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Abstract 
Template-assisted electrodeposition technique was applied to synthesize platinum 
nanowires (Pt NWs) on polycarbonate templates (PCT) with pore diameters of 15, 50, 
and 100 nm for catalytic applications. Influences of sulfuric acid added to the electrolyte, 
different potential scanning rates and different pore diameters of templates on the 
electrodeposition process of Pt NWs were investigated by electrochemical techniques, 
including voltammetry and chronoamperometry methods. It was confirmed that at 
lower scan rates and in acidic solutions, electrodeposition of platinum on templates with 
larger pores is controlled by diffusion. The potential range for deposition of Pt NWs was 
determined and the potentiostatic technique was utilized by applying various potentials 
of different durations to fabricate the NWs. The morphological characteristics of Pt NWs 
were examined using the scanning electron microscopy (SEM). It was shown that the 
growth of Pt NWs on PCT 50 nm followed a pine-tree pattern, while the Pt NWs grew 
spherically on PCT 100 nm. The uniform and compact shape of Pt NWs was verified by 
the transmission electron microscopy (TEM). The catalytic activities of the prepared Pt 
NWs with the same exchanged charge density for hydrogen adsorption/desorption and 
methanol oxidation reactions were determined by the cyclic voltammetry (CV) testing, 
and the superior electrocatalytic performance was detected for Pt NWs prepared on PCT 
50 nm. This enhanced catalytic activity was attributed to the higher surface-to-volume 
ratio, larger electrochemical active surface area and higher density of exposed active 
sites accessible on the pine-tree morphology of these Pt NWs compared to the spherical 
structure of Pt NWs fabricated on PCT 100 nm. This makes Pt NWs prepared on PCT 50 
nm to be a promising catalyst for direct methanol fuel cells (DMFCs). 
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Introduction 

In recent years, noble-metal nanostructures have attracted extensive research attention due to 

their promising potentials for numerous electrocatalytic applications including a variety of fuel cell 

systems, electrochemical biosensors and batteries [1]. In particular, the synthesis of platinum-

based nanostructures such as nanotubes, nanoparticles and nanowires with specific structural 

features has been an area of considerable interest [2]. This happened owing to the enhanced 

catalytic capabilities of platinum for applications in direct methanol fuel cells (DMFCs) which are 

considered as highly promising power sources for electric vehicles and portable electronic devices 

[3]. Limited supply and high cost of this precious metal, however, have impeded its commercial 

utilization. Moreover, the formation of intermediate species in the process of methanol oxidation 

tends to poison the Pt surface and diminish the oxidation rate, reducing thus the catalytic 

performance of this metal [4]. In order to improve the catalytic activity and the poisoning 

tolerance of Pt catalysts, various researchers have focused their investigations on the replacement 

of zero-dimensional (0D) Pt nanoparticles with one-dimensional (1D) Pt nanowires (Pt NWs) [5,6]. 

Several structural features offered by Pt NWs such as anisotropic morphology and high surface-to-

volume ratio can enhance their mass-transport and electron-transfer kinetics, leading to the 

superior catalytic activity of Pt for hydrogen evolution and methanol oxidation reactions [7]. 

Although various techniques such as electron-beam deposition [8], solvothermal synthesis [9], 

physical vapor deposition [10], electron beam lithography [11] and plasma sputtering [12] have 

been applied to fabricate Pt NWs, electrodeposition [13] has been proven as the most commonly 

used deposition method due to its low cost and high productivity [14]. In particular, the template-

based electrodeposition of Pt NWs has been established as an effective method due to its 

simplicity and high-yielding process. This method provides a well-organized approach for the 

fabrication of isolated nanowire arrays with uniform diameters determined by the pore diameter 

of the template [15]. It is generally accepted that the diameter of nanowires plays a fundamental 

role in their functionality.  As the diameter of nanowires decreases, their surface-to-volume ratio 

increases and consequently, the variation of the surface energy significantly influences the surface 

state and the related physical and chemical properties [16]. Although many studies have 

investigated the template-based electrodeposition of Pt NWs, very few researchers have 

examined distinct morphological and structural properties of Pt NWs fabricated on templates with 

different pore diameters. Also, a limited research has so far been reported on the electrocatalytic 

activity of Pt NWs for hydrogen adsorption/desorption and methanol oxidation reactions. 

