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Abstract 
Solar thermal venetian blinds (STVB) pursue the goal of reducing the primary energy demand of buildings with highly transparent 
façades during operation. They can provide solar control and daylighting functions and at the same time function as a solar thermal 
collector. A technical overview of STVB based on a design parameter space, which can be used as guideline for the design of STVB, 
is presented. It is then applied to develop a first actual-size test sample of STVB. The design principle, based on heat pipes and a 
switchable thermal coupling for heat transfer between the slats and a header tube, allows the STVB to be tiltable and retractable. The 
key characteristics of the built STVB test sample are: (1) integrated in a double skin façade element; (2) conventional absorber sheet 
with diagonally mounted heat pipe; (3) switchable thermal coupling with mechanism using springs and solenoids; (4) a multi-port 
header tube. Outdoor measurements have been carried out and are discussed, demonstrating the technical feasibility of the concept. 
In the end, design choices for architects and planners for the STVB system and possible installation processes are presented, and 
recommendations for further developments are assessed.
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1 INTRODUCTION

Many contemporary buildings employ large proportions of glazing in their façades, due to the 

opportunities that glass offers for daylighting and visual contact with the outside, combined with 

aesthetic considerations that aim for maximum transparency as proclaimed by modernism (Murray, 

2013). At the same time, the drive for green and sustainable buildings with reduced primary 

energy demand is a current topic of discussion (Mays, 2019). As transparent façade areas cannot 

be used to install opaque energy-harvesting systems, such as building-integrated solar thermal 

collectors (BIST) or building-integrated photovoltaic systems (BIPV), new technical solutions are 

desirable. The solar thermal venetian blind (STVB) represents a novel BIST technology which can 

turn a venetian blind into an energy-harvesting building component which supplies solar thermal 

heat to the technical building services. At the same time, the STVB can control and lower passive 

solar heat gains through the façade by extracting excess heat from the façade thus lowering cooling 

loads. Like venetian blinds, they provide further adaptive solar control functionalities such as glare 

control (Kuhn, 2017). The synergy of lowering cooling loads and supplying heat to the technical 

building services has the potential to lower the overall energy demand of buildings equipped with 

STVB compared to conventional venetian blinds.

FIG. 1 Main components of a solar thermal venetian blind positioned between an outer and an inner glazing pane. The increase 
between fluid inlet temperature T

in
 and fluid outlet temperature T

out
 illustrates the harvesting of solar thermal heat. The blind 

mechanism for retracting and tilting the slats is not shown.

The technological approach of the studied STVB is to incorporate heat pipes or closed two-phase 

thermosiphons1 into the slat and transfer the absorbed heat via a dry connection to a header 

tube which transports the heat to the technical building services (cf. Fig. 1). This is advantageous 

compared to having pipes with flowing fluid incorporated into the slats because no flexible piping 

is needed. Flexible pipes need space to fold when the slats are retracted and have a higher risk 

of leakage. The slats of the solar thermal venetian blind need to be movable like a conventional 

venetian blind to provide adaptive solar control functionalities, i.e. the slats can be tilted, and 

retracted or lowered. There are several approaches to realising this as will be discussed, one being a 

“switchable thermal coupling”.

1 In the solar industry, the term “heat pipe” is often used for heat pipes working with capillary forces to return the fluid from the 
condenser to the evaporator part, as well as for two-phase thermosiphons returning the fluid by gravity. This paper refers to the 
term “heat pipe” as a generic term for both heat transfer devices whenever no clear declaration is needed.
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 1.1 STATE OF THE ART 

Using the building envelope to harvest solar thermal heat was proposed over a century ago 

(US246626, 1881) and semi-transparent solar collector windows have also been previously presented 

(Fuschillo, 1975). To date, there are some examples of research projects and products dealing with 

semi-transparent BIST (Abu-Zour, Riffat, & Gillott, 2006; erfis GmbH; L. Li, Qu, & Peng, 2017; Maurer 

et al., 2014; Molter, Wolf, Reifer, & Auer, 2017; Palmero-Marrero & Oliveira, 2006; EP1376026B1, 2002; 

Siebert, 2018). A review of building-integrated solar thermal collectors including semi-transparent 

BIST was presented in Maurer, Cappel, and Kuhn (2017). Because all of the above-mentioned 

semi-transparent solutions are static, they are either limited to the parapet areas of the façade or 

undesirably reduce the visual contact to the exterior (i.e. transparency) and daylight availability. 

The latter is problematic especially on overcast days with low irradiance. Additionally, they only 

provide limited control of passive solar heat gains and limited glare protection, as they cannot 

actively adapt to changing weather conditions, e.g. the position of the sun or heating versus cooling 

season. Glare issues were reported for a semi-transparent BIST consisting of vacuum tubes and 

a perforated mirror due to partial shading resulting in dark and bright spots in the field of view of 

users and reflection of direct sunlight (Molter, Wolf, Reifer, & Auer, 2017). For these reasons, semi-

transparent BIST have thus far rarely been used in modern architecture (Cappel et al., 2015).

To address these opposing requirements, many buildings use venetian blinds on transparent areas 

of the building envelope as an adaptive solar control device to reduce the energy demand for cooling 

and provide visual comfort (e.g. daylight availability, glare protection, visual contact to the exterior). 

An extensive review on solar control devices and a design method can be found in Kuhn (2017). 

In double-skin façades, box-type windows, and closed-cavity façades (CCF), blinds are often installed 

in the cavity between outer and inner glazing. One problem that can arise in this configuration is the 

overheating of the cavity (Gratia & Herde, 2007a; Lutz, 2012). Approaches to mitigate this overheating, 

such as the proper positioning of the blind (Gratia & Herde, 2007b) or integrating phase-change 

material into blinds (Li, Darkwa, Kokogiannakis, & Su, 2019) were studied.

Solar thermal venetian blinds, as a multifunctional combination of venetian blinds and BIST, have 

been described in several patents (DE 102006000668 B4, 2006; US4143640 A, 1977). However, none 

of these patents discusses STVB, which are both tiltable and retractable. A solar thermal venetian 

blind for the purpose of heating air was presented in US4002159 (1975). A master’s thesis on 

STVB presented both simulation results as well as proposing technical solutions for a STVB design 

(Cruz Lopez, 2011). This study assumes that heat pipes that work on the horizontal orientation 

are available for the application in STVB. As will be discussed in Section 2.1, heat pipes suitable 

for horizontal orientation are not yet available. The study seems to disregard previous studies on 

BIST and on building energy performance simulations. It uses a simple calculation method for 

simulation of the STVB which neglects the coupling between STVB and building regarding heating 

and cooling loads. Furthermore, the presented technical solution for the heat transfer from the heat 

pipe condenser to the header tube should be investigated experimentally to prove that it functions 

reliably and efficiently. Theoretical studies and simulations of STVB application in the Mediterranean 

climate were presented in Guardo, Egusquiza, Egusquiza, and Alavedra (2015); and Velasco, Jiménez 

García, Guardo, Fontanals, and Egusquiza (2017) without presenting technical solutions. The effect of 

cooling the slats of venetian blinds in a double skin façade by embedding pipes into the slat through 

which water is circulated was studied in Jiang, Li, Lyu, and Yan (2019); and Shen and Li (2016) and 

related studies. The proposed “pipe-embedded” blind is shown to reduce overheating of the cavity 

and passive solar heat gains. The studies focus on static blinds which cannot be lifted and tilted, thus 

significantly reducing the visual contact to the exterior as well as daylight availability. 
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Additionally, photovoltaic venetian blinds and their effect on the thermal performance of double-

skin façades have been studied (Luo et al., 2017). They act as shading device-like conventional 

venetian blinds but cannot remove excess heat like a solar thermal venetian blind. Due to their high 

absorptivity they could even increase overheating problems.

