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Abstract

Daylight Redirecting Components (DRCs) guide daylight to zones with insufficient daylight exposure.
They reduce energy demand for lighting, heating and cooling, and improve visual and thermal
comfort. The data-driven model in Radiance is a means to model DRCs in daylight simulation. Rather
than internal optical mechanisms, their resulting Bidirectional Scattering Distribution Function
(BSDF) is replicated.

We present models of two DRCs that are generated from measurements. The impact of the following
three necessary steps in the generation of data-driven models from measured BSDF shall be evaluated:
1) interpolation between measurements at sparse sets of incident directions;

2) extrapolation for directions that cannot be measured;

3) application of a directional basis of given directional resolution.

It is shown that data-driven models can provide a realistic representation of both DRCs. The sensitivity
to effects from interpolation differs for the two DRCs due to the varying complexity of their BSDFs. Due to
the irregularity of the measured BSDFs, extrapolation is not reliable and fails for both tested DRCs.
Different measurement and modeling protocols should be applied to different class systems, rather than
aiming at a common low-resolution discretization.
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INTRODUCTION

A Daylight Redirecting Component (DRC) controls the admission and directional distribution of
daylight in buildings. The application of a DRC aims to optimize the utilization of daylight for

visual and thermal comfort, well-being and energy efficiency (Gago, Muneer, Knez, & Koster, 2015;
Hoffmann et al,, 2016). Typical applications of DRCs include the upward deflection of daylight
transmitted through the facade to achieve even illumination, or the directional selective transmission
only of diffused daylight through horizontal glazing (Ruck et al., 2000; Nair, Ramamurthy, & Ganesan,
2014). Deflection and directional selectivity are some examples of the irregular optical properties

of DRCs that can be utilized for optimized daylight performance, but are beyond the capabilities of
typical simulation tools employed in building design (Ward & Shakespeare, 1998). To address this
lack of predictability as a barrier for the widespread and successful application of the technique,
different modeling approaches have been demonstrated for the application in daylight simulation.

Software algorithms such as forward ray-tracing or the bidirectional combination of backward
ray-tracing and forward photon-mapping can replicate the light propagation through DRCs based
on geometric models. Photon mapping has been implemented in the daylight simulation software
Radiance (Noback, Grobe, & Wittkopf, 2016; Schregle, Bauer, Grobe, & Wittkopf, 2015; Schregle,
Grobe, & Wittkopf, 2016) and was extended to support even advanced simulation techniques such as
Climate-Based Daylight Modeling (CBDM). However, this explicit approach demands highly detailed
simulation models in cases where the micro-structures in the scale of millimeters comprising DRCs
covering entire building facades shall be modeled geometrically.

Models of the Bidirectional Scattering Distribution Function (BSDF) replicate the effective light
scattering characteristics of DRCs rather than the comprised geometric structures causing it. Such
models describe light propagation as a function of incident and outgoing light direction through

a surface. The two directions, relative to a coordinate system attached to the surface of the DRC,

are typically expressed as pairs of elevation and azimuth angles 6,¢. The BSDF approximates light
scattering as a uniform, average property of a thin surface. Analytic models of the BSDF of the DRCs
have been developed and validated (Greenup, Edmonds, & Compagnon, 2000; Maamari et al., 2006;
Laouadi & Parekh, 2007). However, the development of such custom models for particular devices
and applications is elaborate and has limited scope for generalization.