The current study aims to examine the electrodeposition of Pt NWs on polycarbonate 

templates (PCT) with different pore diameters and determine the dependence of their 

electrochemical behavior and morphological properties upon the pore size of templates. The work 

has been focused on the hydrogen adsorption/desorption on Pt NWs and the influence of their 

diameter on the methanol oxidation reaction performances. 

Experimental 

The electrochemical deposition of Pt NWs was carried out in a typical three-electrode cell and 

the potential was recorded with reference to a saturated calomel electrode (SCE). A pure platinum 

plate with the surface area of 2×1 cm2 was used as the counter electrode and polycarbonate 

templates (PCT) with the surface area of 0.2×1 cm2, pore diameter of 15, 50, and 100 nm, pore 

length of 6 µ, and pore density of 108 pores/cm2 were employed as the working electrode. In order 

to impart conductivity to the working electrode, the solution sides of the templates were coated 
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with 50 nm-thick Au layer via sputtering. Two electroplating baths were prepared and all the 

reagents were of analytical grade from Merck. In the first bath, 0.05 M H2PtCl6 was added drop-

wise to deionized water-hydrochloric acid mixture (pH 1.6) under continuous stirring. In order to 

study the influence of sulfuric acid adding on the electrodeposition of Pt NWs, the second 

electroplating bath was prepared. 0.1 M H2SO4 was added to 0.05 M H2PtCl6 solution with vigorous 

mixing during addition, and the final solution was added drop-wise to a mixture of deionized water 

and hydrochloric acid with already adjusted pH of 1.6. Both electroplating baths were purged with 

N2 at room temperature for 2 h. To optimize the deposition potentials suited for the deposition of 

Pt NWs, linear sweep voltammograms and chronoamperometry curves were recorded by an EG&G 

Princeton Applied Research (PAR) potentiostat and influences of 0.1M H2SO4 added to the 

electrolyte, different potential scanning rates, and different pore diameters of templates on the 

electrodeposition process of Pt NWs were investigated. Afterwards, the potential range for 

deposition of Pt NWs was determined and subsequently, the potentiostatic method was utilized 

by applying various potentials of different durations to synthesize the nanowires. The surface and 

cross-sectional morphologies of the obtained Pt NWs were examined by a scanning electron 

microscope (SEM, TESCAN Model), after dissolving the polycarbonate membranes by 

dichloromethane. A transmission electron microscopy (TEM, EM-10C Model) analysis was used to 

evaluate the Pt NWs nanostructure. The electrocatalytic activity of Pt NWs obtained with the same 

exchanged charge density was assessed in a cell containing the PC templates filled with the Pt 

NWs (working electrode, 0.2×1 cm2) and a platinum sheet (counter-electrode, 2×1 cm2). The 

supplied bias and current were controlled by an Autolab PGSTAT 302 electrochemical system. The 

cyclic voltammetry (CV) tests for hydrogen adsorption/desorption reactions were conducted in an 

argon-purged 0.5 M H2SO4 solution at room temperature under continuous stirring and the 

obtained CV curves were used to estimate the electrochemically active surface area (ECSA) of Pt 

NWs catalysts. The methanol oxidation reaction activity of Pt NWs was studied by CV tests in a 

0.5 M H2SO4 electrolyte containing 2 M CH3OH, and the optimum diameter of NWs for obtaining 

the maximal catalytic efficiency was determined. 

Results and discussion 

Electrochemical studies of the Pt NWs deposition 

The influence of sulfuric acid added to the plating bath on the electrodeposition of Pt NWs was 

studied. Figure 1 demonstrates the cathodic voltammetry curves of PCT 50 nm working electrode, 

measured in a pure bath and H2SO4-containing solution in the potential range of 0 to −2000 mV vs. 