There are other approaches for fully transparent BIST system, which use fluid between glass panes 

to remove the heat (InDeWag, 2017; Heiz, Pan, Lautenschlager, Sirtl, Kraus, & Wondraczek, 2017; 

Li & Tang, 2020; Stopper, 2018, 2019; Stopper, Boeing, & Gstoehl, 2013). With these approaches, 

ensuring glare protection is challenging and combination with solar control devices such as textile 

screens is necessary.

It is concluded that a detailed technical overview for designing movable (retractable and tiltable) 

STVB and an experimental proof of feasibility have not been published yet. Within this publication, 

a detailed design parameter space for development of STVB with heat pipes will be presented. This 

design parameter space can be helpful for the design of STVB as it gives a detailed overview of 

the technological options. It was used to guide the development of a first actual-size test sample 

of a façade element with integrated STVB. The technical performance of this test sample with 

regard to solar thermal and solar control functionality is subsequently evaluated based on results 

of calorimetric measurements, to prove the general feasibility of the technological approach. Later, 

the STVB system is discussed regarding its potential for customisation and from the context of 

façade construction. Finally, recommendations for further developments are assessed based on 

expert feedback and on the conclusions drawn from the investigated test sample. As the focus of the 

paper is the design and proof-of-concept, the energy savings potential by STVB in buildings is not 

evaluated in detail. This should be part of future studies based on building performance simulations 

using an experimentally validated simulation model of STVB. The paper at hand lays the foundation 

for further in-depth performance evaluations.

2 DESIGN OF SOLAR THERMAL VENETIAN BLINDS

A detailed design parameter space (DPS) is developed to give an overview of the technical design 

options and is then used to create a full-scale test sample of a STVB. The design parameter space is 

divided into different categories (such as different subassemblies of the STVB). For each category 

the relevant components and their different design choices, named design parameters, are listed. 

The design parameter space provides a detailed technological overview to engineers and researchers 

designing and constructing STVB with heat pipes. It can thus help to create new variants of the STVB 

and continue its development.

 2.1 DESIGN PARAMETER SPACE

The STVB must simultaneously function as a building-integrated solar thermal collector and as solar 

control device. For the design parameter space presented here, STVB with heat pipes are defined 

as venetian blinds with horizontal, tiltable and retractable slats that incorporate a heat pipe along 

their lengths. The heat pipe is responsible for the heat transfer from the slat to the fluid in a header 

tube, thus providing solar thermal heat. The STVB is defined as the venetian blind with all elements 

relevant for heat transfer, including the header tube, but without the surrounding or adjacent façade 

element and glazing (cf. Fig. 1). As such, the STVB is then mounted as part of the façade.



 135 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 8 / NUMBER 1 / 2020

FIG. 2 First and second level of the design parameter space of solar thermal venetian blinds with heat pipes. The full design 
parameter space is provided as a supplementary file.
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An overview of design parameters for BIST collectors and a design parameter space for solar control 

devices were published in Cappel, Kuhn, and Maurer (2015); and Maurer, Cappel, and Kuhn (2015); 

and Kuhn (2017), respectively. Following the above-mentioned definition of STVB with heat pipes, 

the STVB design parameter space was compiled to give a complete insight into all design choices 

that play a role when designing, engineering, and developing a solar thermal venetian blind. As a 

starting point, the essential functional elements of STVB were analysed. For each of these, the 

different technical possibilities and design choices were analysed. Each branch of the DPS in Fig. 

2 thus presents a different main category. For each main category the relevant design parameters 

are presented, sometimes grouped into sub-categories (cf. full DPS as Supplementary File). The DPS 

is considered to include all relevant design parameters at the time of writing; nonetheless, new 

developments and technologies might alter it in the future.

When using the DPS, an option has to be chosen for each design parameter in each category. 

The design parameters are not linear independent, i.e. changing one parameter can influence 

other parameters. The DPS provides exemplary options for each design parameter but does 

not claim to include all possible options. The DPS is not intended to evaluate the resulting 

STVB variants, but rather to give a detailed overview to help the understanding of the relevant 

design parameters of STVB.

The first two levels of the DPS, which represent the main functional elements and main design 

choices of STVB, are now discussed in detail. Subsequently, examples of the application of the DPS 

to develop a STVB concept are shown in Section 2.2. This STVB concept has been realised as a 

functional actual-size test sample.

Position of STVB

The STVB can be positioned externally on the façade, or inside the building (internal). In double skin 

façades, box-type windows, or closed-cavity façades, the STVB can be mounted in a cavity between 

glazing layers where conventional venetian blinds would be mounted as well.

Slat

The absorber, i.e. the top surface of the slat, and the heat pipe have a large influence on solar 

thermal performance, solar control functions (e.g. passive solar gains and daylighting), and aesthetic 

appearance. The absorber can range from grey, that is diffusely reflecting, or light guiding as known 

from conventional slats, to dark blue and highly absorbing with low emissivity as known from solar 

thermal collectors (called spectrally selective coating). In addition, more sophisticated coatings 

with high absorption and yet a broader range of colours (Bläsi et al., 2017) or spectrally selective 

coating with IR absorption and diffuse reflection in the visual range (Lang, 2007) can be used. 

Absorber thickness and material influence the heat transfer to the heat pipe as well as slat weight 

and stability. The bulk material of the absorber sheet should ideally be the same as the heat pipe 

material to handle thermal expansion. In fact, the combination of an aluminium absorber with a 

copper heat pipe, though common in solar thermal collectors, could lead to aesthetically undesirable 

deformations and waviness of the absorber sheet due to different thermal expansion coefficients.

