 to 105 % [120]. 

Ghiasi et al. employed the composition of graphene quantum dots (GQDs), chitosan (CS), and 

nickel molybdate nanocomposites (NiMoO4, NMO) for the modification of activated glassy carbon 

electrode (NMO/GQDs/CS/GCEox) as an electrochemical sensor for DZN determination (Figure 1). 
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The NMO/GQDs/CS/GCEox for precise and swift analysis of DZN in cucumber and tomato as real 

samples has been effectively used as a sensitive voltammetric sensor. Under optimized conditions, 

the constructed sensor illustrated a linear range between 0.1 to 330.0 μM and a LOD of 30.0 nM 

using differential pulse voltammetry methods [121]. 
 

 
Figure 1. Electrochemical sensor based on modified glassy carbon electrode with graphene quantum dots, 

chitosan and nickel molybdate nanocomposites for the determination of diazinon [121] 

Topsoy et al. described a new simple, sensitive, and easy method to manufacture voltammetric 

sensor based on MWCNT-screen-printed electrode modification with poly(ε-caprolactone)/chitosan 

(PCL/CHS) electrospun nanofibers (PCL/CHS nanofiber/MWCNT-SPE). The images of unmodified and 

modified electrodes in DZN detection are shown in Figure 2.  

 
Figure 2. The schematic diagram of bare MWCNT-SPE and PCL/CHS nanofiber-modified MWCNT-SPE [122] 
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The effects of different parameters such as coating thickness, analyte concentration, pH value of 

the buffer solution, and scan rate on the electrochemical behavior of unmodified and modified screen-

printed carbon electrodes were investigated via CV, DPV, and electrochemical impedance 

spectroscopy (EIS) techniques. The spinning time, pH value and scan rates were optimized at 6 min, 

5.25, and 50 mV s-1, respecttively. The prepared PCL/CHS nanofiber/MWCNT-SPE displayed good 

electrochemical performances with a wide detection range of 3.0–100.0 nM in 0.1 M acetate buffer 

solution (pH 5.25), and a detection limit of 2.888 nM, respectively. Meanwhile, the sensor was 

successfully applied for the determination of DZN in the tomato juice sample with recovery values in 

the range of 93.27–108.30 % [122]. 

Porto et al. presented, for the first time, a fast and highly sensitive electrochemical method for 

the determination of three organophosphorus compounds (OPs), DZN, malathion (MLT), and 

chlorpyrifos (CLPF), using a modified pyrolytic graphite electrode (PGE) coupled to batch injection 

analysis system with multiple pulse amperometric detection (BIA–MPA). The PGE was modified by 

a nanocomposite based on functionalized carbon nanotubes and silver nanoparticles (CNTf-

AgNP/PGE). The OPs samples were directly analyzed on the modified working electrode surface by 

BIA-MPA system in Britton-Robinson (BR) buffer 0.15 mol L− 1 at pH 6.0. The MPA detection of DZN, 

MLT and CLPF was performed using two potential pulses, which were sequentially applied on 

modified PGE at − 1.3 V (100 ms) and +0.8 V (100 ms) for selective determination of these three OPs 

and working electrode cleaning, respectively. Under optimized conditions, the sensor presented a 

linear range of 0.1–20.0 μM for DZN. The LOD and LOQ of 0.35 and 1.18 μM for DZN were obtained. 

Also, CNTf-AgNP/PGE sensor exhibited high sensitivity of 0.068 mA μM for DZN detection. 

Furthermore, the BIA-MPA system provided an analytical frequency of 71 determinations per hour 

for the direct determination of these OPs in water and food samples. The modified PGE coupled to 

BIA-MPA system showed high stability of electrochemical response for OPs detection with a relative 

standard deviation (RSD) of 1.60 % (n = 20). The addition-recovery studies of the proposed method 

were carried out in tap water, orange juice, and apple fruit real samples, which showed suitable 

recovery values between 77 and 124 % [123]. 

Table 1. Features of various electrochemical sensors for the analysis of DZN. 

Electrochemical sensor Electrochemical method LOD, nM Linear range Ref. 

