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Abstract 
The sluggish kinetics of the ethanol oxidation reaction (EOR) and the related development of 
low-cost, highly active and stable anode catalysts still remains the major challenge in alkaline 
direct ethanol fuel cells (ADEFCs). In this respect, we synthesized a PdNiBi nanocatalyst on 
reduced graphene oxide (rGO) via a facile synthesis method. The prepared composite catalyst 
was physicochemically characterized by SEM, STEM, EDX, ICP-OES and XRD to analyze the 
morphology, particle distribution and size, elemental composition and structure. The 
electrochemical activity and stability towards EOR in alkaline media were examined using the 
thin-film rotating disk electrode technique. The results reveal well-dispersed and strongly 
anchored nanoparticles on the rGO support, providing abundant active sites. The PdNiBi/rGO 
presents a higher EOR activity and stability compared to a commercial Pd/C ascribed to a high 
ECSA and synergistic effects between Pd, Ni and Bi and the rGO material. These findings 
suggest PdNiBi/rGO as a promising anode catalyst in ADEFC applications. 
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Introduction 

Fuel cells have emerged as one of the most promising renewable energy technologies of the 

future, as they convert chemical energy directly into electrical energy [1,2]. Alkaline direct ethanol 

fuel cells (ADEFCs) have gained significance among the various fuel cell types, especially for portable 

and transportation applications, as they have a high theoretical energy density (8 kWh kg-1), they 
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are environmentally friendly, and ethanol can be easily handled compared to other fuels such as 

hydrogen [3,4]. Ethanol has proven significant advantages over methanol as it can be produced from 

agricultural products, is non-toxic and features a lower crossover from the anode to the catho-

de [4,5]. However, one of the major problems of ADEFCs remains the development of cost-efficient, 

highly active and stable electrocatalysts for the ethanol oxidation reaction (EOR) at the anode. Pd-

based catalysts are currently reported to be most suitable and show better EOR performance in 

alkaline media than their Pt counterparts [2,6]. The C-C bond of ethanol is difficult to break and the 

EOR does not proceed via a complete oxidation (equation (1)) with the formation of CO2 and 12 e-, 

but via incomplete oxidation to acetate and 4 e- (equation (2)) [1,4]. 

Complete oxidation:  CH3CH2OH + 12 OH- → 2 CO2 + 9 H2O + 12 e- (1) 

Incomplete oxidation: CH3CH2OH + 5 OH- → CH3COO- + 4 H2O + 4 e- (2) 

To overcome this problem, alloying Pd with oxophilic co-catalyst elements such as Ni, Bi, Cd or Co 

is very effective for increasing the EOR activity and stability due to enhanced -OH- adsorption while 

reducing costs [7-11]. Deposition of the metal nanoparticles on a suitable support material offers 

another possibility to increase the efficiency of such catalysts, as it features the capability to control 

the size, distribution, morphology and stability of the immobilized particles. Carbon powders such as 

carbon black, carbon nanotubes or graphene are commonly used as support [4,8,11]. Among these 

carbon materials, reduced graphene oxide (rGO) has proven to be particularly suitable for this 

purpose, as its unique sp2-hybridized carbon structure provides properties such as a large specific 

surface area (SSA), high thermal and chemical stability, and excellent electronic conductivity. Usually 

rGO still retains important oxygen-containing functionalities (e.g. epoxy, hydroxyl, and carboxyl 

groups), causing strong C-O-metal bridges that enhance the stability and prevent agglomeration of 

the nanoparticles [4,6,8,12]. Krishna et al. [13] have described, for example, that a Pd@NixB/RGO 

nanocomposite exhibited improved catalytic activity and stability compared with the unsupported 

nanoparticles. Another study by Alfi et al. [9] also showed that a Pd-Cd/rGO catalyst outperforms the 

commercial Pd/C in terms of EOR performance. A combination of adding oxophilic co-catalysts to the 

Pd active material and the deposition on a suitable support material such as rGO therefore appears to 

be a promising approach for the development of highly active and stable EOR catalysts. 

Based on the above findings, in this work we synthesized a composite catalyst of PdNiBi nano-

particles on rGO for the first time and investigated the electrochemical activity and stability towards 

EOR in alkaline media. The PdNiBi/rGO catalyst was comprehensively characterized by various 

physicochemical techniques, which confirmed the successful deposition of the metal particles on 

the rGO support. Finally, the electrochemical rotating disk electrode (RDE) experiments revealed a 

promising catalytic EOR performance of the prepared nanocomposite attributed to synergistic 

effects between Pd, Ni and Bi and the rGO support material. 