SCE at the scan rate of 5 mV/s. It can be observed that in the presence of the sulfuric acid, higher 

current densities were measured and the curve shifts to more positive potentials. The higher value 

of slope indicates that the electrodeposition of Pt ions occurs at a higher rate in a H2SO4-

containing bath compared to the pure deposition bath, depicting that the sulfuric acid plays a 

catalytic role in the deposition of Pt NWs.  

In order to investigate the effect of various potential scan rates on the electrodeposition of 

Pt NWs, the linear voltammetry curves recorded in a H2SO4-containing solution in the range of 0 to 

-1000 mV vs. SCE at the scan rates of 20, 50 and 100 mV/s are illustrated in Figure 2. Two 

irreversible peaks can be detected in the cathodic branches of the curves obtained at the scan 

rates of 20 and 50 mV/s. The peaks are ascribed to the successive reduction of Pt4+ to Pt2+ ions and 

of Pt2+ ions to Pt, respectively, according to the following reactions: 
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Figure 1. Effect of 0.1 M H2SO4 added to the plating bath on electrodeposition of Pt NWs on 

PCT 50 nm at the scan rate of 5 mV s-1 

[PtCl6]2- +2e- → [PtCl4]2- + 2Cl- (1) 

[PtCl4]2- +2e- → Pt + 4Cl- (2) 

A typical feature of the diffusion-controlled electrodeposition is that an increase of the scan 

rate shifts the reduction peaks to more negative potentials and causes higher current densities 

along with a simultaneous increase in the deposition rates. This behavior can be attributed to the 

fact that at higher scan rates, the cations have a lower opportunity for deposition on the surface 

and therefore need a higher energy and overpotential for deposition. Figure 2, depicts such a 

feature, suggesting that the electrodeposition of Pt is under the mass transfer control. With the 

increase of the scan rate from 20 to 50 mV/s, the mass transfer is enhanced, leading to the 

intensified adsorption of platinum ions on the working electrode. Consequently, the potential 

difference between the cathodic peaks increases. Finally, at the scanning rate of 100 mV/s, a 

single wide peak is observed due to the lack of the deposition duration that leads to the decrease 

of the deposited platinum species on the cathode.  

 
Figure 2. Linear sweep voltammograms of Pt NWs deposited on PCT 50 nm at different scan rates. 

The influence of the template pore diameter (15, 50, and 100 nm) on the linear voltammetric 

curves in the range of 0 to -1000 mV vs. SCE at a scan rate of 50 mV/s is depicted in Figure 3. No 

diffusion peaks were observed for deposition on PCT 15 nm and therefore, it can be concluded 

that the charge transfer governs the system kinetics. This can be attributed to the higher surface-
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to-volume ratio of the small pores with the diameter of 15 nm, which provides facile pathways for 

mass transfer and more effective exposure of active surface sites for the progressive ions flux to 

the cathode surface. Thus, the diffusion of the solution species is fast and the deposition current is 

restricted by the electron transfer at the working electrode. This is a characteristic of deposition 

reactions in which the charge transfer is rate determining [17,18]. However, for PCT 50 and 

100 nm, diffusion controls the curves. The increase of pore diameters leads to the increase of the 

deposition current density and shifts the curves to more negative potentials. This can be due to 

the larger size of the pores and transference of more platinum ions into the pores, which requires 

higher overpotentials for reduction.  

 
Figure 3. Linear sweep voltammograms for electrodeposition of Pt NWs on templates with 

different pore diameters at scan rate of 50 mV s-1 

Figure 4 illustrates the potentiostatic i-t transients of Pt NWs deposited on PCT 50 and 100 nm 

at −400 mV vs. SCE. Based on the characteristic shape of the chronoamperometry curves, a 

nucleation and growth mechanism can describe the electrodeposition process having the rate of 

growth limited by diffusion [19]. At the initial times, the current density increases due to the 

nucleation process and 3D growth of the nuclei. Subsequently, diffusion controls the current drops 

and the deposition. Finally, the current density remains relatively constant and filling up the pores 

occurs. These curves also reveal that the deposition trend does not change as the pores diameters 

increase from 50 to 100 nm. 