The heat pipes are responsible for the heat transfer from absorber to header tube. Most commercially 

available heat pipes for the application in solar thermal collectors have a cylindrical cross section. 
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The maximum amount of power they can transfer, called operating limit, depends to some degree on 

a sufficiently large diameter and on its angle of inclination. The operating limit of the chosen heat 

pipe has to be higher than the maximum amount of absorbed solar radiation, while maintaining a 

low thermal resistance. The thermal performance is known to decrease with decreasing diameter 

(Jack & Rockendorf, 2013). This is a limiting factor in achieving thin slats for STVB. Other cross-

sectional shapes, such as oval or rectangular, could better suit the application in STVB but are much 

less common. Moreover, due to the horizontal slats, the heat pipes have to function at small angles 

of inclination. To be more precise, the operating limit of the selected heat pipe has to be sufficiently 

high for all possible tilt angles of the slat. Two technological approaches can be used for heat pipes 

to achieve this good thermal performance at or near horizontal orientation of the heat pipe: mesh 

or sintered heat pipes using capillary forces to return the fluid from the condenser to the evaporator 

part (Reay, Kew, & McGlen, 2014) or “overfilling” of closed two-phase thermosiphons (Bezrodny 

& Podgoretskii, 1994; Morawietz, Paul, & Schnabel, 2018). The topic of heat pipes in horizontal 

orientation for the application in solar thermal collectors is still the subject of ongoing research. 

Special attention has to be paid to the case of the condenser being lower than the evaporator, i.e. 

for negative operating angles. This could happen due to the orientation of an individual slat, of the 

STVB element, or the mounting in the façade. In this case the heat pipe would have to work against 

gravity to return the condensed fluid back to the evaporator part and the resulting operating limit 

is lower. Besides the important topic of the operating limit, the maximum and minimum ambient 

and operating temperatures have to meet the application in a STVB, i.e. typically, the heat pipe 

would have to withstand freezing temperatures for its application in the façade as well as high 

temperatures above 100°C for its application in a solar thermal collector. The outer material of the 

heat pipe needs to be compatible with the other components of the slat and based on availability.

Slat geometry such as cross-sectional shape, edges, etc. can be chosen, taking into consideration 

the absorber and heat pipe properties as well as the requirements of architectural design and solar 

control properties. One important characteristic is the slat thickness in packed position. The packed 

slats will be an opaque area of the façade, which should be minimised for highly transparent 

façades and/or needs to coincide with opaque areas of the façade such as floor slabs. Furthermore, 

the projected slat thickness of the lowered blind as seen from an observer inside the room is 

important as it influences the visual contact to the exterior. Structural elements of the slat have to be 

designed carefully to deal with the increased mass of the slat due to heat pipe, absorber and other 

components. Back surface properties need to be considered as they influence daylighting, could cause 

glare if not chosen well, and influence the overall appearance of the blind curtain. Finally, different 

slat types can be chosen for parts of the blind curtain, e.g. using light redirecting slats for the top part 

and STVB slats below, leading to an optional subdivision of blind curtain.

Heat Transfer Components

The heat transfer components include all elements and mechanisms involved in the heat transfer 

between heat pipe condenser and header tube. Two main approaches were identified. Fixed thermal 

coupling means that the connection between heat pipe and header tube is fixed except for the 

movement necessary for the slat. An example can be found in Cruz Lopez (2011), where the heat 

is transferred via overlapping of fin-type heat sinks mounted onto the heat pipe condenser and 

header tube without direct contact or only a sliding contact between the elements. Switchable 

thermal coupling is a concept that was filed for a patent and in which the thermal and mechanical 

contact between heat pipe condenser and header tube can be switched (Haeringer, Abderrahman, 

Vongsingha, Camarena Covarrubias et al., 2017). In the closed position the heat is transferred via 
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conduction, while in the open position the slats can be moved freely. For the switchable thermal 

coupling, a mechanism including actuators is necessary to switch from closed to open position 

and back. To ensure a good heat transfer across the switchable thermal contact, the contact 

pressing force of the mechanism has to be sufficiently high (Bahrami, Yovanovich, & Culham, 2004). 

Additionally, the heat transfer from heat pipe to header tube can be enhanced using elements such 

as an adapter around the heat pipe condenser, special condenser geometries and/or heat transfer 

films. As this heat transfer is crucial for the solar thermal performance and the control of passive 

solar heat gains, detailed simulations or experiments are recommended when comparing different 

concepts (Haeringer, Abderrahman, Vongsingha, Camarena Covarrubias et al., 2017).

Header Tube

The header tube needs to transfer the heat into a heat transfer medium such as water or solar fluid 

(a water-glycol mixture), which then transports the heat to the technical building services. The heat 

transfer to the header tube is influenced both by the design of the heat transfer components as well as 

the contact surface properties of the header tube The heat transfer into the fluid is mainly influenced 

by the shape (cross section) and material of the header tube. For example, multi-port pipes or fins 

inside the header tube can be used to create a large contact area and high heat transfer coefficients 

between fluid and header tube (Schiebler, Giovannetti, Schaffrath, & Jack, 2018). Mechanical strength, 

with regard to the pressing force of a switchable thermal coupling and against deformation due to 

the inner fluid pressure of the system, is important and influenced mainly by the cross-sectional 

geometry. Another parameter is the position: The header tube would typically be at the side of 

the element, but the orientation relative to the heat pipe condenser can be chosen (Haeringer, 

Abderrahman, Vongsingha, Camarena Covarrubias et al., 2017).

Blind Mechanism

To move the slats, a blind mechanism has to be designed. The main components include the lifting 

mechanism and the tilting mechanism responsible for retracting and lowering the blind curtain 

and changing the slat tilt angle with the help of motors. Furthermore, slat guiding devices can be 

used such as guiding rails or guiding ropes. Regarding costs, it is preferable to use conventional 

components (motors, gears, lifting tapes etc.) which use a single motor for lifting and tilting. However, 

the increased weight of the blind curtain and potentially higher temperatures need to be taken into 

consideration. Additionally, the alignment between the slats and the header tube is critical for the 

heat transfer components, especially for the switchable thermal coupling. Therefore, elongation of the 

elements connecting the motors and bottom bar or slats, caused by the suspended load, has to be 

considered. Conventional lifting tapes and tilting cords are based on textile material. To improve their 

strength and reduce the elasticity modulus, these textile elements can be fibre-reinforced or replaced 

by metal elements (e.g. steel). Plastic tape reels, conventionally used for tilting and lifting of venetian 

blinds with one motor, can typically carry up to 5 kg of weight each. With heavier STVB slats a larger 

number of tape reels must be used to carry the additional weight, or they have to be replaced by a 

more robust alternative. Commercially available all-metal blinds use a system of scissor chains for 

tilting and a chain mechanism for lifting (Griesser AG, n.d.; Griesser AG, 1979; Schenker Storen, n.d.) 

achieving a precise, reliable positioning of heavy slats but requiring regular maintenance.
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Insulation

Insulation can and should be applied in various locations to increase solar thermal yield and lower 

passive solar heat gains by lowering heat losses. Additionally, cover sheets can be used to hide 

elements such as the blind mechanism and the mechanism of switchable thermal coupling for 

aesthetic reasons. The design of the STVB allows architectural design freedom such as using a 

shadow box technique or glass fritting when positioning the STVB between two glazing layers. Cover 

sheets and many other elements allow for individual architectural designs.