A general approach is the use of data-driven models of the BSDF. Such models comprise a discrete
set of luminous coefficients, evaluating the light propagation through the device for incident

and outgoing directions merged into regions according to a given directional basis. They can be
generated by computational simulation as well as from measurements (Mohanty Yang, & Wittkopf,
2012; McNeil, Lee, & Jonsson, 2017). As a “black box”, data-driven models hide the complexity of
the internal optical mechanisms effecting light propagation through the device from simulations
employing the model (Kuhn, Herkel, Frontini, Strachan, & Kokogiannakis, 2011; Appelfeld, McNeil,
& Svendsen, 2012). A symmetric directional basis of 145 incident and 145 outgoing directions is in
widespread use and supported by a set of software tools mainly developed by Lawrence Berkeley
National Laboratory (LBNL), such as Radiance and Window. The latter allows the combination of
the BSDFs of co-planar fenestration layers into that of an entire glazing assembly, and provides an
interface for the Complex Glazing Database. The directional basis is employed in multiple domains
of building simulation and backs advanced CBDM methods such as the three-phase method (Klems,
2013; McNeil & Lee, 2013). An asymmetric directional basis of 145 incident and 1297 outgoing
directions was recommended by the International Energy Agency (IEA) and can be employed

to pre-compute transmission through DRCs with mkillum in Radiance (de Boer, 2005; Kdmpf

& Scartezzini, 2011).
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The highest directional resolution can be achieved by the locally adaptive tensor-tree format

of Radiance, allowing up to 16,384 incident and 16,384 outgoing directions. To be applicable in
simulation, and to allow sharing and re-use such as in model libraries, a compact representation
for the data-driven model is required. Starting from a four-dimensional tensor of initially constant
directional resolution, a data-reduction algorithm selectively merges cells representing adjacent
directions with little variance in the BSDF to generate the compact tensor-tree (Ward, Mistrick, Lee,
McNeil, & Jonsson, 2011; Ward, Kurt, & Boneel, 2012). The combination of the optical properties of
fenestration layers described by the tensor-tree format has been demonstrated as a reflection of the
method implemented in Window (Grobe, 2017).

The use of discrete data to describe the continuous BSDF introduces problems of resolution into the
generation, storing and application of models. Measurements sample the BSDF for a finite set of
incident and outgoing directions. This set of directions is bound to the geometric constraints of the
instrument, excluding, for example, directions close to grazing and retro-reflection (Krehel, Grobe,

& Wittkopf, 2017). While their underlying dataset is incomplete by necessity, models must provide
coefficients for any pair of directions, and therefore rely on interpolation and extrapolation. Data-
reduction such as the merging of directions leads to a loss of information in the model.

In this research, the impact of both the interpolation and extrapolation in the generation of models
from measurements, and the effect of directional resolution and data-reduction applied to the data-
driven model shall be assessed for two exemplary DRCs.

A better understanding of the parameters defining measurement and model generation will guide
the generation and application of data-driven BSDF models. Such models would provide a general
means to better predict the daylight performance of DRCs in buildings, supporting both practitioners
and researchers in the field of daylighting.

METHODOLOGY

TWO CASES OF DAYLIGHT REDIRECTING COMPONENTS

The selected case studies focus on typical examples of shading and non-shading DRCs for
applications in vertical and horizontal glazing. The examples employ the optical mechanisms of
reflection and refraction on periodic structures. Due to the small size of these structures, their
scattering properties are perceived as uniform when seen from the position of a typical observer. It is
therefore possible to model both DRCs by their effective BSDFs rather than explicit modeling of the
geometrical structures causing their irregular transmission characteristics.
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FIG. 1 DRC, deflecting sunlight upward FIG. 2 DRC, controlling direct transmission.

DRC, (Fig. 1) is a glazing unit with applied films. A prismatic film is laminated on the inward-facing
surface of an outer pane and deflects incident light. A diffusing film is applied to the inner pane to
achieve smooth light distribution. The system improves daylight supply by deflection but provides
no shading effects (Kazanasmaz, Grobe, Bauer, Krehel, & Wittkopf, 2016; McNeil et al., 2016). It can
be employed e.g. in the upper zone of windows. The exact geometry of the micro-structures on

both films is not known. The utilization of a data-driven model, based on measured BSDF data,
allows the replication of its transmission characteristics even without detailed knowledge of the

system'’s composition.