Experimental  

Materials 

The following chemicals were used for material preparation and electrochemical tests without 

further purification: graphene oxide (GO) precursor (Timrex KS44) was acquired from Imerys (Bodio, 

Switzerland), sodium borohydride (NaBH4, 97 %) was delivered by Alfa Aesar (Haverhill, MA, USA) and 

sodium hydroxide (NaOH, ≥98 %, ACS, pellets) was purchased from Honeywell Fluka (Charlotte, NC, 

USA). Hydrazine hydrate (N2H4H2O, reagent grade), palladium chloride (PdCl2, anhydrous, 59-60 % Pd 

basis), nickel(II) nitrate hexahydrate (Ni(NO3)26H2O, 99 % trace metal basis), bismuth(III) chloride 
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(BiCl3, reagent grade, ≥98 %) and potassium hydroxide (KOH, 1.0 M Fixanal 1 L Ampoule) were 

purchased from Sigma-Aldrich (Darmstadt, Germany). Hydrochloric acid (HCl, ROTIPURAN®37 % 

fuming, p.a., ACS, ISO), ethanol (EtOH, 99.9 % p.a.) and isopropyl alcohol (2-propanol, ≥99.9 %, 

UV/IR-grade) were supplied by Carl Roth (Karlsruhe, Germany). NafionTM Solution (5 wt.% in H2O) from 

Quintech (Göppingen, Germany) and an alumina suspension (Al2O3, 0.05 µm particle size) from 

MasterPrep® Bühler (Lake Bluff, IL, USA) were used. All solutions were prepared with ultrapure water 

(Barnstead NANOpureWater Purification System, 18 MΩ cm). A commercial Pd/C (40 wt.%) from 

Fuel Cell Store (College Station, TX, USA) was used as a benchmark for the electrochemical results. 

Catalyst preparation 

The preparation of rGO was carried out using a previously published chemical reduction 

method [5,14]. First, the GO precursor and ultrapure water were mixed in a 2 L-round bottom flask. 

The dispersion was slowly heated to 100 °C under reflux and stirred at 550 rpm using an oil bath and 

a PTFE magnetic stir bar. Hydrazine hydrate was then slowly added to perform the reduction process 

at 105 °C for 24 h. After successful reduction, indicated by a color change from brown to black, 

filtration of the hot reaction mixture and intensive washing with hot ultrapure water and ethanol 

was performed. The rGO was obtained by drying at air (24 h) and subsequently under vacuum at 

80 °C (overnight) and was used as catalyst support material without further purification. 

The PdNiBi/rGO (40 wt.% of metal and 60 wt.% of carbon support) composite catalyst was 

synthesized according to the modified instant reduction method [7,15]. The as-prepared rGO was 

dispersed in ultrapure water under a nitrogen atmosphere and ice cooling using an ultrasonic probe 

(Hilscher, UP440s). Afterwards, the following three metal precursor salt solutions were added to the 

rGO dispersion: PdCl2 and Ni(NO3)26H2O were both mixed with ultrapure water and 1 M HCl and 

BiCl3 was dissolved in ultrapure water and a few drops of HCl (concentrated). The pH was then 

adjusted to 10, an aqueous solution of NaBH4 (in ultrapure water and 1 M NaOH) was slowly added 

and the reduction was carried out at 60 °C for 4 h. Finally, the precipitate was filtered, washed with 

ultrapure water and dried at 40 °C for 24 h. 

Characterization 

The morphology and particle size of the metal nanoparticles were studied in a probe Cs-corrected 

Jeol ARM 200 CF scanning transmission electron microscope (STEM) system equipped with an SDD 

Jeol Centuria Energy-dispersive X-ray (EDX) spectrometer at 80 kV. For the sample preparation, the 

catalyst was dispersed in ethanol, dropped on a Cu-grid and dried. Scanning electron microscopy 

(SEM) was carried out on a Zeiss Ultra+ field emission scanning electron microscope at 1 kV with a 

secondary electron detector to further analyze the catalyst morphology. A conductive carbon tape 

on an Al stub served as a sample holder. EDX spectroscopy was performed at 7 kV within the SEM 

using an SDD X-MAX 50 EDX spectrometer to determine the elemental composition. Metal concen-

tration was additionally examined by inductively coupled plasma optical emission spectrometry 