Control

In operation, different control strategies can be applied. The blind control could be manual or 

automated. Due to the multifunctionality, it is highly advisable to employ an automated control 

strategy that considers both passive solar gains, solar thermal energy harvesting and user comfort. 

Automated controls could prioritise, for example, user comfort (e.g. thermal comfort, glare control 

or daylighting) or solar thermal yield, and allow overriding by the user. The extent of overriding 

by the user might have to be limited, to not compromise the overall performance of the system 

especially regarding solar thermal yields. Advanced control strategies with optimisation routines 

could be adapted to balance the different demands and provide a robust system (Katsifaraki, 

Bueno, & Kuhn, 2017).

The solar thermal system control includes control of mass flow and fluid inlet temperature or 

target outlet temperature. This greatly depends on the intended use of the solar thermal heat 

and the building service system. In general, applications requiring lower fluid temperatures are 

preferable, such as low temperature radiant heating or as a source for heat-pumps. With lower fluid 

temperatures, the solar thermal efficiency is higher (due to reduced losses to the ambient) and 

passive solar heat gains are lower (due to reduced secondary heat gains). At times when the heat 

demand of the building is significantly lower than the heat provided by the STVB, stagnation can 

occur (e.g. in summer, as in a conventional solar thermal system). The design of the STVB, overall 

façade system, and the integration into the building service system therefore has to ensure that the 

control of passive solar heat gains and prevention of overheating is guaranteed during stagnation or 

that stagnation is prevented.

Interface to the Facade

Taking the position of the STVB into account, the interface to the facades has to be defined including 

the structural, hydraulic, and electric connections. Considerations for the interfaces during the 

installation process are presented in Section 4.2.

 2.2 DESIGN AND CONSTRUCTION OF A FIRST SOLAR 
THERMAL VENETIAN BLIND TEST SAMPLE

The presented design parameter space was used to develop a detailed concept of a STVB, which 

then was realised as actual-size test sample. This publication discusses the design parameter 

categories position of the STVB and slat, as they are relevant to architectural appearance. The design 

considerations are done for the most part on a qualitative level for the design and realisation of the 
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first STVB test sample but can be extended to quantitative comparison using detailed simulation 

models or extensive testing. Criteria to evaluate solar control functionality including visual comfort 

and daylighting of solar control devices were presented in Kuhn (2017). The general evaluation 

criteria for building-integrated solar thermal systems functionality, aesthetics, ecology, economy, 

and feasibility were presented in Maurer, Cappel, and Kuhn (2015). The main technical evaluation 

criteria used for the design process of the STVB test sample are solar thermal yield and solar control 

functionality, especially passive solar heat gain control (g-value). The main aim of the presented STVB 

concept is maximising solar thermal yield.

 2.2.1 Position of the Solar Thermal Venetian Blind

Mounting the STVB in a cavity between glazing layers as in double-skin façades (DSF) (or box-type 

windows or closed-cavity façades) protects it from wind, dust, and human contact (Knaack, Bilow, 

Klein, & Auer, 2014), leading to longer life expectancy, reduced maintenance, and the capacity to 

function in strong winds. A higher solar thermal yield can be achieved, when compared to external 

or internal mounting, as fewer heat losses to the surroundings via convection and radiation occur, 

especially for non-ventilated DSF (e.g. closed-cavity façades CCF). Mounting the STVB within the 

cavity between two glazing layers resembles the situation of a conventional flat plate collector, where 

a front glass pane covers the absorber and the back is insulated. The test sample was therefore 

constructed as a double-skin element façade, identified as a suitable façade type for STVB.

 2.2.2 Slat Design

The slats have a significant influence on solar thermal performance, aesthetic appearance, and 

structural stability. The slat developed for the STVB test sample is shown with its individual 

components in Fig. 3. Conventional copper-based collector absorber sheets with spectrally selective 

coating (i.e. high absorptivity in solar range, low emissivity in the IR range) were used aiming to 

maximise solar thermal yield. The influence on the passive solar heat gain is not clear without in-

depth analysis due to two opposing effects:

 – higher absorptivity leads to higher secondary heat gains, due to increased 

temperatures of the absorber

 – lower reflectivity leads to a lower effective transmission of solar radiation through the STVB 

layer into the building (i.e. less radiation is reflected from the slat into the building, especially for 

small slat tilt angles)

For the designed STVB, commercially available cylindrical mesh heat pipes with 8 mm diameter 

and copper as the outer material were chosen. Alcohol as working fluid is used to withstand 

temperatures below 0°C. The selected heat pipe works at an almost horizontal orientation, but the 

thermal performance increases with increasing operating angle (if angles near 0° are considered). 

For this reason, the heat pipe is mounted diagonally behind the absorber sheet. A geometric analysis 

of the heat pipe inclination in correlation with the slat dimensions and slat tilt angle was carried 

out in TABLE 1. The slats dimensions are length l = 1020 mm, width w = 93.8 mm , and thickness 

t = 10.6 mm with a vertical slat distance of d = 83.4 mm. The absorber area per slat is A
abs,slat 

= 

(1004∙72 mm2) = 0.072 m². The absorber and heat pipe were assembled using laser-welding, which 
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is established for solar collectors and is less visible than, for example, ultra-sonic welding (Cappel 

et al., 2015). The bond from laser welding is nonetheless slightly visible on the front surface of the 

absorber sheet in Fig. 3. 

FIG. 3 Left: Slat components. Right: Back surface of a slat with diagonally mounted heat pipe and triangular adapter in the 
foreground (back cover sheet removed).

TABLE 1 Heat pipe inclinations in correlation with slat dimension and slat tilt angle.

SLAT SIZE SLAT TILTING ANGLE β HEAT PIPE INCLINATION

1020 x 94 mm 5° 0.4°

10° 0.8°

45° 3.1°

82° (closed) 4.3°

The slat geometry was chosen to be flat as the heat pipe is mounted diagonally along the length of 

the absorber sheet. Curved absorber sheets would require a curved heat pipe. This is technically 

feasible but results in a more costly manufacturing process. Taking into account the slat thickness 

t and vertical slat distance d, 12% of the visual contact to the exterior is blocked in the horizontal 

viewing direction for slats in a horizontal position. Reducing the slat thickness would improve the 

visual contact to the exterior and reduce the opaque area for the retracted slats.