NCGCE SWV 75.0 0-5.0 µM [113] 

Co-CPME DPV 0.015 0.05-27.0 µg / L [114] 

nano-MIP-CPE SWV 0.79 2.5-2000.0 nM [115] 

MWCNTs/TiO2NPs/GCE CV, SWV 3.0 11.0-8360.0 nM [116] 

MWCNTs-MIP/CPE SWV 0.13 0.5-1000.0 nM [117] 

ITO/MnPcTA/N3-PANI electrode SWV 62 - [118] 

MWCNT/CPE DPV 0.45 0.1-10.0 nM [119] 

Au–Pd/rGO–MWCNTs/GCE SWASV 2.0 0.009-11.3 µM [120] 

NMO/GQDs/CS/GCEox DPV 30.0 0.1-330.0 μM [121] 

PCL/CHS nanofiber/MWCNT-SPE DPV 2.888 3.0-100.0 nM [122] 

CNTf-AgNP/PGE BIA-MPA 354.0 0.1-20.0 μM [123] 

Development of electrochemical DZN biosensors 

Biosensor-related research has experienced explosive growth over the last two decades. A 

biosensor is generally defined as an analytical device that converts a biological response into a 

quantifiable and processable signal [124]. In most biosensors developed so far, electrochemical 

detection has been used in one way or another, i.e., amperometric, voltammetric, and impedimetric 
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detection. The basic principle for electrochemical biosensors is that chemical reactions between the 

immobilized biomolecule and target analyte produce or consume electrons which cause some 

change in the measurable electrical properties of the solution, such as electric current, conductance, 

and potential [125-128].  

Electrochemical biosensors, as a subclass of biological sensors, consist of a biological sensing ele-

ment and an electrochemical transducer. The recognition element (enzymes, antibodies, DNA/RNA, 

proteins or other biomolecules) reacts selectively with the target analyte, and as a result, an electrical 

signal is produced and then transmitted via the transducer to the signal processor [129-132]. A 

bioreceptor allows the binding between the specific analyte of interest with the sensing surface for 

measurement with minimum intervention from other components in a complex mixture. So, parallel 

development in the immobilization of bioreceptors through robust attachment methods like electro-

deposition and nanoparticle-bound entities at the working electrode interface is a significant step in 

the improved application of biosensors in various analytes analysis. The selection of robust and sui-

table immobilization methodology and precise selection of the bioreceptor molecule plays a great part 

in the better specificity, selectivity, and affinity for their target analytes in electrochemical biosensing. 

This section introduced examples of developed electrochemical DZN biosensors. Then, Table 2 

tabulates information about electrochemical biosensor, electrochemical methods, limit of detection 

(LOD), and linear range, which have been reported by various works. 

Somerset et al. constructed a biosensor for organophosphate and carbamate detection with a 

gold electrode coated with a mercaptobenzothiazole (MBT) self-assembled monolayer (SAM) and a 

polyaniline derivative poly(o-methoxyaniline, POMA) or poly(2,5-dimethoxyaniline, PDMA) polymer 

film in the presence of polystyrene sulfonic acid (PSSA), on which AchE was immobilized 

(Au/MBT/POMA-PSSA/AChE or Au/MBT/PDMA-PSSA/AChE biosensors). The pesticide biosensors 

were applied in the aqueous phase detection of DZN and carbofuran pesticides using Osteryoung 

SWV and DPV at low frequencies. Between 85 and 94 % inhibition of the Au/MBT/PDMA-PSSA/AChE 

and Au/MBT/POMA-PSSA/AChE biosensors, respectively, by 1.19 ppb of these neurotoxins attests 

to their potency. Both Au/MBT/PDMA-PSSA/AChE and Au/MBT/POMAPSSA/AChE biosensors 

exhibited low detection limits, which were calculated using the inhibition methodology. The 

Au/MBT/POMA-PSSA/AChE biosensor exhibited lower detection limits of 0.07 ppb for DZN and 

0.06 ppb for carbofuran than the Au/MBT/PDMA-PSSA/AChE sensor system that had detection 

limits values of 0.14 ppb for DZN and 0.11 ppb for carbofuran. The average sensitivity of the 

pesticide biosensor systems is 4.2 µA/ppb [133]. 