DRC, (Fig. 2), a grid of tilted anidolic light-shafts, reflects direct sunlight but transmits and
evenly distributes diffuse skylight. It can control solar gains and glare when applied to skylights.
The geometry of its highly reflective structure is shown in detail by Grobe et al. (2015).

|

FIG. 3 Gonio-photometer, comprising detector (a) moving around rotatable sample (b), and illuminator (c).
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2.2 MEASUREMENT

The BSDFs of the DRCs are measured on a scanning gonio-photometer as shown in Fig. 3.

The characterization of each DRC comprises measurements of the illuminator's intensity distribution
followed by the recording of light scatter for each given incident direction. The incident direction is
set by rotation of the sample, and the detector subsequently performs a continuous scan around the
sampling aperture while recording illuminance E_. The scan path is adaptive to the measurement
and allows refinement e.g. for regions where transmission peaks occur.

Due to the prior beam characterization, the BSDF can be computed without photometric calibration
from E_ the power of the incident beam P, (the integration of the unobstructed measurement) and the
cosine of the outgoing elevation angle 8: BSDF =E_ x P x cos(B )" (Apian-Bennewitz, 2010).

The fine structures of DRC, allow to focus of the illuminator on the detector for maximum directional
resolution. The BSDF of DRC, is measured under collimated illumination, leading to a widened
illuminated sampling aperture covering a representative number of periodical structures.

An asymmetric resolution of coarse incident directions 6,¢,and dense outgoing scattered light
directions 8 @, is chosen, assuming that features in the BSDFs require dense sampling of outgoing
directions, but change only gradually between adjacent incident directions. Due to the symmetry of
both DRCs, incident azimuth angles are varied as ¢, = 0° to 180°. For DRC,, ¢ = 0° corresponds to up,
for DRC, to North in typical applications.

Three sets of incident directions are distinguished (Fig. 4):

— Coarse (black): Low resolution with 8, = 10° to 50° in increments of 20°, ¢, = 0° to 180°
in increments of 30°.

— Refined (green): Refining Coarse with 6, = 0° to 60° in increments of 10°, ¢, = 0° to 180°
in increments of 15°.

— High (blue): Complementing Coarse and Refined, this dataset comprises incident
elevation angles above 60°.
To test interpolation and extrapolation, the BSDFs for two additional incident directions T1 6i =
40°,@,=30°and T2 6, = 70°, @, = 30° (red) are measured. In the results, these directions are shown
mirrored as red circles.
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FIG. 4 Incident directions Coarse (black), Refined (green), High (blue), T1 and T2 (red).
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MODEL GENERATION

Three data-driven models are generated from the three datasets. The process
comprises three passes:

pabopto2bsdf fits a set of radial basis functions as interpolants to the four components (reflection
front/back and transmission front/back) of the measurement.

These interpolants are subsequently sampled by the command bsdf2ttree! into a four-dimensional
tensor of 247=268,435,456 elements. Higher resolutions are not possible on typical hardware due

to memory constraints.

bsdf2ttree internally calls rttree_reduce to reduce this vast amount of data by merging adjacent
directions of low local variance until 90% of the initial dataset is eliminated, and saves the resulting
tensor tree into a XML-formatted file.

The method provides a set of three BSDF-models of adaptive resolution for each DRC.

M1 M1 comprise BSDF from Coarse.

DRC1 ** 4 DRC2
M2

orer M2, comprise datasets Coarse and Refined.
M3

M3 ... comprise Coarse, Refined and High.

DRC1' DRC2

COMPARISON OF TRANSMISSION DISTRIBUTIONS

To evaluate the effect of parameters in the measurement and model-generation, pairs of the BSDF for
a given direction are compared. We evaluate only transmission to the interior, which is of particular
importance in building applications.

To maintain readability up to high outgoing directions, the Differential Scattering Function (DSF),
equal to BSDF(6,9,0_¢ ) cos(8), is plotted, rather than the BSDF. The latter, due to the division
by cos(B), tends to exaggerate data at measurement points close to grazing. The transmission
distributions are plotted in polar coordinates, the center being 6 = 180° and ¢ = 0° aiming right.