(ICP-OES) on an Acros SOP system by Spectro using detection wavelengths of 223.061 (Bi), 231.604 

(Ni) and 340.458 (Pd). The sample preparation was as follows: microwave-assisted pressurized acid 

digestion on a Multiwave 3000 of the sample (10 mg) in 7 mL of concentrated HNO3, 0.2 mL HClO4 

and 0.2 mL HF (40 %) was done at 195 °C and 1500 W for 25 min. The crystal structure of the com-

posite catalyst was characterized by X-ray diffractometry (XRD). The measurement was conducted 

on a PANalytical X’Pert PRO MPD diffractometer with a fully opened X’Celerator detector using a Cu 

Kα1 radiation (λ = 0.15406 nm) within a 2 range from 20 to 60° and a step size of 0.034° step per 

100 s. The sample was placed on a zero-background Si holder. 
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Electrochemical measurements 

Electrochemical characterization of the Pd-based composite catalysts was performed in a three-

electrode cell by using a rotating disk electrode (RDE) and a workstation from Pine Research Instru-

mentation. A glassy carbon (GC) disk electrode (AFE5T0GC) coated with a thin film of the catalyst 

material, a platinized titanium rod (Bank Elektronik - Intelligent Controls GmbH) and a reversible 

hydrogen electrode (RHE, HydroFlex®, gaskatel) were used as working, counter and reference 

electrode, respectively. 

The GC disk was polished with an Al2O3 suspension (0.5 µm) and rinsed with ultrapure water 

before the catalyst layer was applied. 10 µL of an ultrasonically dispersed (30 min) ink containing 

8.1 mg catalyst powder, 1.75 mL 2-propanol, 0.737 mL ultrapure water and 13 µL of a Nafion solu-

tion (5 wt.%) were pipetted onto the GC disk (0.196 cm-2) and dried at 700 rpm for 1 h to form a 

thin-film with a final Pd loading of 56 µg cm-2. 

Measurements were carried out using a Reference 600TM potentiostat/galvanostat/ZRA and 

software from GAMRY Instruments was utilized for data analysis. A constant temperature of 30 °C 

and de-aerated (N2-purging for 30 min) electrolyte solution was used for all experiments. First, cyclic 

voltammograms (CVs) in 1 M KOH at 50 mV s-1 (until a reproducible CV curve was obtained) for 

cleaning purpose and at 10 mV s-1 for the analysis of the redox processes were recorded in a 

potential range from 0.05 to 1.50 V vs. RHE. Then, CVs at a scan rate of 10 mV s-1 were conducted 

from 0.05 to 1.20 V vs. RHE in 1 M KOH (base CVs) and a mixture of 1 M KOH / 1 M EtOH to evaluate 

the electrochemical active surface area (ECSA) and the EOR activity of the Pd-based nanocatalysts, 

respectively. For each measurement (except cleaning CVs) three cycles were performed and the 

third was used for investigation. The CVs for the EOR were corrected with the base CVs to exclude 

the redox processes not linked to EOR. Chronoamperometry (CA) tests were carried out in the 

ethanol-containing electrolyte solution (1 M KOH / 1 M EtOH) at a potential of 0.83 V vs. RHE for 

3600 s to examine the catalytic EOR stability. 

Results and discussion  

Structural, morphological and elemental characteristics of PdNiBi/rGO 

Comprehensive physicochemical characterization of the prepared PdNiBi/rGO composite was 

performed to analyze the morphology, particle size and distribution of the nanoparticles, the ele-

mental composition and the crystal structure.  

Figure 1 shows the STEM, SEM and EDX elemental mapping images of the catalyst. The STEM 

images in Figure 1a-c and 1e-g indicate metal nanoparticles anchored on the rGO sheets and the 

SEM image of PdNiBi/rGO (Figure 1d) evidences the two-dimensional wrinkled sheet morphology of 

the sample [2,6,9]. The particles are uniformly and well dispersed and only a few agglomerates are 

noticed. The remaining oxygen-containing functional groups, such as hydroxyl (-OH) of the rGO 

support, are crucial for holding the metal particles by strong C-O-M bridges and act as a capping 

agent to prevent strong agglomeration and ensure the formation of very small particles [13]. 