In 2007, Albuquerque and Ferreira used acetyl cellulose–graphite composite film modified with 

Cobalt phthalocyanine (CoPc) to modify the electrode surface (CoPc-CGCE). First, graphite powder was 

mixed homogeneously with CoPc. Then, acetyl cellulose was applied to the mixture. After homo-

genization, the final composite was applied to polycarbonate support. Tyrosinase and bovine serum 

albumin (BSA) were then immobilized on the modified electrode's surface (Tyr-BSA-CoPc-CGCE) by 

adding glutaraldehyde. The authors used the biosensor to measure organophosphorus and 

carbamates concentration. First, the immobilized tyrosinase enzyme activity was evaluated by 

measuring the quantity of catechol consumed or o-quinone formed in the reaction (Figure 3). They 

monitored the increased concentration of o-quinone produced or the reduced concentration of the 

consumed catechol at a potential of -0.20 and +0.60 V, respectively. After stabilizing the background 

current, all amperometric measurements were carried out with the biosensor at a constant potential 

of -0.20 V versus Ag/AgCl as the counter and reference electrode. To detect pesticides using a 

biosensor containing tyrosinase, they measured the enzyme activity in two steps using a solution 
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containing catechol. In the first step, the biosensor was submerged in a solution containing catechol. 

The enzyme on the surface of the electrode converted the catechol to o-quinone, and then o-qui-

none produced was measured at −0.20 V after 2 minutes. In the second step, the biosensor was 

submerged in the catechol solution after adding a given amount of pesticide, and the biosensor 

activity was evaluated after 2 minutes. The results show that methyl parathion and carbofuran can 

lead to a competitive inhibition process of the enzyme, while diazinon and carbaryl act as mixed 

inhibitors. Linear relationships were found for methyl parathion (6.0–100.0 ppb), DZN (19.0 to 

50.0 ppb), carbofuran (5.0–90.0 ppb) and carbaryl (10.0–50.0 ppb). Analysis of natural river water 

samples spiked with 30 ppb of each pesticide showed recoveries between 92.50 and 98.50 % and 

relative standard deviations of 2 % [134]. 

 
Figure 3. Principle of the enzymatic and electrochemical coupled reactions for the detection of catechol as 

substrate [134] 

Somerset et al. modified a gold disc electrode with a mercaptobenzothiazole selfassembled 

monolayer prior to polyaniline electropolymerization, followed by AChE immobilization and polyvinyl 

acetate coating in creating a thick film electrode (Au/MBT/PANI/AChE/PVAc) for sensitive organo-

phosphorous pesticide detection. The dual role of polyaniline shows electrocatalytic activity towards 

thiocholine and serves as an immobilization matrix for the AChE as an enzyme, and that of polyvinyl 

acetate as a binder in this thick film electrode is demonstrated. Relatively low detection limits were 

obtained for the Au/MBT/PANI/AChE/PVAc pesticide bioelectrodes using the inhibition methodology 

and an incubation time of 20 min. The values for the detection limits were 0.147 ppb for DZN and 

0.172 ppb for fenthion in acetone-saline phosphate buffer solution [135]. 

Zehani et al. developed two novel impedimetric biosensors for highly sensitive and rapid 

quantitative detection of DZN in an aqueous medium using two types of lipase, from Candida Rugosa 

(microbial source) (CRL) and porcine pancreas (animal source) (PPL) immobilized on the function-

nalized gold electrode (CRL immobilized gold electrode, PPL immobilized gold electrode). Lipase is 

characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation 

of DZN into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine 

(IMHP). The developed biosensors both presented a wide range of linearity up to 50 μM with a 

detection limit of 10 nM for CRL immobilized gold electrode biosensors and 0.1 μM for PPL 

immobilized gold electrode biosensor. A comparative study was carried out between the two 

biosensors and the results showed higher efficiency of CRL immobilized gold electrode biosensor. 
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Moreover, it presented good accuracy and reproducibility and had very good storage and multiple-

use stability for 25 days when stored at 4 °C [136].  

Arvand and Dehsaraei constructed a chemically modified glassy carbon electrode by graphene 

oxide (GO), functionalized double-strand DNA (ds-DNA) and gold nanorods (GNRs). Interaction 

between oxygenated groups of GO and GNRs with amine-thiol groups of ds-DNA was used to 

construct a sandwich-modified electrode named GNRs/ds-DNA/GO/GCE. Then, they examined the 

response of the GNRs/ds-DNA/GO/GCE to the sensing of DZN. To find the effects of modifiers on 

DZN detection, CV and electrochemical impedance spectroscopy were used in each modification 

step. The pH and scan rate were optimized at 6.0 and 0.1 V s−1, respectively. The dynamic range of 

GNRs/ds-DNA/GO/GCE in DZN determination was studied by amperometry with the linear con-

centration range of 1.9 to 56 M and a detection limit of 0.19 M. Finally, the application of modi-

fied electrode was evaluated on two polluted river water samples with 98.5 to 101 % recovery [137]. 