EVALUATION OF THE EFFECTS OF
INTERPOLATION AND EXTRAPOLATION

The BSDFs of both DRCs for direction T1, as predicted by M1 and M2, are compared to the
measurements. Predictions by M1 are results of interpolation, while M2 rely on measured data.

The measured BSDFs of DRC, and DRC, for T2 are compared to the extrapolated BSDFs from
M2 and M3. As no data for incident directions above 6, = 60° is employed in the generation of
M2, these models provide results based on extrapolation. M3 comprises measured data for the
queried incident direction.
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EVALUATION OF THE EFFECTS OF
RESOLUTION AND DATA-REDUCTION

For both DRCs, variants of M3 of reduced resolution (tensor of 2¢=16,777,216 elements representing
22 incident and 2¢*? outgoing directions) without data-reduction are generated. These are compared
to variants of high resolution (27 incident and 27 outgoing directions), but with a data-reduction of

97% applied, leading to comparable model sizes.

RESULTS AND DISCUSSION

MEASUREMENT

Fig. 5 and Fig. 6 show the DSF of DRC, and DRC, measured for T1 and T2. The prismatic structure of
DRC, spreads the scattered light to a rim with an upward peak for TI1. DRC, shows two forward peaks
for T1 and a pattern of scattered light on the opposite side of the ¢, = 0°,180° plane. These peaks
disappear towards the T2 direction with a remaining distribution of diffused light.

20
phi [deg]

a0
phi [deg]

310

FIG.5 Measurement: DSFs of DRC, for incident direction T1 (left, red) and T2 (right, red).
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20
phi[deg]

FIG. 6 Measurement: DSFs of DRC, for incident direction T1 (left, red) and T2 (right, red).

INTERPOLATION EFFECTS

M1 and M2 lead to almost identical results for DRC, but do not show the ridge as pronounced
measurements. Transmission to the downward direction (lower left quadrant) is underestimated by
M1 when compared to M2 (Fig. 7).

For DRC,, M1 replicates the configuration of features found in the measurement, such as a strong
peak due to direct transmission at 8, = 140°, ¢_= 210° (Fig. 8). The shape of other features, such as
a secondary peak at 6_=120°, ¢_= 200° and two parallel rims in the upper half of the plot, are not
maintained by M1, but M2. The latter only differs from the measurement by the less pronounced
contours of its features, and a gradient toward grazing for which no measured data exists.

The interpolation by M1 replicates the characteristic upward deflection of DRC, as well as the distinct
features of DRC,. The underestimation of downward transmission through DRC, may however effect
results in daylight simulation.

EXTRAPOLATION EFFECTS

As shown in Fig. 9, the extrapolated DSF of DRC, for T2 from M2 is almost flat in the deflected upward
direction and lacks any peaks, which are present in the result from M3. Model M2 does not replicate
the characteristic deflection of light toward the ceiling for high incident elevation directions, if these
are not within the boundaries of the measurement.
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FIG. 7 Predicted DSF of DRC, for incident direction T1 (red) from interpolated M1 (left) and measured M2 (right).

220 320
phi [deg] phi[deg]

310 310

FIG. 8 Predicted DSF of DRC, for incident direction T1 (red) from interpolation M1 (left) and measurement M2 (right).
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As no diffused background is present in the DSF of DRC,, and no peaks in the complex DFS for T2
are extrapolated, M2 indicates almost zero transmission. This is contradicted by M3 (Fig. 10), which
closely matches the measured distribution. Due to the typical horizontal installation of DRC,, this
corresponds to a significant underestimation of low sun angles e.g. in the morning and afternoon, if
the boundaries of the measurement are not extended.