Therefore, a large specific surface area and abundant active sites are provided. The particle size 

distribution (PSD) is shown in the inset of Figure 1f. The statistical analysis results in an average 

particle diameter of 2.6 nm. From the EDX elemental mapping (Figure 1h), the presence of Pd, Ni 

and Bi and the homogeneous distribution of the elements can be proved. The elemental 

composition of PdNiBi/rGO determined by EDX and ICP-MS is given in Table 1.  
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Figure 1. (a,b,c,e,f,g) BF and ADF STEM (with PSD inset), (d) SEM and (h) EDX elemental mapping images of 

PdNiBi/rGO 

Table 1. Elemental composition of PdNiBi/rGO derived by EDX or ICP-OES compared with calculated values 

Material 
Content, wt.% 

C O Pd Ni Bi 

Calculated 60.0 - 33.9 2.2 3.9 

EDX 46.3 12.0 34.5 2.5 3.2 

ICP-OES - - 27.7 2.0 3.7 
 

The ratio between support and the active metal material is approx. 60:40. It can also be observed 

that the support material is composed of C (46.3 wt.%) and O (12.0 wt.%), which confirms the 

presence of the oxygen-containing functional groups within the rGO. The active material (40 wt.%) 

is composed of Pd, Ni and Bi and is well comparable with the calculated values. This results in an 

atomic proportion of approx. 85 wt.% Pd, 10 wt.% Ni and 5 wt.% Bi (calculated from the active 

material only). 

The crystal structure of the PdNiBi/rGO composite was analyzed by XRD. The XRD pattern of the 

prepared material and comparison with graphite (ICSD #18838) and Pd (ICSD #64922) standard data 

is shown in Figure 2.  

 
Figure 2. XRD pattern of PdNiBi/rGO with Pd and graphite ICSD standard data 
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The broad peak at a 2 value of 25.5° can be related to the rGO support material and belongs to 

the (002) plane of graphite sp2 carbon structure, signifying the successful synthesis of rGO [8,9,13,16]. 

The peaks at 2 values of 39.7 and 43.9° indexed to the (111) and (200) facets, respectively, can be 

assigned to the face-centered cubic crystalline structure of Pd [8,11]. The shift to lower angles is 

caused by lattice expansion due to nanosized particles and alloying with Ni and Bi [7,13,15]. The 

nanocrystalline nature is further indicated by the broad peak shape. The crystallite size of the 

nanoparticles can be estimated by using the Scherrer equation: 

D = 
kλ

b cos 
 (3) 

where D is the crystallite size (nm), k is the shape factor for spherical particles (0.9), λ refers to the 

X-ray wavelength (0.154 nm), b is the full width at half maximum of the (111) plane and  is the half 

angle [16,17]. The estimated crystallite size was calculated to be approx. 3.8 nm and is in the same 

range as observed from the TEM analysis. 

Electrochemical performance of the EOR catalysts 

The electrochemical properties of the PdNiBi/rGO catalyst were investigated by CV and CA 

measurements and compared with a commercial Pd/C catalyst. The most important results, such as 

the ECSA and the parameters for the EOR activity and stability, are listed in Table 2. 

Table 2. Electrochemical results of PdNiBi/rGO compared with a commercial Pd/C 

Catalyst ECSAa, cm2 mg-1 Eonset
b / V vs. RHE jf

c / mA mg-1 jb
c / mA mg-1 jd

d / % 

PdNiBi/rGO 455.4 0.234 2390 1942 85 
Pd/C 410 0.266 2018 2150 87 

aElectrochemical active surface area; bonset potential of the ethanol oxidation at 0.02 mA; cpeak current density of forward and 
backward scan; dcurrent density decrease after 3600 s. 
 

CVs in de-aerated 1 M KOH electrolyte solution at 10 mV s-1 were recorded in a potential range 

of 0.05 to 1.50 V vs. RHE and 0.05 to 1.20 V vs. RHE to investigate the oxidation and reduction 

processes of the materials and to determine the ECSA. The voltammograms are shown in Figure 3.  