 

Figure 4. Chronoamperometry curves for deposition of Pt NWs on PCT 50 and 100 nm at −400 mV vs. SCE. 
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Morphological study of Pt nanowires 

From the linear sweep voltammetry curves shown in Figure 3, the reduction potential region for 

the deposition of Pt NWs on templates with pore diameters of 50 and 100 nm can be determined. 

Due to the locations of peaks in the diffusion-controlled electrodeposition of nanowires, the 

values of −250 and−400 mV were determined as the starting potentials for the deposition of Pt 

NWs on PCT 50 and 100 nm, respectively. The potentiostatic method was utilized to synthesize the 

nanowires by applying various potentials in the range of −250 to −400 mV for different durations. 

Morphologies of Pt NWs deposited on the PCT 50 nm from a H2SO4-containing solution at 

different potentials in the range of −250 to −400 mV for 500 s were analyzed by SEM. In order to 

study the surface morphology of prepared Pt NWs, the deposited samples were cut, and the 

surface areas of the templates were locally dissolved in CH2Cl2. Figures 5 (a)−(c) illustrate the 

cross-sectional SEM images of Pt nanowires grown on PCT 50 nm at −250, −350 and −400 mV, 

respectively. Figures 5 (d)−(f) show the SEM images at a higher magnification, and it can be 

observed that the average lengths of the nanowires vary between 1 to 4.5 µ. According to Figures 

5 (a) and (d), it can be observed that at −250 mV, the growth of nanowires is uniform but due to 

the lack of deposition time, they do not meet the surface of the template. In Figures 5 (b) and (e), 

it seems that at increased applied potential to −350 mV, the holes are not completely filled due to 

the short deposition time, but the growth of nanowires occurs simultaneously and uniformly. 

Figures 5 (c) and (f) demonstrate that at more negative potential of −400 mV, due to the hydrogen 

evolution reaction, the efficiency of the nanowires deposition declines, leading to a less uniform 

growth of nanowires. 
 

     
 (a) (b) (c) 

     
 (d) (e) (f) 

Figure 5. SEM images of PT NWs electrodeposited for 500 s on PCT 50 nm at the potential of: 

(a), (d) −250, (b), (e) −350, and (c), (f) −400 mV. 
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In order to examine the consequences of increasing the deposition duration on the surface and 

cross-sectional morphology of Pt NWs deposited on PCT 50 and 100 nm, the potentials of −350 

and −400 mV were applied for 3000 s. According to Figures 6 (a) and (b), Pt NWs deposited on PCT 

50 nm at −350 mV, represent the tree branches and resemble pine needles.  

 

   
 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 

Figure 6.  Surface and cross-sectional morphology of Pt NWs electrodeposited for 3000 s on PCT 50 nm at 

the potential of (a), (b) −350, (c), (d) −400 mV, and on PCT 100 nm at the potential of (e), (f) −400 mV. 
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This pine-tree morphology can be attributed to the tendency of the multifaceted platinum 

nuclei to branch, spread, and dramatically overgrow on the surface. It is noteworthy to mention 

that unlike the nanowires of other fcc metals such as gold, copper, nickel, and cobalt, the Pt NWs 

do not follow a cauliflower growth pattern and do not tend to form caps on the surface of the 

templates. Alternatively, they continue their overgrowth rather than overlapping, and manifest 

pine-tree structures that are single crystalline, and their facets grow close to the {001} plane [20]. 

As depicted in Figures 6 (c) and (d), at the potential of −400 mV, the Pt NWs on the PCT 50 nm do 

not grow uniformly along the pores, reaching the surface of the template and continuing their 

growth on the surface. As mentioned before, the evolution of hydrogen at more negative 

potentials accounts for the non-uniform growth of platinum nanowires. Figures 6 (e) and (f) 

demonstrate the spherical growth of Pt NWs on the PCT 100 nm. 