As both the heat pipe and absorber sheet itself are structurally weak, reinforcement is needed to 

deal with the weight of the heat pipe, absorber sheet, and adapter, which is used for heat transfer 

to the header tube. For the test sample, a reinforcement frame assembled out of commercially 

available aluminium profiles was designed to support the perimeter of the absorber sheet. The aim 

was to achieve structural strength while keeping a low overall slat weight. The reinforcement 

frame elements on the short, lateral edges are slightly thicker than the rest of the slat. They act as 

spacers between the slats, when they are in a packed position, to protect the absorber coating 

from damage. The back and sides of the slats are covered using a thin aluminium back cover 

sheet resulting in a plain slat appearance. In mass production, an aluminium frame profile that 

supports the absorber and heat pipe, and functions as back cover sheet, could be manufactured 

cost-effectively via extrusion moulding. The absorber and heat pipe could then be inserted easily in a 

simple assembly process.
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For the first test sample, no subdivision of the blind curtain was employed for simplicity and cost 

reasons. In a more advanced STVB, the upper part of the blind curtain could use light-redirecting 

slats to provide daylight to the depth of the room.

 2.2.3 Overall Concept of the Test Sample

The overall design of the test sample, an actual-size double skin façade element with integrated 

solar thermal venetian blind, is shown in Fig. 5. The heat transfer from heat pipe condenser to the 

header tube is achieved using an adapter and a switchable thermal coupling mechanism as shown 

in Fig. 4. The adapter is mechanically fixed to the heat pipe condenser to increase the contact 

surface area to the header tube (cf. Fig. 3). The switchable thermal coupling mechanism employs 

springs and solenoids. The springs press each adapter against the header tube to achieve the 

heat transfer, while the solenoids open the coupling when blind movement is necessary (cf. Fig. 

4 and Fig. 5). The pressing force between each adapter and the header tube is approximately 10-15 

N. The development of a first switchable thermal coupling as heat transfer component was presented 

in Haeringer, Abderrahman, Vongsingha, Camarena Covarrubias et al. (2017). A video demonstrates 

the movement of the switchable thermal coupling and the ability of the test sample to tilt and retract 

the slats (Fraunhofer ISE, 2018). The header tube is based on a multi-port profile, which has a large 

contact surface with the fluid for heat transfer, while its structural strength minimises deformation 

due to internal fluid pressure (see Fig. 4). Deformations would lead to a reduced contact between the 

adapter and the header tube. The blind mechanism employs rigid steel ropes for lifting, and steel 

scissor chains to connect the slats for tilting. Using steel was necessary to achieve the high precision 

in positioning the slat and adapter perpendicular to the header tube surface.

FIG. 4 Schematic horizontal cross-section of the switchable thermal coupling mechanism used as heat transfer component in the 
STVB test sample. Red arrows indicate the heat flow from slat through heat pipe and adapter to the fluid in the header tube. Black 
arrows indicate the movement of the switchable thermal coupling mechanism from open to closed position. The dashed red lines 
indicate the position of slat, adapter, and movable pressing frame when the switchable thermal coupling is closed.
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The outside of the façade element is fully glazed and the overall active slat absorber area is A
abs,tot 

= 

37∙A
abs,slat 

≈ 2.67 m², out of the overall gross façade element area A
gross 

= 5.0 m2. The exterior glazing 

layer is 8mm low-iron single-pane toughened safety glass with a solar transmission of t
e 
= 0.89. 

The interior glazing has an area of 2.9 m², i.e. about 60% of the façade element is transparent from 

the inside. It is a conventional insulating double-glazed unit with single low-e coating and argon 

filling with t
e 
= 0.52, solar heat gain coefficient g = 0.60 and U = 1.1 W/(m2K). Plain steel sheets cover 

the remaining area of the back surface of the façade element. The cavity between the exterior and 

interior glazing layer is 31 cm in depth and has no ventilation openings (but it is not hermetically 

sealed). Slats, header tube, and mechanism of the STVB are all placed in this cavity. A detailed 

description of the overall test sample has already been published in Haeringer et al. (2018); and 

Haeringer, Denz, Vongsingha, Delgado, and Maurer (2019).

FIG. 5 Left: Test sample of double skin façade element (1.4 m x 3.6 m) with integrated solar thermal venetian blind seen from the 
exterior side. Right: Switchable thermal coupling mechanism with springs and solenoids mounted in the test sample, upper part 
covered with cover sheets.
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3 EXPERIMENTAL PROOF OF CONCEPT

The STVB test sample that was developed based on the presented design parameter space has been 

characterised using calorimetric measurements on an outdoor test facility for solar active building 

envelope elements. Based on these results, the technical performance of the test sample has been 

evaluated with regard to solar thermal performance and solar control functionality. The overall goal 

was to prove the technical feasibility of the chosen STVB concept, i.e. to show the simultaneous 

functioning as solar control device and as solar thermal collector.

 3.1 METHODOLOGY

The experiments were carried out at an outdoor test facility for real-size building envelope elements 

(Haeringer, Denz, Kuhn, & Maurer, 2019; Maurer, Amann et al., 2015). The measurements report 

the energy flux through the façade element as well as renewable energy performance, specifically 

the solar thermal yield. Thus, solar heat gain coefficients (g) and solar thermal efficiency η can 

be calculated. The measurement of the energy flux through the element relies on a “cooled plate 

method” as discussed in detail for indoor laboratory conditions in Kuhn (2014).

The operation parameters varied during the measurements as shown in TABLE 2 are:

 – blind curtain extension BE, with BE = 1 for fully lowered blind and BE = 0 for fully retracted blind

 – slat tilt angle β, with β = 82° representing fully closed slats

 – collector fluid inlet temperature T
f,in

, covering the whole working temperature range

The solar irradiances G
h
 (total hemispherical irradiance on the collector plane), E

d 
(horizontal diffuse 

irradiance), and ambient temperature T
amb

 vary naturally. The sample was placed in the vertical 

position with the façade azimuth angle tracking the sun, i.e. the sample receives the irradiance with 

changing solar altitude angles θ and constant zero azimuth angle. The collector fluid mass flow was 

set to m ̇≅ 0.02 kg/(m2/s)∙A
abs,tot 

= 0.054 kg/s following the standard test conditions of (ISO 9806, 2017), 

but using the absorber area A
abs,tot

 instead of the gross collector area A
gross

. For all measurements the 

interior temperature was set to T
int 

= 22°C to approximately match T
amb

.

TABLE 2 Design of experiments for calorimetric measurements of STVB test sample.