 
Figure 3. CV curves in N2-saturated 1 M KOH electrolyte solution at a scan rate of 10 mV s-1 of  

(a) PdNiBi/rGO in a potential range of 0.05 - 1.50 V vs. RHE and (b) PdNiBi/rGO and a commercial Pd/C in  
a potential range of 0.05 - 1.20 V vs. RHE with ECSA evaluation (horizontal segments indicate region for 

reduction charge determination) 

The CVs of PdNiBi/rGO present that oxidation of Bi to Bi2O3 in alkaline media is observed in the 

anodic scan at approx. 0.9 V vs. RHE [18], whereas the oxidation of Pd to PdO is a broad peak, which 
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is not clearly visible due to overlapping [11]. The peaks between 1.2 to 1.5 V vs. RHE describe the 

oxidation of Ni(OH)2 to NiOOH and the corresponding reduction of NiOOH to Ni(OH)2 (Figure 3a) 

[19]. The peaks in the cathodic scan between 0.9 V and 0.6 V vs. RHE are associated with Bi oxide 

reduction and the reduction of PdO to Pd [7]. A comparison with the CV (Figure 3b) of the 

commercial Pd/C shows that the hydrogen ad/absorption peaks for the PdNiBi/rGO are suppressed, 

which can be attributed to the presence of Bi [18,20,21]. Consequently, the ECSA was estimated 

from the PdO reduction peak by using equation (4): 

ECSA= 
QPd

 QPd
* (

1

cL
) (

1

AGC
) (4) 

where QPd is the determined reduction charge of the PdO to Pd (received using Echem AnalystTM 

Software-Gamry for baseline correction and integration of the region indicated by horizontal 

segments), Q*Pd is the theoretical PdO to Pd reduction charge (405 µC cm-2), cL is the catalyst loading 

(56 µgPd cm-2) and AGC is the GC electrode area (0.196 cm-2) [22-24]. PdNiBi/rGO shows a large ECSA 

of 455 cm2 mg-1 due to good distribution and small particle size (determined by STEM) as well as the 

overall high surface area provided by the rGO support [11]. The commercial Pd/C catalyst exhibits 

an ECSA of 410 cm2 mg-1. A high ECSA is very important for ensuring high catalytic activity, as it 

ensures abundant active sites for the ethanol oxidation reaction [25]. 

The activity of the PdNiBi/rGO catalyst towards EOR was investigated in a mixture of de-aerated 

1 M KOH and 1 M EtOH electrolyte solution at a scan rate of 10 mV s-1 in a potential range of 0.05 to 

1.20 V vs. RHE and was compared with the commercial Pd/C catalyst. The CV curves in Figure 4 show 

two characteristic oxidation peaks, one in the forward and one in the backward scan.  

 
Figure 4. CV curves of PdNiBi/rGO in N2-saturated 1 M KOH electrolyte solution containing 1 M EtOH at a 

scan rate of 10 mV s-1 compared with the commercial Pd/C 

The forward peak is attributed to the primary oxidation of ethanol according to the generally 

accepted EOR reaction mechanism of Pd-based catalysts in alkaline media (equations (5) to (8)) as 

described by Zhang et al. [19] and several other studies [2,26-28]:  

Pd + CH3CH2OH ⇆ Pd – (CH3CH2OH)ads   (5) 

Pd – (CH3CH2OH)ads + 3OH- ⇆ Pd – (CH3CO)ads + 3H2O + 3e-  (6) 

Pd – (CH3CO)ads + Pd – OHads ⇆ Pd – CH3COOH + Pd  (7) 

Pd – CH3COOH + OH- ⇆ Pd + CH3COO- + H2O  (8) 
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In the EOR process, ethanol adsorption and further dissociation (equations (5) and (6)) proceed 

rapidly in the lower potential region of the anodic scan and the carbonaceous intermediates such 

as CH3COads will strongly adsorb on the Pd surface. As Pd begins to adsorb OH- with increased 

potential, the oxidative removal of the adsorbed carbonaceous species (ascribed as the rate-deter-

mining step) happens and the current increases (equations (7) and (8)) [2,19,26,29]. At higher 

potential, the current rapidly drops when inactive PdO is formed. The backward peak results from 

the oxidation of freshly adsorbed ethanol molecules after the reduction of the PdO and, thus, 

recovery of the active sites [8,15,19]. 

The most important parameters for the activity of an EOR catalyst are the onset potential (Eonset), 

and the maximum peak current density in the forward and backward scan (jf and jb). PdNiBi/rGO 

exhibits an Eonset of 0.234 V vs. RHE and a jf and jb of 2390 mA mg-1 and 1942 mA mg-1, respectively. 

