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Abstract 
From gravimetric studies, hybrid nano-coatings, based on permanganate/fluoride/gly-
cerol conversion coating solutions formed on aluminum alloy by immersion procedures 
developed rapidly at a rate which decreased with time of treatment and was about 16 mg 
in weight after a period of three minutes. The morphology of the coating during scanning 
electron microscopic (SEM) examinations revealed randomly shaped coating materials 
with mud cracking patterns, characteristics of dried out coatings derived from gel-like 
materials. Analyses of the coating using EDX attachment in the SEM showed that it was 
composed essentially of aluminum, oxygen and manganese compounds, probably 
hydrated. The corrosion resistance of the coating out-performed ‘bare’ aluminum alloy 
specimens exposed to natural environment and 1 M sodium chloride solution. The coating 
improved the paint adhesion characteristics of the substrate aluminum alloy. 
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Introduction 

Automobile customers’ demands for higher performance, more luxury and safety features 

signaled the development of lightweight and hence more energy efficient vehicles led to the 

introduction of aluminum and its alloy to achieve considerable weight reductions with no losses in 

strength and stiffness. However, the changes in choice of material and body structure presented 

significant challenges with respect to methods of joining and finishing of the automobiles. From a 

technical point of view, conversion coatings offer several advantages such as improved corrosion 
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resistance and adhesion of paint and/ adhesives to aluminum and its alloys used in the automotive 

industry. To attain a long service life under demanding conditions, pre-treatment of the aluminum 

and its alloys before any fabrication of parts is an extremely important factor. The successful use of 

chromate conversion coating in the aluminum finishing industry in the last five decades demonstra-

ted that superior strength can be acquired, even when the coated structure is exposed to corrosive 

environments [1]. However, several protocols in the last two decades have limited the use of 

carcinogens like volatile organic compounds (VOCs) and the chromates. In view of this shortcoming 

several authors [2-5] have researched into alternatives to chromates based on transition metal 

compounds without much success in terms of corrosion resistance superiority of the chromates. 

Although there are claims in the literature that some composite precursor compounds such as 

Permanganate/Molybdate [6] conversion coating has superior corrosion resistance to chromate and 

Molybdate conversion coatings separately, its application in the high technical end of the metal 

finishing industry may yet be in its infancy. Other claimed success is the permanganate conversion 

coating developed on Magnesium alloy [7]. The coating which was developed from an acidic bath is 

termed to be nearly crack-free and its corrosion resistance was markedly better than the untreated 

alloy. However, permanganate coatings have been described by Hughes et al.[8], as a promising 

replacement for chromates in the aerospace industry. In their findings, the coating is generally 

about 50-70nm in thickness and it was said to be essentially of MnO2 in its outermost regions with 

a composite of Al-Mn oxides predominantly at the metal/coating interphase. As the search for 

alternatives to chromates proceeds far and wide, other researchers are looking into sol-gel 

formulations such as aluminum-based sol-gel materials by Oubaha et al. [9], and silanol-based nano-

composite by Gonzalez et al [10] with much success recorded in terms of improved paint adhesion 

characteristics which compared favorably with the chromates. Nonetheless, some of these 

formulations and processes have been patented [11] but their applications have been limited to the 

lower technical end of the metal finishing markets while in the high technical end as in the aerospace 

industry as well as military hardware, chromates are still preferentially employed [12]. In order to 

make the use of chromates more acceptable to the metal finishing industries, a none-rinse chromate 

formulation was developed. Addition of organic compounds containing hydroxyl groups to 

chromate baths modified the surface features of the traditional coating where the usual mud-

cracking was obliterated and it became unnecessary to give a final water rinse to objects treated in 

such baths [13]. In addition, the coatings dried faster than the traditional chromate coating thus 

achieving reduction in cost of production. Hence, from environmental safety and costs perspectives, 

the formation and process pushed the hybrid coating a notch higher than the traditional chromate 

coating and process in terms of lower carbon foot print.  

In view of the limited successes encountered in the search for viable alternatives to chromate, 

the current investigation, examined permanganate, containing Mn, with variable valences similar to 

the chromate as a precursor conversion coating material of interest which may also act as a cathodic 

inhibitor at breached areas of the coating where the substrate may be exposed albeit, transiently. 

Experimental  

Spade like electrodes were made from sheet of aluminum alloy AA8000. These electrodes were 

etched in 10 % sodium hydroxide solution, rinsed in water prior to de-smutting in 50 % v/v nitric 

acid solution for three minutes each and then rinsed in water. Electrodes, prepared in the afore 

mentioned manner, were immersed in a solution of 4 g/l KMnO4, 1 g/l NaF and 5 ml/l glycerol made 

up to 1 liter of water, at 30 oC for several periods of time ranging from 30 seconds to 600 seconds. 
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Three separate specimens were treated in the conversion coating solution for each period of time. 