DESCRIPTION BE  β [°] T
f,in

 [°C]

Slats lowered & closed with low fluid temp. 1 82 21

with medium fluid temp. 1 82 55

with high fluid temp. 1 82 90

Slats lowered & 45° with low fluid temp. 1 45 21

Slats lowered & opened with low fluid temp. 1 10 21

Slats halfdown & closed with low fluid temp. 0.5 82 21

with medium fluid temp. 0.5 82 55

Slats halfdown & 45° with low fluid temp. 0.5 45 21

with medium fluid temp. 0.5 45 55

Slats halfdown & opened with low fluid temp. 0.5 10 21
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The main measurement results are solar thermal yield Q ̇
use

 and the local solar energy fluxes q
SHG,i

 to 

the building interior for each individual measurement situation. The instantaneous hemispherical 

solar thermal efficiency η = Q ̇
use

/(G
h
∙A

ref
) at the present operation and boundary conditions is 

calculated using the overall absorber A
abs,tot 

≈ 2.67 m2 as reference area A
ref 

(cf. Fig. 6). In contrast to 

conventional opaque collectors, the STVB can offer partial transparency, and thus visual contact to 

the exterior, while harvesting solar thermal energy. To take into account this multifunctionality of 

the STVB, the total projected area of the slats on the front glass pane A
proj 

= l∙(t cos β + w sin β)∙37∙BE 

can be used as reference area A
ref

 as shown in Fig. 6. This is the opaque area in the normal viewing 

direction (neglecting the blind pack). This area reaches its maximum at A
proj,max 

= 3.15 m²∙BE for slat 

tilt angles β ≥ 56° where the transparent area in normal viewing direction dissapears. For BE = 1 this 

is the total venetian blind area. Achieving a similar ratio of transparency in normal viewing direction 

for an opaque solar thermal collector would result in an absorber with area A
proj

.

FIG. 6 Different areas that can be used as reference area A
ref

 to calculate the solar thermal efficiency η. Left: Overall slat absorber 
area A

abs,tot 
≈ 2.67 m2. Centre: Projected slat area A

proj
 for exemplary slat tilt angle of β = 10°. Right: Maximum projected slat area 

A
proj,max 

= 3.15 m²∙BE for slat tilt angles of β ≥ 56°.

The local solar heat gain coefficient g
i
 of the test sample (i.e. of the façade element including the 

STVB) is calculated with q
abs,i

, G
h
, T

int,i
, T

amb
 and the U-value (Kuhn, 2014). In this paper, only the centre-

of-glazing solar heat gain coefficient g
cg

 is presented. It is important to note that the solar heat gain 

coefficient g of transparent BIST, like the STVB, varies with the collector operating conditions (Maurer 

& Kuhn, 2012). Semi-stationary conditions can be defined for times when efficiency and solar heat 

gain coefficient g are stationary. This requires fairly constant irradiance and ambient temperature. 

Using azimuth tracking increases the time with constant irradiance to reach these conditions.

Under the condition of T
int 

≈ T
amb

, the solar thermal performance of the STVB test sample, which is 

a BIST collector, can be evaluated like conventional solar thermal collectors according to Quasi-

Dynamic Testing (QDT) as defined in ISO 9806 (2017) and setting a
3
, a

4
, a

6
, a

7
 (articifial wind source) 

and a
8
 (non-concentrating collector) to zero in equation (13) of ISO 9806 (2017). As direct irradiance 

G
b
 and diffuse irradiance G

d
 on the collector plane are not directly measured by the test facility, they 

are calculated based on G
h
, E

d
, θ and a ground reflectance of 0.2 estimated for the test site. For the 

conversion, the isotropic sky model and the general relationship G
h
 = G

b
 + G

d
 have been used (Duffie 

& Beckman, 2013). The flat plate collector model is used for the incidence angle modifier K
b
 (θ) 

for closed slats with slat tilt angle β = 82° under azimuth tracking (ISO 9806, 2013). The resulting 
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efficiencies can be compared to efficiency curves of conventional solar thermal collectors to evaluate 

the technical feasibility of the STVB concept.

 3.2 RESULTS AND DISCUSSION

The measured solar thermal yield Q ̇
use

, showed that the STVB test sample operates as a solar thermal 

collector for all tested cases of TABLE 2. This proves that the conversion of irradiation into heat by 

the absorber sheets, as well as the heat transfer via heat pipe and switchable thermal coupling to 

the header tube, are working. The first aspect (conversion of solar irradiation into heat) was expected 

because the absorber sheets are the same as those used in conventional solar thermal collectors. 

The second aspect (heat transfer via heat pipe and switchable thermal coupling) thus proves that 

the heat pipe operates properly at all slat tilt angles, and that the heat transfer across the switchable 

thermal coupling is working.

Stationarity of η was found on clear days roughly between 12:00 and 17:00. On overcast days with 

highly varying irradiance, semi-stationary conditions were not achieved. The QDT method was 

applied for BE = 1, β = 82° with results in TABLE 3 and efficiency curve in Fig. 7. Efficiency curves 

represent the efficiency η as a function of the so-called “reduced temperature difference”, which 

is the temperature difference between mean fluid temperature T
m

 and ambient temperature T
amb

 

divided by the irradiance G
h
. Hence, it can be used to evaluate the solar thermal performance at 

different fluid temperature levels and/or irradiances. The application of the QDT approach for the 

STVB measurements, the resulting efficiency curve, and all comparisons to conventional solar 

thermal collectors are valid only for T
int 

≈ T
amb

 and zero azimuth angle, as discussed. The QDT 

evaluation and the efficiency in semi-stationary conditions for BE = 1, β = 82° match well. Comparing 

the performance of half-lowered slats (BE = 0.5) with fully lowered slats (BE = 1) shows a lower 

efficiency for BE = 0.5 where only 18 slats are fully exposed to the sun.

TABLE 3 Collector parameters of STVB for T
int 

≈ T
amb

 obtained via QDT compared to a research flat plate 
collector with heat pipes - FPC-HP - (Schiebler et al., 2018) and a commercially available flat plate collector - 
FPC - (DIN CERTCO, 2015). Reference area A

abs,total
 = 2.67 m² used for the STVB.

STVB
BE = 1
β = 82°

FPC-HP FPC

η
0
 [1] 0.307±0.010 0.733 0.842

a
1
 [W/m²K] 3.07±0.16 3.562 3.620

a
2
 [W/m²K²] 0 0.017 0.016

a
5
 [kJ/m²K] 138±12 - 6.8

b
0
 [1] 0.12±0.11 - 0.13

K
d

0.88±0.13 - -

To learn more about the quality of the heat transfer and heat losses in the STVB test sample, the 

efficiency parameters in TABLE 3 are compared to a commercially available flat plate collector (DIN 

CERTCO, 2015) and a flat plate collector with heat pipes developed in a research project (Schiebler et 

al., 2018), which resembles the STVB more closely in terms of the heat transfer principle. The peak 

collector efficiency η
0
 of the STVB test sample is much lower than η

0
 of these reference collectors. 
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The collector heat transfer coefficient a
1
 is comparable. The maximum reachable fluid temperature 

T
m

 for given ambient temperature T
amb

 and irradiance G
h
 are considerably lower for the STVB than for 

the references, as can be seen from Fig. 7. It is important to note that the possibility to tilt and retract 

the slats offers the possibility for transparency, which is inherently not possible with conventional 

solar thermal collectors. Using the projected slat area A
proj 

= 1.01 m² instead of A
abs,total

 as a reference 

area for β = 10° at BE = 1 to judge this multifunctionality would increase the calculated efficiency by 

a factor of 2.6. An efficency of η
0 
≈ 0.3 would thus become η

0,proj 
≈0.8. This efficiency is comparable 

to a conventional solar thermal collector. Conclusively, the STVB can already provide solar thermal 

yields at η
0
-conditions similar to a conventional collector with a comparable transparent percentage 

of 68%, as achieved for β = 10°, BE = 1 for the venetian blind area. Because the heat loss coefficient 

a
1
 increases by a factor of 2.6 for the area conversion as well, the STVB efficiency drops much more 

quickly than a conventional collector for higher temperature differences T
m

-T
amb

.