It was confirmed that the nucleation process of Pt NWs on both PCT 50 and 100 nm follow the 

instantaneous mechanism in which the rate of new nuclei formation at the initial stage of 

deposition is high enough to immediately activate all the nucleation sites. However, the number of 

nuclei remains constant during the growth process and the 3D growth of the nuclei is limited by 

diffusion [21]. With regards to Figures 6 (d) and (f), at the same deposition potential of −400 mV, 

the ratio of surface-to-volume of Pt NWs prepared on PCT 50 nm is larger than those deposited on 

PCT 100 nm, and the driving force inside the smaller pores is higher, leading to the increase of 

nucleation density inside the pores with the size of 50 nm. On the other hand, the mass transport 

inside smaller pores with the size of 50 nm is more limited by diffusion in comparison to the pores 

with the size of 100 nm. Thus, the diffusion coefficient is smaller in PCT 50 nm and the 3D growth 

of the nuclei follows a pine-tree pattern. As the 3D growth inside the pores of PCT 100 nm is less 

restricted by diffusion and due to the lower concentration gradient inside larger pores, the nuclei 

are promoted to grow spherically on the PCT 100 nm. 

The influence of the pore size of templates on the length of nanowires deposited under the 

potential of −400 mV during 2000 s is represented in Figure 7. Due to the dissolution of 

polycarbonate membranes by dichloromethane, the nanowires are randomly distributed on the 

surface.  
 

   
 (a) (b)  

Figure 7. Surface morphology of Pt NWs electrodeposited at the potential of −400 mV for  
2000 s on PCT: (a) 50 and (b) 100 nm. 
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The relatively short duration of applying the deposition potential resulted in the incomplete 

filling of the pores, and the average length of nanowires on PCT 50 (Fig. 7(a)) and 100 nm 

(Fig. 7(b)) are 2.5 and 3.3 µ, respectively. Since the system is controlled by diffusion at −400 mV, 

the efficient surface area and the diffusion coefficient are higher in bigger pores [13], leading to 

the formation of longer nanowires. 

TEM characterization of Pt nanowires 

TEM images of Pt NWs deposited on the PCT 50 nm at −400 mV for 1000 s are depicted in 

Figure 8. According to Figure 8 (a), under the magnification of 1500, the nanowires are uniform, 

and their diameter is 100 nm. Due to the short deposition duration, the lengths of these 

nanowires are in the range of 1.5−2.5 µ, and they do not reach the thickness of template (6 µ). 

Figure 8 (b) depicts a uniform and compact nanowire having a diameter between 100 to 120 nm at 

different points. Since the end part of this nanowire is smaller and the deposition time is shorter 

than the required time for filling the pores, it can be concluded that this section belongs to the 

growing part of the nanowire. The dispersed grains inside the nanowire pertain to the growing 

nuclei and confirm that the nucleation and growth mechanism of nanowires are instantaneous 

and three dimensional, respectively. 
 

   
 (a) (b) 

Figure 8. TEM images of Pt NWs electrodeposited for 1000 s at the potential of −400 mV 
 on PCT 50 nm under the magnification of: (a) 1500 and (b) 8800 

Electrocatalysis in acidic solutions 

In order to investigate the catalytic activity of Pt NWs 50 and 100 nm, the deposits obtained 

with the same exchanged charge density were compared. Based on Figure 4, the integration of 

chronoamperometric reduction current recorded over 3000 s for the Pt NWs 50 nm yielded the 

same amount of the exchanged charge as for the Pt NWs 100 nm recorded over 860 s. Therefore, 

Pt NWs prepared at the potential of −400 mV for 3000 s on PCT 50 nm and for 850 s on PCT 

100 nm were selected for studying the influence of nanowires diameter on their electrocatalytic 

activity. 