Pajooheshpour et al. employed an enzyme-less electrochemical biosensor based on a glassy carbon 

electrode modified with bovine serum albumin (BSA) templated Au-Pt bimetallic nanoclusters and 

graphene nanoribbons (GNRs) (Au-Pt@BSAGNRs/GCE) for the determination of DZN. The synthesized 

novel sensing layer not only demonstrated attractive structural features but was known to possess 

excellent electrochemical characteristics, which enabled the development of a reliable, sensitive, 

robust and selective electrochemical sensor for DZN. The electrochemical properties of the biosensor 

were investigated by CV, square wave anodic stripping voltammetry (SWASV) and electrochemical 

impedance spectroscopy. The results showed that Au-Pt@BSAGNRs/GCE significantly catalyzes the 

oxidation and reduction of DZN during electrochemical detection. The linear ranges of DZN were 

between 0.01 to 10.0 and 10.0 to 170.0 µM, with a detection limit of 0.002 µM. The results indicate 

the excellent capability of the method for the detection of DZN in real samples in comparison with the 

standard method [138]. 

Hassani et al. developed a novel label-free electrochemical thiolated aptasensor immobilized on 

gold nanoparticle-modified screen-printed gold electrodes (aptamer/ Au NP/ SPGEs) in order to 

detect minimum levels of DZN in biological samples with high sensitivity and fast performance, as 

illustrated in Figure 4.  

 
Figure 4. Schematic construction of the designed aptasensor for detection of diazinon [139] 

Electrochemical impedance spectroscopy and CV were used to characterize the electrochemical 

properties of the novel aptasensor. Electrochemical detection was carried out through DPV in 
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[Fe(CN)6]3-/4- solution. Fluctuation of the current was examined in the DZN concentration range of 

0.1 to 1000.0 nM. According to the results, the designed aptasensor has exhibited the minimum 

limit of detection for DZN (0.0169 nM) [139]. 

Zare et al. developed an electrochemical biosensor for the detection of DZN. For this purpose, 

they modified the surface of a glassy carbon electrode with MWCNTs and poly-l-lysine to immobilize 

a double-strain DNA (ds-DNA) on the surface of the electrode (DNA/PLL/MWCNTs/GCE). The 

interaction of DZN with ds-DNA was transduced via electrochemical impedance and UV–Vis 

spectroscopy in the first step. The results revealed an interaction between DZN and ds-DNA. L-lysine 

as a polycation and small-sized MWCNTs provides a surface with positive charges and a high surface 

area for the immobilization of ds-DNA. This interaction leads to reduced interfacial charge-transfer 

resistance (Rct). The difference in the Rct before and after the interaction is considered a suitable 

signal for DZN detection. The proposed biosensor has a low detection limit (0.3 nM), a wide linear 

dynamic range (0.001‒100.0 µM), and high selectivity for the determination of DZN. Finally, the 

performance of the biosensor for detecting DZN is verified in real samples such as river water, 

agricultural wastewater, lettuce juice, and tomato juice [140]. 

Khosropour et al. [141] synthesized the vanadium disulfide quantum dots (VS2QDs) by a facile 

hydrothermal method and doped them on the graphene nanoplatelets/carboxylated multiwalled 

carbon nanotubes (GNP/CMWCNTs) as a new group of the nanocomposite. They incubated the 

VS2QDs-GNP/CMWCNTs nanocomposite on a glassy carbon electrode with the DZN binding aptamer 

(DZBA) through electrostatic interaction (GCE/VS2QDsGNP/CMWCNTs/DZBA). The GCE/VS2QDs-

GNP/CMWCNTs/DZBA was used for the low detection of DZN by monitoring the oxidation of 

[Fe(CN)6]3-/4- as the redox probe. The characterizations of the modified electrode were performed by 

several electrochemical methods, including CV, DPV, and EIS. The DZBA selectively adsorbs DZN on 

the modified electrode, leading to a decrease and increase in the current of DPV and charge transfer 

resistance (Rct), respectively, as analytical signals. The developed electrochemical aptasensor at the 

optimal conditions has a low LOD equal to 1.1×10-5 and 2.0×10-6 nM with wide dynamic ranges of 

5.0×10-5-10 nM and 10-5-10 nM for DPV and EIS calibration curves, respectively. Moreover, the 

analytical approach was further utilized for DZN determination in human serum, Zayandehrood river 

water, soil, apple, and lettuce samples and the GCE/VS2QDs-GNP/CMWCNTs/DZBA/BSA aptasensing 

strategy exhibited a recovery rate from 97.0 to 107.0 % [141]. 