These results are compatible with the literature, e.g., Chowdhury et al. [8] described that a jf of 

2223 mA mg-1 was obtained with a PdNiP/N-rGO. The EOR activity of PdNiBi/rGO is higher compared 

to the commercial Pd/C, which is partly caused by the large ECSA generated by the well-distributed, 

nanosized particles on the rGO support providing abundant active sites [25]. To evaluate the specific 

activity of the electrocatalysts, the jf values were normalized by the ECSA. It was found that the 

PdNiBi/rGO (5.25 mA cm-2) still outperforms the commercial Pd/C (4.92 mA cm-2). Therefore, it can 

be concluded that not only the higher ECSA but also the presence of the oxophilic elements Ni and 

Bi additionally ensures the enhancement of the EOR activity, as it has also been shown in other 

studies in the literature [20,22,24,29]. Ni and Bi are not active for the EOR in the applied potential 

range, but they have the capability to generate OHads at the surface at lower potentials due to their 

oxophilic character. The oxidative desorption of the intermediate carbonaceous species (equa-

tion (7)), which is the rate-determining step of the EOR, can thus be facilitated, leading to lower 

onset potentials and higher current densities [8,15,29,30]. 

The catalytic stability of the PdNiBi/rGO and commercial Pd/C catalysts towards EOR is 

determined by performing CA tests in de-aerated 1 M KOH and 1 M EtOH solution for 3600 s. The 

curves are shown in Figure 5. 

 
Figure 5. CA measurement of PdNiBi/rGO and the commercial Pd/C in N2-saturated 1 M KOH electrolyte 

solution containing 1 M EtOH at 0.83 V vs. RHE 

The current density decrease of EOR catalysts with time can generally be attributed to the 

poisoning of the active sites on the catalyst metal surface by the adsorption of carbonaceous 

intermediates (e.g., CH3COads) during ethanol oxidation, as also described in the literature 
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[8,13,16,29,31]. Lović et al. [29] have shown, for example, by recording CVs after the CA, that although 

the activity is initially lower than before the CA, the loss can be recovered with further cycling. This 

indicates the stability of the catalyst surface composition and the regeneration of the active sites by 

the removal of CO-like adsorbates. The results of Figure 5 reveal that PdNiBi/rGO and the 

commercial Pd/C display a different decrease in current density. Both catalysts exhibit a sharp decay 

at the beginning, however, the PdNiBi/rGO can then stabilize at a pseudo-steady state condition due 

to a gradual self-cleaning process [13,29]. The poisonous intermediates can be oxidatively removed 

by the generation of OHads, favored by the presence of oxophilic elements (equation (7)) [8,31]. In 

comparison, the current density of the Pd/C steadily decreases with time as the catalyst is gradually 

poisoned [8,19]. Therefore, the PdNiBi/rGO composite shows a slightly higher remaining current 

density after 3600 s than the commercial Pd/C. In summary, the combination of Pd, Ni and Bi with 

rGO and their synergistic effects proves to be an effective method and highlights the PdNiBi/rGO 

catalyst as a promising catalyst with high activity and stability for EOR. 

Conclusions 

In this study, PdNiBi nanoparticles were successfully anchored on a reduced graphene oxide 

support using the modified instant reduction method. The physicochemical analyses have shown a 

two-dimensional wrinkled sheet morphology characteristic for graphene-based materials and 

uniformly and well-distributed metal particles with an average diameter of 2.6 nm on the carbon 

support caused by strong C-O-M bridges due to the remaining oxygen functionalities of the rGO. 

The electrochemical tests revealed that the PdNiBi/rGO composite outperformed commercial Pd/C 

in terms of EOR activity and stability with an ECSA of 455 cm2 mg-1, an onset potential of 0.234 V vs. 

RHE, a maximum peak current density of 2390 mA mg-1 and a current density decrease of 85 % after 

3600 s. This enhancement of the electrocatalytic activity could be attributed to the generation of 

abundant active sites due to the rGO support and the presence of the oxophilic Ni and Bi elements. 

Based on these physicochemical and electrochemical results, PdNiBi/rGO is highlighted as a 

promising anode catalyst in alkaline direct ethanol fuel cell applications. 
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