FIG. 7 Efficiency curves η of STVB test sample for T
int 

≈ T
amb

 as function of mean fluid temperature T
m

, ambient temperature T
amb

, 
and hemispherical irradiance G

h
 compared to reference collectors (cf. TABLE 3). Slat tilt angles β noted as label for each data point. 

Reference area A
abs,total

 = 2.67 m² used for the STVB.

The measured solar heat gain coefficients of the test sample with closed and lowered slats  

(β = 82°, BE = 1) are in the range of g
cg 

≈ 0.1. The solar heat gain coefficient g
cg

 increases relatively by 

approximately 50%
rel 

with increasing fluid temperatures of the solar thermal system from  

T
f,in

 = 21°C to 90°. Due to the overall low solar heat gain coefficient of the tested STVB façade 

element, this change is not considered critical to the control of passive solar heat gains. Nonetheless, 

operating the STVB at lower fluid temperatures would be beneficial with regard to lowering the 

cooling demand of a building. Considering that towards the interior only conventional double glazing 

is used (cf. Section 2.2.3), the measured solar heat gain coefficients are sufficiently low, even for 

highest fluid temperatures, and the solar control functionality is provided for all cases.

Based on the presented measurement results, it is concluded that both the solar thermal 

functionality and the solar control functionality of the test sample have been demonstrated 

successfully. Despite the need for technical improvement, especially with regard to solar thermal 

efficiency, this first STVB test sample therefore proves the technical feasibility of the concept 

of STVB with heat pipes and switchable thermal coupling. It also shows its potential due to its 

multifunctionality allowing transparency.



 148 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 8 / NUMBER 1 / 2020

4 ARCHITECTURAL IMPLEMENTATION OF THE STVB SYSTEM

The concept of STVB has been evaluated regarding its applicability in architecture and façade 

construction. Design choices by architects, planners and building owners regarding the STVB system 

and their relation to the design parameter space are discussed in this section on a conceptual level. 

Possible installation processes are presented and recommendations for further developments of 

STVB are identified with the help of industry experts.

 4.1 CUSTOMISATION OF STVB DESIGN

The functional and architectural potential of the STVB concept has been presented and reviewed at 

several trade fairs (BAU 2017, BAU 2019, and glasstec 2018 (Horn & Block, 2018)), and conferences 

(Denz, Maurer et al., 2018; Denz, Vongsingha et al., 2018; Haeringer, Abderrahman, Vongsingha, 

Kuhn et al., 2017). The variety of the STVB design parameter options allows for customisation of the 

STVB for individual building projects, e.g. concerning slat colour (absorber), shape (slat geometry), 

and position of the STVB. As the STVB can be combined with various different façade typologies, this 

leads to different potential adaptations of the STVB system. Changing these parameters influences 

the technical performance, especially solar thermal and solar control functionality. Finding a 

meaningful STVB concept therefore depends on the individual requirements of the building project 

and can require compromises, e.g. between technical performance and architectural intent.

The architect, specialist planner, or building owner can thus make different design choices. TABLE 4 

provides an overview of the most important design options for the STVB system and its integration 

into the technical building plant. These design choices are conceptual and require experimental 

or theoretical validation before being applied in real buildings. The scope of the design choices in 

TABLE 4 is broadened compared to the DPS in Fig. 2, which explicitly focuses on technical aspects for 

horizontal, fully movable STVB. For example, TABLE 4 includes choices with reduced slat movement 

(i.e. less complexity), which could be beneficial to solving the issues with heat transfer from heat 

pipe to header tube and thus improving the solar thermal efficiency compared to the test sample (cf. 

Section 3.2). The design choice map is not as detailed as the DPS, so architects and planners can use 

it during conceptual and design phases when applying the STVB to an individual building project. 

From the design choices, the technical requirements need to be defined and solutions can be found 

with the help of the DPS.

Based on this overview, STVB can be seen as a slat-type solar control and solar thermal system that 

can be adapted to meet different architectural and constructional requirements. This customisation 

enables design possibilities as required for façade application of newly developed solutions (Klein, 

2013). Furthermore, a reduction of the complexity can be achieved to enable application in first 

building projects with low risks, for example by focusing on tiltable slats, which cannot be retracted. 

The blind mechanism becomes simpler and the number of components is reduced. The heat 

transfer components from slat to header tube could be modified as the full movement of each slat 

is not required anymore. This could lead to a better heat transfer and thus a higher solar thermal 

efficiency. TABLE 4 therefore serves as an outlook to further development paths of the STVB and to 

potential adaptations of the STVB in first building projects.
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TABLE 4 Design choices and options for solar thermal venetian blind systems

DESIGN 
CHOICE

OPTIONS

Degree 
of slat 
 movement

Fixed Tiltable Retractable Tiltable & retractable

Absorber 
surface

No coating Colour coating  
(painted, anodized, powder coated)

Spectrally selective coating PVT (combination with 
PV cells)

Slat shape

Slat width Large slats (>100 mm width) Venetian blind slats (~60-100 mm width)

Façade 
pat tern 
width & 
slat length

Conventional (~1.35 m)  Long (>1.5 m)

Slat 
 orientation

Vertical slats Horizontal slats

Blind 
control

Manual control Central control Fully automated control with optional 
overriding by user

Use of 
 solar  
 thermal 
heat

Domestic hot water 
preparation

Low-temperature 
 radiant heating

Space heating with 
radiators

Source for heat-pump 
or to regenerate 

 geothermal probes

Solar dehumidification / 
Solar cooling

Position 
of STVB 
and façade 
type

Exterior application  
(arbitrary façade type)

Inside cavity of box-type window  
or double skin façade

Inside cavity  
of closed cavity façade

Degree 
of STVB 
element 
movement

Fixed element
Window shutter type Sliding shutter type
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 4.2 INSTALLATION PROCESS OF STVB

Due to the vast variety of façade construction typologies in the market, the installation concept 

of STVB should be adaptable to different façade construction and installation types. The basic 

installation scenarios that are investigated, under consideration of the surrounding and 

support components, are:

 – Scenario 1: The STVB is installed on site into a façade system that provides the structure to carry and 

position the STVB components.