Thereafter the mean changes in weights were recorded for each pretreatment time. The pH of the 

solution was 7.9 as obtained from JENWAY, Model 3505 pH Meter. All chemicals used were of 

laboratory or industrial grades. Some specimens treated for various times in the manganate/flu-

oride/glycerol coating solution were examined in scanning electron microscope, Phenom proX SEM, 

model MVE0224651193, operated at 15keV. The elemental compositions of the coatings were 

obtained from the EDX attachment in the microscope. Specimens treated for 180 seconds in the 

coating solutions were exposed in upright positions to the natural environment in the North Central 

part of Nigeria for 500 h with untreated aluminum alloy specimens exposed likewise. These were 

visually examined regularly. Some other set of specimens were likewise treated in the coating 

solutions for 180 seconds. These were further coated with a nitrocellulose lacquer by immersing the 

spade like end of the pretreated specimens as near vertical as possible in 100 ml of the lacquer for 

60 seconds and withdrawn as immersed, allowed to dry for 24 h prior to further examination. 

Untreated aluminum and pretreated specimens as well as those over coated with lacquer were 

cross-scratched, using Japanese industrial testing method [14] prior to exposure to near neutral 

1 M NaCl solution for 170 h. After the exposure period, transparent cellophane adhesive tapes were 

firmly applied on each of the specimens. The tapes were subsequently rapidly pulled from the 

substrates. The surfaces were examined to appraise the mode(s) of coating failure by optical 

microscopy and in the SEM with analyses performed in the EDX attachment of the SEM. 

Results and discussion 

Coating development 

From visual examinations, the specimens immersed in the permanganate/fluoride/glycerol 

coating solution showed changes in color from the initial lustrous metallic appearance to 

progressively dark golden yellow colorations as time of immersion progressed. On surface value, 

this implied formation and development of coating on aluminum in the conversion coating solution. 

The formation and development of permanganate coating on aluminum probably followed “the 

substrate activation/coating materials deposition” model reported for chromate conversion 

coatings [15,16] which will involve the activation of aluminum by fluoride species in solution thus, 
-F 3+ -Al Al +3e  (1) 

The 3 electrons generated during the activation of aluminum, an anodic reaction, are then taken 

up by permanganate species which are reduced to manganate species in the cathodic half of the 

redox reaction. Another school of thought has it that though thinning of the oxide layer on 

aluminum does take place; a favorable anodic reaction is the reformation of aluminum oxide which 

allows for electron tunneling. These Mn (IV) species, at their established equilibrium constant, are 

deposited as probably hydrated oxide/hydroxides and may be contaminated with permanganate in 

the coating solution and aluminum species generated in equation (1). These species may as well be 

adsorbed and/or occluded within the developing coating. 

2H2O + MnO4
- + 3e- → MnO2 + 4OH-  (2) 

Figure 1 displays the coating weight versus time of immersion for aluminum specimens in 

permanganate conversion coating bath. The rate of coating growth was fast initially, however, the 

rate decreased with increase in immersion time. 
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Figure 1. Graph of coating weight against time of immersion in Manganate/fluoride/glycerol 

solution at 30 oC 
 

This was envisaged as the initial coating materials deposited on the specimens will initially 

constitute barriers to further coating growth [17,18]. However, as espoused by [15,16,19] and 

others, further coating growth beyond the initial rapid deposition of coating materials will proceed 

at the metal coating interface with the creation of pathways within the coating. Thus, coating 

solution species will come in contact with the substrate although at a reduced rate with continued 

growth of the coating.  

Surface morphology and composition 

The surface morphology for the specimen treated for 180 seconds in the permanganate coating 

bath is displayed in Fig. 2 and it portrays a typical surface morphology for specimens treated in the 

permanganate coating bath for various times.  
 

 
Figure 2. SEM micrograph of aluminium specimen treated for 180 seconds in 

Manganate/fluoride/glycerol conversion coating bath at 30 oC 
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The surface is comprised of variously shaped coating materials formed along with mud-cracking 

patterns derived from shrinkage stresses associated with drying out of gel-like materials. Such 

randomly shaped and cracked surface features have been suggested to be anchor sites for 

subsequently applied organic coatings with attendant improvement in paint adhesion 

characteristics of conversion coated substrates [20]. However other researchers believed that in 

addition to these anchor sites, bonds formation between organic coatings and species in conversion 

coatings play significant roles in the improvement of paint adhesion properties of conversion coated 

substrates [21]. Also, in an earlier study it was suggested that roughness at microscopic level 

imparted on conversion coated surfaces played added significant roles in adhesion improvement 

properties of conversion coated aluminum substrates [22]. 