Adsorption/desorption of hydrogen 

The cyclic voltammograms shown in Figure 9 compare the hydrogen adsorption/desorption 

performance of Pt NWs deposited at the potential of −400 mV for 3000 s on PCT 50 nm and for 

850 s on PCT 100 nm, in a 0.5 M H2SO4 solution at a scan rate of 50 mV/s. Both catalysts display 
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peaks associated with the strong and weak adsorption/desorption of hydrogen molecules in 

anodic and cathodic sweeps in the sulfuric acid solution [22]. The existence of multiple peaks in 

both the cathodic and anodic scans, instead of one broad peak, reveals that various 

crystallographic planes of platinum participated in the reactions [23]. The upward and downward 

peaks are ascribed to hydrogen desorption (Pd
1 and Pd

2) and (Pa
1 and Pa

2) adsorption, respectively. 

Since the hydrogen desorption peaks for Pt NWs 50 nm are approximately 10 to 30 mV more 

negative than that of Pt NWs 100 nm, it can be concluded that the hydrogen binding energy is 

lower on the nanowires prepared on PCT 50 nm. The inferior hydrogen binding energy expedites 

the hydrogen desorption from the surface of nanowires and consequently, enhances the catalytic 

performance of nanowires. Moreover, the potentials of hydrogen adsorption peaks on Pt NWs 50 

nm are more negative, and their current values are higher compared with those of Pt NWs 100 

nm. This implies that a great quantity of hydroxide species is produced on the electrode. 

Furthermore, the integration area of hydrogen desorption peaks for Pt NWs 50 nm surpasses the 

Pt NWs 100 nm, indicating the higher amount of active surface area and thus, the more enhanced 

catalytic performance of the nanowires prepared on PCT 50 nm. 

The electrochemical active surface area (ECSA) of Pt NWs was estimated from the area of 

desorption of atomic hydrogen on the CV curves in Figure 9, between 0 and -300 mV, via the 

following equation [24]: 

HESCA
Q

mc
=  (3) 

In eq. (3), QH is the total charge (mC cm−2), m is actual Pt loading (mg cm−2) on the substrate, 

and c signifies the charge required to oxidize a monolayer of hydrogen on a Pt surface 

(0.21 mC cm−2). The ECSA values of Pt NWs 50 and 100 nm are calculated to be 51.32 and 

44.56 m2g−1, respectively, indicating that Pt NWs 50 nm are capable of exposing sufficient active 

sites to guest molecules, leading to their superior electrocatalytic activity. This behavior can be 

due to the larger surface-to-volume ratio of Pt NWs 50 nm, as well as their unique pine-tree 

morphology (Fig. 6) which improves the surface roughness and increases the surface tendency for 

reaction with hydrogen. 
 

 
Figure 9. Cyclic voltammograms of Pt NWs 50 and 100 nm in 0.5 M H2SO4 solution at scan rate of 50 mV s-1 

Methanol oxidation  

The CV curves presented in Figure 10 display the methanol oxidation performance of Pt NWs 

deposited at the potential of −400 mV for 3000 s on PCT 50 nm and for 850 s on PCT 100 nm, in a 
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0.5 M H2SO4 + 2 M CH3OH solution. It can be observed that in the anodic scans, the methanol 

oxidation reactions begin at 230 and 473 mV for Pt NWs 50 and 100 nm, respectively. The onset 

oxidation potential for Pt NWs 50 nm is less positive compared to that of Pt NWs 100 nm, 

indicating that the morphology of Pt NWs 50 nm reduces the required initial potential and 

promotes the methanol oxidation. With the increase of the potential in the anodic sweep, the 

methanol molecules are dissociatively chemisorbed on Pt nanowires. As the potential is swept 

toward more anodic values, the anodic P1 peaks emerge at 920 and 1032 mV for Pt NWs 50 and 

100 nm, respectively. These peaks are attributed to the production of intermediates, poisonous 

Pt=C=O species, and carbon dioxide on the surface of the electrode. The lower value of the 

potential at P1 peak for Pt NWs 50 nm in comparison to Pt NWs 100 nm is indicative of the 

reduced required potential for methanol oxidation on smaller nanowires. Moreover, the current 

value at P1 peak for Pt NWs 50 nm is higher than that of Pt NWs 100 nm, which can be justified by 

the unique pine-tree morphology of nanowires and their larger ratio of surface-to-volume, leading 

to the higher accessibility of these nanowires for trapping the guest molecules. Thus, the 

adsorption of intermediate species on the surface of the Pt NWs 50 nm is enhanced and the 

methanol oxidation is intensified. 
 