Table 2. Features of various electrochemical biosensors for the analysis of DZN 

Electrochemical sensor Electrochemical method LOD Linear range Ref. 

Au/MBT/PDMA-PSSA/AChE SWV 0.14 ppb 
- [133] 

Au/MBT/POMAPSSA/AChE DPV 0.07 ppb 

Tyr-BSA-CoPc-CGCE Amperometric - 19.0–50.0 ppb [134] 

Au/MBT/PANI/AChE/PVAc Amperometric 0.147 ppb - [135] 

CRL immobilized gold electrode 
Impedimetric 

10.0 nM 0.01-50.0 µM 
[136] 

PPL immobilized gold electrode 0.1 µM 0.1-50.0 µM 

GNRs/ds-DNA/GO/GCE Amperometric 190.0 nM 1.9 - 56.0 M [137] 

Au-Pt@BSAGNRs/GCE SWASV 0.002 µM 0.01-170.0 µM [138] 

aptamer/ Au NP/ SPGEs DPV 0.0169 nM 0.1-1000.0 nM [139] 

DNA/PLL/MWCNTs/GCE Impedimetric 0.3 nM 0.001-100.0 µM [140] 

GCE/VS2QDs-
GNP/CMWCNTs/DZBA/BSA 

Impedimetric 2.0×10-1 nM 10-5-10.0 nM 
[141] 

DPV 1.1 ×10-14 M 5.0×10-5-10.0 nM 
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Conclusion 

Diazinon is a pesticide belonging to the organophosphorus pesticides class, which is widely used in 

agriculture to control pests in soil, vegetables, and fruits. Residues of pesticides can enter the food 

chain and cause many problems. DZN is considered one of the most important contaminants, and its 

amount in the environment, waters, and crops should be managed due to its toxicity and long half-

life. Thus, we need analytical methods to be able to detect the amount of that compound quickly. The 

electrochemical technique has many advantages for environmental research compared to other 

analytical techniques; for example, it does not require sample preparation steps and is fast, simple, 

cost-effective, and non-destructive. The limit of detection obtained by this technique possesses good 

sensitivity to the target molecules and environmental applications. In addition to sensitivity, the 

technique's specificity in recognizing the target molecule is critical. The challenging problems 

associated with promoting specificity and selectivity make the researchers seek new substances to 

modify electrodes and develop new electrochemical sensors. Thus, different modifying methods have 

been used to recognize DZN, which are different in terms of the type of the working electrode, the 

applied technique, and the method of modifying the surface. From the above discussion, it is evident 

that nanomaterials, such as CNTs, graphene, metal nanoparticles,etc., are promising materials for 

fabricating electrochemical sensors by signal amplification, thereby improving the sensitivity of the 

assay. Nanotechnology is one of the likely areas to show encouraging prospects for developing sensors 

for the detection of DZN by overcoming the shortcomings of currently-available analytical procedures. 

Although each method can detect DZN, it seems that the techniques based on biological components 

such as DNA and enzymes have the lowest LOD for recognition of DZN compared to other techniques. 

However, biological receptors allow for specific recognition of the target molecules and are widely 

used in the detection, bioassays, and chemical sensors.  

Apart from these advantages, the real challenges for the future are those of good electrode 

materials, miniaturization and of measurements in as close to real-time as possible. 

Another trend for future research on electrochemical sensors is to develop them for in vivo 

analysis and continuous testing as well as for in vitro testing. Sensor arrays for detecting multi-

analyte will be required and the densities of arrays for more complete and rapid information need 

to increase. Microfluidic sensor systems, capable of expanding sizes of arrays while reducing sample 

volume, as well as non-invasive biosensors, will revolutionize sensor techniques and technology. 
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