The coating materials as revealed through analysis with the EDX attachment in the SEM are 

composed of Mn, Al and oxygen compounds, Fig. 3, probably hydrated as the materials were derived 

from gel-like materials. This is in agreement with the findings of Hughes et al. [8] who suggested 

two diffused layers of coatings with the interior being richer in Al-Mn hydrated oxides and an outer 

region rich in MnO2. 

 

Energy, keV 

Figure 3. EDX analysis of aluminium specimen treated for 180 seconds in 
Manganate/fluoride/glycerol conversion coating at 30 oC 

Aluminium may be derived from the coating as compounds formed from Al3+ generated during 

activation by F- species as well as from the substrate which is aluminum. Oxygen and manganese 

will generally be derived from the coating materials as well as other contaminants such as K and S.  

Corrosion and adhesion performance 

To all intents and purposes, all the specimens’ conversion coated were superior in performance 

to the ‘bare’ specimens on which incipient pits were resolvable with the naked eyes in addition to 

mounds of corrosion products which appeared whitish under the lacquer coatings. There were no 

obvious incidents of pitting on both the bare conversion coated and those with top coatings of 

lacquer after the exposure period of time.  

For specimens immersed in sodium chloride solution, ‘bare’ aluminum specimens with and 

without lacquer coatings showed severe pitting corrosion over the immersion period. A typical 

example is displayed in Fig. 4, the scanning electron micrograph of the unscratched regions of ‘bare’ 

aluminum specimen with a top coating of lacquer. The micrograph portrays a relatively large pit at 

the top of the micrograph with corrosion products at the bottom of the micrograph.  

The corrosion products, likely to have migrated from within the pit, where active pitting corrosion 

occurred are composed of hydrated aluminum hydroxides and/or oxides which were initially gel-

like, developed cracked morphologies during drying out. The EDX analysis in the region revealed the 

presence of Al, O, Cl and Na which indicated the presence of aluminum products contaminated or 
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otherwise with chlorides which are known pitting agents of aluminum and its alloys. On the other 

hand, the unscratched regions of the conversion coated specimen with a top coating of lacquer, 

displayed in Fig. 5, did not show active pitted regions, however, a region at the top right corner of 

the micrograph, marked ‘+’ revealed disaggregated materials which may be a flawed region of the 

composite conversion/lacquer coating where pitting corrosion may have initiated but propagation 

was hindered in one manner or the other.  
 

 
Figure 4. Scanning electron micrograph of lacquer 

coated ‘bare’ aluminum immersed in 1 M NaCl 
solution for 170 h at 30 oC. 

 
Figure 5. Scanning electron micrograph of 

conversion coated aluminum with a top coating of 
lacquer after immersion in 1 M NaCl solution for 

170 h at 30 oC after application of adhesion tests. 

EDX spectra of spot analysis at this region, Fig. 6, revealed the presence of aluminum, 

manganese, oxygen, potassium and chloride. Mn, Al, O are derived from the conversion coating 

whereas the presence of Cl implied its corrosion activities at the flaw which led to production of 

disaggregated materials at the region. 

 
Energy, keV 

Figure 6. EDX spot analysis of the region marked ‘+’ on the specimen conversion coated with a 
top coating of lacquer immersed in 1M NaCl solution for 170 h at 30 oC after adhesion tests. 

Another interesting feature appeared as light material at the top left corner of the micrograph in 

Fig. 5, which from EDX analysis is composed of Al, Mn, O and Cl and may likewise be pitting corrosion 

products which had plugged the entrance to a pit. The presence of reducible MnO4
- in manganate 
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coatings had been confirmed by Danilidis et al. [18]. Such anions in the vicinity of active pitting 

activities can effectively pick up the electrons generated from the aluminum substrate to form MnO2 

mixed with aluminum compounds to give rise to such features on the specimen. From the foregoing 

analyses, it is obvious that the conversion coated specimens out-performed the ‘bare’ aluminum 

specimens in terms of corrosion resistance. As far as paint adhesion characteristics were concerned, 

paint delamination was not observed on the conversion coated specimen and the top coating of 

lacquer was not removed after the application of tape peeling adhesion tests. On the other hand, 

lacquer was easily removed from the ‘bare’ aluminum specimen. 

Conclusions 

The hybrid manganate/fluoride/glycerol conversion coating on aluminum is composed of Mn, Al 

and O compounds and its surface morphology appeared rough on a microscopic scale. 

The corrosion resistance and paint adhesion characteristics of the conversion coating as well as 

the conversion coating/lacquer composite on aluminum substrate were superior to those of ‘bare’ 

aluminum from natural and accelerated corrosion tests in 1 M NaCl solution. 

During the course of this investigation, the surface morphologies and elemental compositions of 

specimens treated in manganate coating solutions with and without glycerol additions were 

compared. The cracked surface morphologies were similar however, the yield of Mn in the hybrid 

coating was higher than for the later. 
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