320 320
phi [deg] phi [deg]
310

FIG. 9 Predicted DSF of DRC, for incident direction T2 (red) from extrapolation M2 (left) and measurement M3 (right)

220 320
phi [deg] phi[deg]

FIG. 10 Predicted DSF of DRC, for incident direction T2 (red) from extrapolation M2 (left) and measurement M3 (right)
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EFFECTS OF RESOLUTION AND DATA-REDUCTION

Fig. 11 and Fig. 12 show the DSFs for DRC, and DRC, at incident direction T7 at resolution k = 6
without, and k = 7 with 97% data-reduction applied. While the latter can better resolve the forward
peak of DRC, (Fig. 12, right) data-reduction does not affect any important features for the two DRCs.

20
phi [deg]

FIG. 11 DSF of DRC, for direction T1 (red). Left: Resolution k=6, no data-reduction. Right: k=7, data-reduction by pt=97%.
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FIG. 12 DSF of DRC, for direction T1 (red). Left: Resolution k=6, no data-reduction. Right: k=7, data-reduction by pt=97%.

CONCLUSIONS AND OUTLOOK

Data-driven models of two exemplary, micro-structured DRCs were generated based on
measurements of their BSDF employing a gonio-photometer. The tensor-tree format of

Radiance was employed, as it provides a generic means to model the irregular optical properties
characterizing DRCs based on computation or measurement. Resulting models can be applied
directly in daylight simulations with Radiance, or can be efficiently combined with BSDF of other
clear or non-scattering fenestration layers using an extended matrix formalism. The influence of
interpolation and extrapolation, depending on the density of measurements as input for the model
generation, was evaluated, along with the impact of model output parameters such as directional
resolution and data-reduction.

While the data-driven model in Radiance is found to be capable of modeling the irregular BSDFs of
both DRC, and DRC, by interpolation, less pronounced peaks such as the downward transmission
through DRC, may be underestimated. Resolution of measured incident directions is of particular
importance for DRCs that abruptly change their properties between incident directions, such as DRC,,
if details of the complex BSDF are to be maintained.

Extrapolation for a complex BSDF, as a characteristic of DRC, was not reliable, and did not lead

to valid results for either of the assessed samples. Consequently, models must be utilized only

within the boundaries of measurements employed in model generation. Computational simulation

to complement measurements even up to grazing have been demonstrated (Krehe, 1) but require
detailed prior knowledge about the geometry and surface properties of DRCs. The extension of the
geometrical boundaries to higher incident elevation angles poses a challenge. The sampling aperture
illuminated by a beam of circular diameter chosen to cover a representative amount of periodical
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features of a given DRC at normal incident tends to exceed the sample size at high elevation angles.
While this can be addressed, for example by shaping the beam employing elliptical or slit baffles, the
resulting loss of beam power affects the signal to noise ratio of the measurement.

Data-reduction merges contiguous directions of low variance. This allows locally high resolution,
e.g. of distinct peaks at comparable file sizes, but effects less pronounced features such as ridges
in the BSDF of DRC,.

The sensitivity of model accuracy to directional resolution and data-reduction depends on the
complexity of the BSDF, and shall be further studied for different classes of DRCs. Efficient
configurations of the illuminator are currently being investigated to limit the sampling aperture to
the sample size even at very high incident directions.

The tensor-tree format and the routines for interpolation of measured BSDF implemented in
Radiance provide a means to model DRCs characterized by high directional selectivity and highly
directional, irregular transmission. Its variable resolution promises higher accuracy in daylight
simulation compared to the commonly used BSDF models of low directional resolution. In order to
guide model generation and application employing the tensor-tree, a better understanding of the
impact of directional resolution on assessments of different aspects of daylight performance, such as
daylight supply, glare and energy-efficiency, is required.

Endnotes

1. The command line parameters for bsdf2ttree are -t4 -g 7 -t 90 for a four-dimensional tensor of initial directional resolution 2.
The target for the data reduction is 90%.

2. bsdf2ttree called with parameters -t4 -g 6 -t -1.

3. bsdf2ttree called with parameters -t4 -g 7 -t 97.
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