 – Scenario 2: The STVB is a pre-fabricated unit supporting itself, installed in a façade system that 

provides supporting points only, such as brackets.

Scenario 1 mostly applies to window (or box-type window) units in a punctuated façade as well as 

stick-system façades like multi-storey ventilated double skin façades (see Fig. 8). In this scenario, 

the STVB is installed directly to the existing structures on site, which support the components of the 

STVB structurally. During the installation, the STVB requires temporary installation support elements 

– e.g. to hold all STVB components in place during transportation and mounting. The temporary 

elements are removed when the STVB is adjusted to site tolerances and fixed to the main structure 

in the correct position. This method would require a long installation process on site. Depending on 

weather and location, the installation could therefore become rather difficult.

FIG. 8 STVB installation in Scenario 1 on a multi-storey ventilated double-skin façade

In Scenario 2, the STVB itself comes with a rigid frame as standalone unit to be added externally to 

an existing façade or as an integrated part of a unitised façade system. In this scenario, the STVB 

is completely assembled at the workshop before being delivered and mounted to the building. This 

method allows better quality control because the crucial process is done in a controlled environment 

thus shortening the installation process on site.
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FIG. 9 STVB installation in Scenario 2 as part of double skin unitised façade (left); as an additional stand-alone element on an 
existing unitised or stick façade system (right)

As in any general construction process, the façade and other exterior surfaces have to be completed 

first, before the construction of the interior spaces, including the building service system, can start. 

The installation of STVB needs to be considered as part of both processes: façade construction 

and building service construction. After its installation as part of the façade, the STVB needs to 

be checked by a building service specialist who will review the inlet and outlet pipes of the solar 

thermal unit and carry out a leak test. After the test, the pipes need to be sealed, if the installation of 

building service has not yet started. Once the building envelope is fully closed and interior finishing 

starts, the STVB can be connected to building service piping and be put into operation.

 4.3 RECOMMENDATIONS FOR FUTURE 
DEVELOPMENTS AND APPLICATIONS

Based on a detailed review of the developed STVB test sample and with input from trade fairs and 

conferences, a SWOT analysis was carried out underlining strengths as well as weaknesses of the 

STVB approach (Denz, 2019). To review the main benefits of STVB and guide the direction of further 

developments, feedback from external stakeholders was gathered in a lead-user workshop (Hippel, 

2005). Experts with backgrounds such as façade system fabricator, sun-shading fabricator, project 

developer, specialist planner on climate engineering, and architects from both practice and academia 

were identified as lead users and took part in a workshop (Beucker, 2020). The participants discussed 

and evaluated the STVB test sample and its proposed benefits. Together with the lead users, relevant 

requirements and recommendations for future STVB developments were specified and weighted. 

The most important results are summarised in TABLE 5. 
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TABLE 5 Main requirements and recommendations for future developments of STVB as stated during the lead-user workshop.

Design requirements –  Visually reduced and unobtrusive slat design

Technical requirements –  Reduction of mechanical complexity
–  �Reduction of the size of the heat transfer components  

(switchable thermal coupling mechanism and header tube)
–  Accessibility for maintenance and cleaning

Commercial requirements –  Focus on promoting the reduction of the solar heat gain by the STVB while maintaining 
high visual transparency of the glazing as a unique selling point

–  Suitable types of buildings are hospitals, hotels, restaurants, representative building of 
companies, offices, ministries etc.

–  Improve the cost-benefit ratio

User requirements –  High reliability during the service life

These results show that the main concern is the current complexity of the STVB, which presumably 

would result in a laborious production process, high cost, and high maintenance, or low reliability 

during operation. This assessment matches the review of the built STVB test sample and the SWOT 

analysis (Denz, 2019). Reducing the complexity as discussed in Section 4.1 could deal with these 

concerns and improve the cost-benefit ratio if reduced functionality is sufficient for the actual 

building project. In order to simplify the system, the existing components could furthermore be 

redesigned by applying industrial production and installation methods. For example, as suggested in 

Section 2.2.2, aluminium extrusion could reduce cost and time of manufacturing and assembly of the 

slats by reducing the amount of components.

The participants of the lead-user workshop listed the feature of STVB to reduce the thermal load 

within a double skin façade as well as the g-value, while allowing high visual transparency as 

one of its major strengths. Following this concept, STVB could be further developed by focusing 

on its application as an adaptive solar control system, which aims to control and reduce the solar 

heat gain coefficient g rather than focusing on maximising the solar thermal yield. Optimising the 

STVB to reduce the solar heat gain could enable future building projects with fully glazed façades, 

even in corner situations, while still preventing overheating of the room in summer, as required by 

energy efficiency and building codes such as EnEV (2007).

5 CONCLUSIONS

Solar thermal venetian blinds present a novel, multi-functional, and adaptive solar control device 

with solar thermal functionality, fully integrated into glazed areas of the building envelope. They can 

simultaneously fulfil the functions of a solar thermal collector and of a solar control device as has 

been demonstrated experimentally with the designed test sample. The presented design parameter 

space for STVB gives a complete overview of possible variants of STVB with horizontal, tiltable and 

retractable slats that incorporate a heat pipe. Engineers and researchers can use it as guideline 

for future technical developments. Guided by the design parameter space, a STVB test sample with 

heat pipes and fully movable slats was developed. Its key design features are: (1) STVB positioned 

within the cavity of a double-skin façade element, (2) conventional absorber sheet with diagonally 

mounted cylindrical heat pipe, (3) heat transfer between heat pipe condenser and header tube via 

switchable thermal coupling using an adapter with an optimised shape and a mechanism using 

springs and self-latching solenoids, (4) a multi-port header tube. Alternative concepts with different 

absorber coatings, heat pipes, slat geometries, and alternative mechanisms for the switchable 
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thermal coupling can be designed based on the design parameter space. Outdoor experiments on 

the STVB test sample proofed the technical performance of the studied STVB concept in terms of 

solar thermal efficiency η and control of passive solar heat gains (g-value). It was found that the 

solar thermal performance leaves significant room for improvement. However, when considering 

the multifunctionality, namely transparency, the STVB already performs comparably to conventional 

solar thermal collectors.

The design parameter space, various design choices, and integration into different façade 

systems allow architects and specialist planners to adapt the STVB to individual building 

projects. The installation processes for two different mounting scenarios were discussed and 

recommendations by industry experts for future developments were evaluated. The proposed 

customisation of STVB and the recommendations by the lead users will be used to guide further 

developments aiming at the first implementation of the STVB in a building project. Future 

research will investigate the effects of technical improvements and of different design variants 

and assess the overall energy savings potential in simulation studies using an experimentally 

validated model of the STVB. 
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