 
Figure 10. Cyclic voltammetry curves for methanol oxidation on Pt NWs 50 and 100 nm in a 

solution containing 0.5 M H2SO4 and 2 M CH3OH at scan rate of 50 mV s-1 

In the backward scan, the cathodic P2 peaks can be observed at 756 and 867 mV for Pt NWs 50 

and 100 nm, respectively, due to the removal of poisonous Pt=C=O species. It is obvious that the 

P2 peak appears at a more positive potential and with a higher current value for Pt NWs 100 nm 

compared to Pt NWs 50 nm. This is due to the higher amount of Pt=C=O species produced on Pt 

NWs 100 nm during the forward scan. Therefore, their oxidation is more difficult and requires 

higher potential and current values. Although Pt NWs act as effective catalysts for methanol 

oxidation, they tend to be poisoned by carbon monoxide [25]. The higher ratio of currents at P1 

peak to P2 peak represents the improved tolerance of nanowires toward the poisoning by carbon 

monoxide [26]. Regarding Figure 10, this ratio is estimated to be 1.02 and 0.78 for Pt NWs 50 and 

100 nm, respectively, demonstrating that the Pt NWs 50 nm possess an enhanced poisoning 

tolerance. This feature, in addition to the reduced onset and P1 peak potentials leads to the 

enhanced electrocatalytic activity of these nanowires. The superior electrocatalytic performance 

of the nanowires prepared on PCT 50 nm is attributed to the higher value of surface-to-volume 

ratio of these nanowires, providing more uncovered active sites for trapping methanol molecules 
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for their subsequent oxidation. Furthermore, the pine-tree morphology of Pt NWs 50 nm provides 

enhanced electrocatalytic efficiency in comparison to the spherical morphology of Pt NWs 100 nm. 

Conclusion 

The platinum nanowires with different diameters were fabricated by the template-assisted 

electrodeposition technique. The deposition process was characterized by the voltammetry 

method and it was confirmed that addition of sulfuric acid to the plating bath accelerates 

deposition of Pt NWs. The influence of different potential scan rates on the electrodeposition of Pt 

NWs was investigated. It was observed that at low scan rates, two cathodic peaks appeared in the 

cyclic voltammetric curves, implying that the diffusion-controlled reduction of platinum ions 

occurred through two successive steps. However, at high scan rates, the presence of one cathodic 

peak on the voltammograms proved the incomplete and direct reduction of ions. The linear 

voltammetric curves obtained for different templates revealed that while the deposition was 

under charge transfer control on PCT 15 nm, the diffusion-controlled deposition occurred on PCT 

50 and 100 nm. Morphological studies of NWs synthesized by the potentiostatic deposition 

technique revealed that at short deposition durations and under less negative deposition 

potentials, the growth of nanowires occurred simultaneously and uniformly. Less uniform growth 

of nanowires took place under more negative potentials due to the hydrogen evolution reaction. 

Moreover, at longer deposition durations, the platinum nanowires on PCT 50 and 100 nm 

possessed pine-tree and spherical structures, respectively. Based on the CV curves obtained in 

acidic solutions for deposits with an identical exchanged charge, the nanowires grown on PCT 50 

nm exhibited enhanced catalytic performance toward hydrogen adsorption/desorption and 

methanol oxidation reactions compared to nanowires deposited on PCT 100 nm. This was ascribed 

to the higher surface-to-volume ratio, larger electrochemical active surface area, and the higher 

density of exposed active sites available on the pine-tree structure of Pt NWs 50 nm.  
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